
COMP2521
25T2

Graphs

Graph ADT

Graph Reps COMP2521 25T2
Graphs (I)

Introduction to Graphs

Sim Mautner
cs2521@cse.unsw.edu.au

graph fundamentals
graph adt

graph representations

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Graph Fundamentals

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Motivation

Up to this point, we’ve seen a few collection types…

lists: a linear sequence of items
each node is connected to its next node

trees: a branched hierarchy of items
each node is connected to its child node(s)

what if we want something more general?
each node is connected to arbitrarily many nodes

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Motivation

Many applications need to model relