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Directed Graphs (Digraphs)

Reminder: directed graphs are graphs where…
• Each edge (v,w) has a source v and a destination w
• Unlike undirected graphs, v → w 6= w → v
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Digraph Applications

application vertex is… edge is…
WWW web page hyperlink
chess board state legal move

scheduling task precedence
program function function call
journals article citation
make target dependency
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Digraph Traversal

Same as for undirected graphs:

bfs(G, src):
initialise visited array
mark src as visited
enqueue src into Q
while Q is not empty:

v = dequeue from Q
for each edge (v,w) in G:

if w has not been visited:
mark w as visited
enqueue w into Q

dfs(G, src):
initialise visited array
dfsRec(G, src, visited)

dfsRec(G, v, visited):
mark v as visited
for each edge (v,w) in G:

if w has not been visited:
dfsRec(G, w, visited)
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Digraph Traversal
Application - Web Crawling

Web crawling
Visit a subset of the web…

…to index
…to cache locally

Which traversal method? BFS or DFS?

Note: we can’t use a visited array, as we don’t know how many webpages
there are. Instead, use a visited set.
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Digraph Traversal
Application - Web Crawling

Web crawling algorithm:

webCrawl(startingUrl, maxPagesToVisit):
create visited set
add startingUrl to visited set
enqueue startingUrl into Q

numPagesVisited = 0
while Q is not empty and numPagesVisited < maxPagesToVisit:

currPage = dequeue from Q

visit currPage
numPagesVisited = numPagesVisited + 1

for each hyperlink on currPage:
if hyperlink not in visited set:

add hyperlink to visited set
enqueue hyperlink into Q
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Cycle Checking

In directed graphs,
a cycle is a directed path

where the start vertex = end vertex

0 1

2

3

4
5 6

This graph has three distinct cycles:
0-4-0, 2-5-6-2, 3-3
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Cycle Checking

Recall: Cycle checking for undirected graphs:
hasCycle(G):

initialise visited array to false
for each vertex v in G:

if visited[v] = false:
if dfsHasCycle(G, v, v, visited):

return true

return false

dfsHasCycle(G, v, prev, visited):
visited[v] = true

for each edge (v,w) in G:
if w = prev:

continue
if visited[w] = true:

return true
else if dfsHasCycle(G, w, v, visited):

return true

return false

Does this work for
directed graphs?

No



COMP2521
25T2

Traversal

Cycle
Checking
Pseudocode
Example

Transitive
Closure

Other
Algorithms

Cycle Checking

Recall: Cycle checking for undirected graphs:
hasCycle(G):

initialise visited array to false
for each vertex v in G:

if visited[v] = false:
if dfsHasCycle(G, v, v, visited):

return true

return false

dfsHasCycle(G, v, prev, visited):
visited[v] = true

for each edge (v,w) in G:
if w = prev:

continue
if visited[w] = true:

return true
else if dfsHasCycle(G, w, v, visited):

return true

return false

Does this work for
directed graphs?

No
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Cycle Checking

Problem #1

Algorithm ignores edge to previous vertex
and therefore does not detect the following cycle:

0 1

Simple fix: Don’t ignore edge to previous vertex
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Cycle Checking

hasCycle(G):
initialise visited array to false
for each vertex v in G:

if visited[v] = false:
if dfsHasCycle(G, v, visited):

return true

return false

dfsHasCycle(G, v, visited):
visited[v] = true

for each edge (v,w) in G:
if visited[w] = true:

return true
else if dfsHasCycle(G, w, visited):

return true

return false

Does this work for
directed graphs?

No!
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Cycle Checking

hasCycle(G):
initialise visited array to false
for each vertex v in G:

if visited[v] = false:
if dfsHasCycle(G, v, visited):

return true

return false

dfsHasCycle(G, v, visited):
visited[v] = true

for each edge (v,w) in G:
if visited[w] = true:

return true
else if dfsHasCycle(G, w, visited):

return true

return false

Does this work for
directed graphs?

No!
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Cycle Checking

Problem #2

Algorithm can detect cycles when there is none,
for example:

0

1

2

Algorithm starts at 0, recurses into 1 and 2,
backtracks to 0, sees that 2 has been visited,

and concludes there is a cycle
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Cycle Checking

Consider a cycle check on this undirected graph (starting at 0):

0

1

2
0

0

1

11

2

1

2

call stack
dfsHasCycle(0, prev=0)

dfsHasCycle(1, prev=0)
dfsHasCycle(2, prev=1)

visited
[0] [1] [2]

1 0

1

0

1
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Cycle Checking

Consider a cycle check on this undirected graph (starting at 0):

0

1

2
0

0

1

11

2

1

2

call stack
dfsHasCycle(0, prev=0)

dfsHasCycle(1, prev=0)
dfsHasCycle(2, prev=1)

visited
[0] [1] [2]

1 0

1

0

1
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Cycle Checking

Consider a cycle check on this undirected graph (starting at 0):

0

1

2

0

0

1

1

1

2

1

2

call stack
dfsHasCycle(0, prev=0)
dfsHasCycle(1, prev=0)

dfsHasCycle(2, prev=1)

visited
[0] [1] [2]

1

0

1 0

1
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Cycle Checking

Consider a cycle check on this undirected graph (starting at 0):

0

1

2

0

0

1

1

1

2

1

2

call stack
dfsHasCycle(0, prev=0)
dfsHasCycle(1, prev=0)

dfsHasCycle(2, prev=1)

visited
[0] [1] [2]

1

0

1 0

1
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Cycle Checking

Consider a cycle check on this undirected graph (starting at 0):

0

1

2

0

0

11

1

2

1

2 call stack
dfsHasCycle(0, prev=0)
dfsHasCycle(1, prev=0)
dfsHasCycle(2, prev=1)

visited
[0] [1] [2]

1

0

1

0

1
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Cycle Checking

Consider a cycle check on this undirected graph (starting at 0):

0

1

2

0

0

11

1

2

1

2 call stack
dfsHasCycle(0, prev=0)
dfsHasCycle(1, prev=0)
dfsHasCycle(2, prev=1)

visited
[0] [1] [2]

1

0

1

0

1
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Cycle Checking

Let’s compare with a directed graph:

0

1

2
0

0

1

11

22

call stack
dfsHasCycle(0)

dfsHasCycle(1)
dfsHasCycle(2)

No edge from 2 to 0!

2 is not on the stack!

visited
[0] [1] [2]

1 0

1

0

1
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Cycle Checking

Let’s compare with a directed graph:

0

1

2
0

0

1

11

22

call stack
dfsHasCycle(0)

dfsHasCycle(1)
dfsHasCycle(2)

No edge from 2 to 0!

2 is not on the stack!

visited
[0] [1] [2]

1 0

1

0

1
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Cycle Checking

Let’s compare with a directed graph:

0

1

2

0

0

1

1

1

22

call stack
dfsHasCycle(0)
dfsHasCycle(1)

dfsHasCycle(2)
No edge from 2 to 0!

2 is not on the stack!

visited
[0] [1] [2]

1

0

1 0

1
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Cycle Checking

Let’s compare with a directed graph:

0

1

2

0

0

1

1

1

2

2

call stack
dfsHasCycle(0)
dfsHasCycle(1)

dfsHasCycle(2)
No edge from 2 to 0!

2 is not on the stack!

visited
[0] [1] [2]

1

0

1 0

1
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Cycle Checking

Let’s compare with a directed graph:

0

1

2

0

0

11

1

2

2
call stack

dfsHasCycle(0)
dfsHasCycle(1)
dfsHasCycle(2)

No edge from 2 to 0!

2 is not on the stack!

visited
[0] [1] [2]

1

0

1

0

1
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Cycle Checking

Let’s compare with a directed graph:

0

1

2

0

0

11

1

2

2
call stack

dfsHasCycle(0)
dfsHasCycle(1)
dfsHasCycle(2)

No edge from 2 to 0!

2 is not on the stack!

visited
[0] [1] [2]

1

0

1

0

1
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Cycle Checking

Let’s compare with a directed graph:

0

1

2

0

0

1

1

1

22

call stack
dfsHasCycle(0)
dfsHasCycle(1)

dfsHasCycle(2)
No edge from 2 to 0!

2 is not on the stack!

visited
[0] [1] [2]

1

0

1

0

1
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Cycle Checking

Let’s compare with a directed graph:

0

1

2
0

0

111

22

call stack
dfsHasCycle(0)

dfsHasCycle(1)
dfsHasCycle(2)

No edge from 2 to 0!

2 is not on the stack!

visited
[0] [1] [2]

1

0

1

0

1
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Cycle Checking

Let’s compare with a directed graph:

0

1

2
0

0

111

22

call stack
dfsHasCycle(0)

dfsHasCycle(1)
dfsHasCycle(2)

No edge from 2 to 0!

2 is not on the stack!

visited
[0] [1] [2]

1

0

1

0

1
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Cycle Checking

Idea:

To properly detect a cycle,
check if neighbour is already on the call stack

When the graph is undirected,
this can be done by checking the visited array,
but this doesn’t work for directed graphs!

Need to use separate array to
keep track of when a vertex is on the call stack
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Cycle Checking
Pseudocode

hasCycle(G):
create visited array, initialised to false
create onStack array, initialised to false

for each vertex v in G:
if visited[v] = false:

if dfsHasCycle(G, v, visited, onStack):
return true

return false

dfsHasCycle(G, v, visited, onStack):
visited[v] = true
onStack[v] = true

for each edge (v,w) in G:
if onStack[w] = true:

return true
else if visited[w] = false:

if dfsHasCycle(G, w, visited, onStack):
return true

onStack[v] = false
return false
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Cycle Checking
Example

Check if a cycle exists in this graph:

0 1

2

3

4

5
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Transitive Closure

Problem: computing reachability

Given a digraph G it is potentially useful to know:
• Is vertex t reachable from vertex s?
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Transitive Closure

One way to implement a reachability check:
• Use BFS or DFS starting at s

• This is O(V + E) in the worst case
• Only feasible if reachability is an infrequent operation

What about applications that frequently need to check reachability?
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Transitive Closure

Idea

Construct a V × V matrix
that tells us whether there is a path (not edge)

from s to t, for s, t ∈ V

This matrix is called the transitive closure (tc) matrix
(or reachability matrix)

tc[s][t] is true if there is a path from s to t, false otherwise
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Transitive Closure

0 1

2

34

5 6

adjacency matrix

[0] [1] [2] [3] [4] [5] [6]

[6]

[5]

[4]

[3]

[2]

[1]

[0]

0 1 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 1
0 0 1 0 1 0 0
0 0 1 0 0 0 0
1 0 1 0 0 0 0
0 0 0 0 0 0 1

reachability matrix

[0] [1] [2] [3] [4] [5] [6]

[6]

[5]

[4]

[3]

[2]

[1]

[0]

1 1 1 0 0 0 1
1 1 1 0 0 0 1
1 1 1 1 1 0 1
1 1 1 1 1 0 1
0 0 1 0 0 0 0
1 1 1 0 0 0 1
1 1 1 0 0 0 1
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Transitive Closure

One way to compute reachability matrix:
• Perform BFS/DFS from every vertex

Another way⇒ Warshall’s algorithm:
• Simple algorithm that does not require a graph traversal
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Warshall’s Algorithm

Warshall’s algorithm
uses transitivity to compute reachability

If there is a path from u to v,
and a path from v to w...

then there is a path from u to w

u v w
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Warshall’s Algorithm

Warshall’s algorithm
uses transitivity to compute reachability

If there is a path from u to v,
and a path from v to w...

then there is a path from u to w

u v w
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Warshall’s Algorithm

Idea of Warshall’s algorithm:
• There is a path from s to t if:

• There is an edge from s to t, or
• There is a path from s to t via vertex 0, or
• There is a path from s to t via vertex 0 and/or 1, or
• There is a path from s to t via vertex 0, 1 and/or 2, or
• …
• There is a path from s to t via any of the other vertices
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Warshall’s Algorithm

Example:
• There is a path from s to t if:

• There is an edge from s to t, or

• There is a path from s to t via vertex 0, or
• There is a path from s to t via vertex 0 and/or 1, or
• There is a path from s to t via vertex 0, 1 and/or 2, or
• There is a path from s to t via vertex 0, 1, 2 and/or 3

0

1

2

3
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Warshall’s Algorithm

Example:
• There is a path from s to t if:

• There is an edge from s to t, or
• There is a path from s to t via vertex 0, or

• There is a path from s to t via vertex 0 and/or 1, or
• There is a path from s to t via vertex 0, 1 and/or 2, or
• There is a path from s to t via vertex 0, 1, 2 and/or 3

0

1

2

3
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Warshall’s Algorithm

Example:
• There is a path from s to t if:

• There is an edge from s to t, or
• There is a path from s to t via vertex 0, or
• There is a path from s to t via vertex 0 and/or 1, or

• There is a path from s to t via vertex 0, 1 and/or 2, or
• There is a path from s to t via vertex 0, 1, 2 and/or 3

0

1

2

3
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Warshall’s Algorithm

Example:
• There is a path from s to t if:

• There is an edge from s to t, or
• There is a path from s to t via vertex 0, or
• There is a path from s to t via vertex 0 and/or 1, or
• There is a path from s to t via vertex 0, 1 and/or 2, or

• There is a path from s to t via vertex 0, 1, 2 and/or 3

0

1

2

3
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Warshall’s Algorithm

Example:
• There is a path from s to t if:

• There is an edge from s to t, or
• There is a path from s to t via vertex 0, or
• There is a path from s to t via vertex 0 and/or 1, or
• There is a path from s to t via vertex 0, 1 and/or 2, or
• There is a path from s to t via vertex 0, 1, 2 and/or 3

0

1

2

3
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Warshall’s Algorithm

On the k-th iteration, the algorithm determines if a path exists between two
vertices s and t using just 0, … , k as intermediate vertices

s

t

k On the k-th iteration

If we have:
(1) a path from s to k
(2) a path from k to t

(using only vertices 0 to k − 1)

Then we have a path from s to t
using vertices from 0 to k

if tc[s][k] and tc[k][t]:
tc[s][t] = true
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Warshall’s Algorithm

On the k-th iteration, the algorithm determines if a path exists between two
vertices s and t using just 0, … , k as intermediate vertices

s

t

k On the k-th iteration

If we have:
(1) a path from s to k
(2) a path from k to t

(using only vertices 0 to k − 1)

Then we have a path from s to t
using vertices from 0 to k

if tc[s][k] and tc[k][t]:
tc[s][t] = true
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Warshall’s Algorithm
Pseudocode

warshall(A):
Input: n × n adjacency matrix A
Output: n × n reachability matrix

create tc matrix which is a copy of A

for each vertex k in G: // from 0 to n - 1
for each vertex s in G:

for each vertex t in G:
if tc[s][k] and tc[k][t]:

tc[s][t] = true

return tc
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Warshall’s Algorithm
Example

Find transitive closure of this graph

Initialise tc with edges of original graphFirst iteration: k = 0
There is a path 1 → 0 and a path 0 → 2

So there is a path 1 → 2
Done

Second iteration: k = 1
There is a path 3 → 1 and a path 1 → 0

So there is a path 3 → 0

There is a path 3 → 1 and a path 1 → 2

So there is a path 3 → 2

There is a path 3 → 1 and a path 1 → 3

So there is a path 3 → 3
Done

Third iteration: k = 2
No pairs (s, t) such that there are paths s → 2 and 2 → tDone

Fourth iteration: k = 3
There is a path 1 → 3 and a path 3 → 1

So there is a path 1 → 1
Done

Finished

0

1

2

3

0

1

2

3

[0] [1] [2] [3]

[0]

[1]

[2]

[3]

0 0 1 0

1 0

1

0

1

1

0 0 0 0

0

1

1 0

1

0

1
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Warshall’s Algorithm
Example

Find transitive closure of this graph

Initialise tc with edges of original graph

First iteration: k = 0
There is a path 1 → 0 and a path 0 → 2

So there is a path 1 → 2
Done

Second iteration: k = 1
There is a path 3 → 1 and a path 1 → 0

So there is a path 3 → 0

There is a path 3 → 1 and a path 1 → 2

So there is a path 3 → 2

There is a path 3 → 1 and a path 1 → 3

So there is a path 3 → 3
Done

Third iteration: k = 2
No pairs (s, t) such that there are paths s → 2 and 2 → tDone

Fourth iteration: k = 3
There is a path 1 → 3 and a path 3 → 1

So there is a path 1 → 1
Done

Finished

0

1

2

3

0

1

2

3

[0] [1] [2] [3]

[0]

[1]

[2]

[3]

0 0 1 0

1 0

1

0

1

1

0 0 0 0

0

1

1 0

1

0

1
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Warshall’s Algorithm
Example

Find transitive closure of this graphInitialise tc with edges of original graph

First iteration: k = 0

There is a path 1 → 0 and a path 0 → 2

So there is a path 1 → 2
Done

Second iteration: k = 1
There is a path 3 → 1 and a path 1 → 0

So there is a path 3 → 0

There is a path 3 → 1 and a path 1 → 2

So there is a path 3 → 2

There is a path 3 → 1 and a path 1 → 3

So there is a path 3 → 3
Done
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No pairs (s, t) such that there are paths s → 2 and 2 → tDone

Fourth iteration: k = 3
There is a path 1 → 3 and a path 3 → 1

So there is a path 1 → 1
Done

Finished

0

1

2

3

0

1

2

3

[0] [1] [2] [3]

[0]

[1]

[2]

[3]

0 0 1 0

1 0

1

0

1

1

0 0 0 0

0

1

1 0

1

0

1



COMP2521
25T2

Traversal

Cycle
Checking

Transitive
Closure
Warshall’s algorithm
Pseudocode
Example
Analysis

Other
Algorithms

Warshall’s Algorithm
Example

Find transitive closure of this graphInitialise tc with edges of original graph
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There is a path 1 → 0 and a path 0 → 2
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Find transitive closure of this graphInitialise tc with edges of original graph
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Find transitive closure of this graphInitialise tc with edges of original graphFirst iteration: k = 0
There is a path 1 → 0 and a path 0 → 2

So there is a path 1 → 2
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Second iteration: k = 1
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Find transitive closure of this graphInitialise tc with edges of original graphFirst iteration: k = 0
There is a path 1 → 0 and a path 0 → 2

So there is a path 1 → 2
Done

Second iteration: k = 1
There is a path 3 → 1 and a path 1 → 0
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Find transitive closure of this graphInitialise tc with edges of original graphFirst iteration: k = 0
There is a path 1 → 0 and a path 0 → 2

So there is a path 1 → 2
Done

Second iteration: k = 1
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No pairs (s, t) such that there are paths s → 2 and 2 → tDone

Fourth iteration: k = 3
There is a path 1 → 3 and a path 3 → 1

So there is a path 1 → 1
Done

Finished

0

1

2

3

0

1

2

3

[0] [1] [2] [3]

[0]

[1]

[2]

[3]

0 0 1 0

1 0

1 0

1 1

0 0 0 0

0

1 1 0

1

0

1



COMP2521
25T2

Traversal

Cycle
Checking

Transitive
Closure
Warshall’s algorithm
Pseudocode
Example
Analysis

Other
Algorithms

Warshall’s Algorithm
Example

Find transitive closure of this graphInitialise tc with edges of original graphFirst iteration: k = 0
There is a path 1 → 0 and a path 0 → 2

So there is a path 1 → 2
Done

Second iteration: k = 1

There is a path 3 → 1 and a path 1 → 0
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Find transitive closure of this graphInitialise tc with edges of original graphFirst iteration: k = 0
There is a path 1 → 0 and a path 0 → 2

So there is a path 1 → 2
Done

Second iteration: k = 1

There is a path 3 → 1 and a path 1 → 0

So there is a path 3 → 0

There is a path 3 → 1 and a path 1 → 2

So there is a path 3 → 2

There is a path 3 → 1 and a path 1 → 3

So there is a path 3 → 3
Done

Third iteration: k = 2
No pairs (s, t) such that there are paths s → 2 and 2 → tDone

Fourth iteration: k = 3
There is a path 1 → 3 and a path 3 → 1

So there is a path 1 → 1
Done

Finished

0

1

2

3

0

1

2

3

[0] [1] [2] [3]

[0]

[1]

[2]

[3]

0 0 1 0

1 0

1 0

1 1

0 0 0 0

0

1 1

0

1 0

1



COMP2521
25T2

Traversal

Cycle
Checking

Transitive
Closure
Warshall’s algorithm
Pseudocode
Example
Analysis

Other
Algorithms

Warshall’s Algorithm
Example

Find transitive closure of this graphInitialise tc with edges of original graphFirst iteration: k = 0
There is a path 1 → 0 and a path 0 → 2

So there is a path 1 → 2
Done

Second iteration: k = 1

There is a path 3 → 1 and a path 1 → 0

So there is a path 3 → 0

There is a path 3 → 1 and a path 1 → 2

So there is a path 3 → 2

There is a path 3 → 1 and a path 1 → 3

So there is a path 3 → 3
Done

Third iteration: k = 2
No pairs (s, t) such that there are paths s → 2 and 2 → tDone

Fourth iteration: k = 3
There is a path 1 → 3 and a path 3 → 1

So there is a path 1 → 1
Done
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Find transitive closure of this graphInitialise tc with edges of original graphFirst iteration: k = 0
There is a path 1 → 0 and a path 0 → 2

So there is a path 1 → 2
Done

Second iteration: k = 1

There is a path 3 → 1 and a path 1 → 0

So there is a path 3 → 0

There is a path 3 → 1 and a path 1 → 2

So there is a path 3 → 2

There is a path 3 → 1 and a path 1 → 3

So there is a path 3 → 3

Done
Third iteration: k = 2

No pairs (s, t) such that there are paths s → 2 and 2 → tDone
Fourth iteration: k = 3

There is a path 1 → 3 and a path 3 → 1

So there is a path 1 → 1
Done
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Find transitive closure of this graphInitialise tc with edges of original graphFirst iteration: k = 0
There is a path 1 → 0 and a path 0 → 2

So there is a path 1 → 2
Done

Second iteration: k = 1

There is a path 3 → 1 and a path 1 → 0

So there is a path 3 → 0

There is a path 3 → 1 and a path 1 → 2

So there is a path 3 → 2

There is a path 3 → 1 and a path 1 → 3

So there is a path 3 → 3

Done

Third iteration: k = 2
No pairs (s, t) such that there are paths s → 2 and 2 → tDone

Fourth iteration: k = 3
There is a path 1 → 3 and a path 3 → 1

So there is a path 1 → 1
Done
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Find transitive closure of this graphInitialise tc with edges of original graphFirst iteration: k = 0
There is a path 1 → 0 and a path 0 → 2

So there is a path 1 → 2
Done

Second iteration: k = 1
There is a path 3 → 1 and a path 1 → 0

So there is a path 3 → 0

There is a path 3 → 1 and a path 1 → 2

So there is a path 3 → 2

There is a path 3 → 1 and a path 1 → 3

So there is a path 3 → 3
Done

Third iteration: k = 2

No pairs (s, t) such that there are paths s → 2 and 2 → tDone
Fourth iteration: k = 3

There is a path 1 → 3 and a path 3 → 1

So there is a path 1 → 1
Done
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Find transitive closure of this graphInitialise tc with edges of original graphFirst iteration: k = 0
There is a path 1 → 0 and a path 0 → 2

So there is a path 1 → 2
Done

Second iteration: k = 1
There is a path 3 → 1 and a path 1 → 0

So there is a path 3 → 0

There is a path 3 → 1 and a path 1 → 2

So there is a path 3 → 2

There is a path 3 → 1 and a path 1 → 3

So there is a path 3 → 3
Done

Third iteration: k = 2
No pairs (s, t) such that there are paths s → 2 and 2 → t

Done
Fourth iteration: k = 3

There is a path 1 → 3 and a path 3 → 1

So there is a path 1 → 1
Done
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Find transitive closure of this graphInitialise tc with edges of original graphFirst iteration: k = 0
There is a path 1 → 0 and a path 0 → 2

So there is a path 1 → 2
Done

Second iteration: k = 1
There is a path 3 → 1 and a path 1 → 0

So there is a path 3 → 0

There is a path 3 → 1 and a path 1 → 2

So there is a path 3 → 2

There is a path 3 → 1 and a path 1 → 3

So there is a path 3 → 3
Done

Third iteration: k = 2

No pairs (s, t) such that there are paths s → 2 and 2 → t

Done

Fourth iteration: k = 3
There is a path 1 → 3 and a path 3 → 1

So there is a path 1 → 1
Done
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Find transitive closure of this graphInitialise tc with edges of original graphFirst iteration: k = 0
There is a path 1 → 0 and a path 0 → 2

So there is a path 1 → 2
Done

Second iteration: k = 1
There is a path 3 → 1 and a path 1 → 0

So there is a path 3 → 0

There is a path 3 → 1 and a path 1 → 2

So there is a path 3 → 2

There is a path 3 → 1 and a path 1 → 3

So there is a path 3 → 3
Done

Third iteration: k = 2
No pairs (s, t) such that there are paths s → 2 and 2 → tDone

Fourth iteration: k = 3

There is a path 1 → 3 and a path 3 → 1

So there is a path 1 → 1
Done

Finished

0

1

2

3

0

1

2

3

[0] [1] [2] [3]

[0]

[1]

[2]

[3]

0 0 1 0

1 0

1 0

1 1

0 0 0 0

0

1 1

0

1

0

1



COMP2521
25T2

Traversal

Cycle
Checking

Transitive
Closure
Warshall’s algorithm
Pseudocode
Example
Analysis

Other
Algorithms

Warshall’s Algorithm
Example

Find transitive closure of this graphInitialise tc with edges of original graphFirst iteration: k = 0
There is a path 1 → 0 and a path 0 → 2

So there is a path 1 → 2
Done

Second iteration: k = 1
There is a path 3 → 1 and a path 1 → 0

So there is a path 3 → 0

There is a path 3 → 1 and a path 1 → 2

So there is a path 3 → 2

There is a path 3 → 1 and a path 1 → 3

So there is a path 3 → 3
Done

Third iteration: k = 2
No pairs (s, t) such that there are paths s → 2 and 2 → tDone

Fourth iteration: k = 3
There is a path 1 → 3 and a path 3 → 1

So there is a path 1 → 1
Done
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Find transitive closure of this graphInitialise tc with edges of original graphFirst iteration: k = 0
There is a path 1 → 0 and a path 0 → 2

So there is a path 1 → 2
Done

Second iteration: k = 1
There is a path 3 → 1 and a path 1 → 0

So there is a path 3 → 0

There is a path 3 → 1 and a path 1 → 2

So there is a path 3 → 2

There is a path 3 → 1 and a path 1 → 3

So there is a path 3 → 3
Done

Third iteration: k = 2
No pairs (s, t) such that there are paths s → 2 and 2 → tDone

Fourth iteration: k = 3
There is a path 1 → 3 and a path 3 → 1

So there is a path 1 → 1

Done
Finished
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Find transitive closure of this graphInitialise tc with edges of original graphFirst iteration: k = 0
There is a path 1 → 0 and a path 0 → 2

So there is a path 1 → 2
Done

Second iteration: k = 1
There is a path 3 → 1 and a path 1 → 0

So there is a path 3 → 0

There is a path 3 → 1 and a path 1 → 2

So there is a path 3 → 2

There is a path 3 → 1 and a path 1 → 3

So there is a path 3 → 3
Done

Third iteration: k = 2
No pairs (s, t) such that there are paths s → 2 and 2 → tDone

Fourth iteration: k = 3

There is a path 1 → 3 and a path 3 → 1

So there is a path 1 → 1

Done
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Find transitive closure of this graphInitialise tc with edges of original graphFirst iteration: k = 0
There is a path 1 → 0 and a path 0 → 2

So there is a path 1 → 2
Done

Second iteration: k = 1
There is a path 3 → 1 and a path 1 → 0

So there is a path 3 → 0

There is a path 3 → 1 and a path 1 → 2

So there is a path 3 → 2

There is a path 3 → 1 and a path 1 → 3

So there is a path 3 → 3
Done

Third iteration: k = 2
No pairs (s, t) such that there are paths s → 2 and 2 → tDone

Fourth iteration: k = 3
There is a path 1 → 3 and a path 3 → 1

So there is a path 1 → 1
Done
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Warshall’s Algorithm
Analysis

Analysis:
• Time complexity: O(V 3)

• Three nested loops iterating over all vertices
• Space complexity: O(V 2)

• Can be O(1) if overwriting the input matrix
• Benefit: checking reachability between vertices is now O(1)

• Makes up for slow setup (O(V 3)) if reachability is a very frequent operation
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Other Algorithms

Strongly connected components:
• Kosaraju’s algorithm
• Tarjan’s algorithm
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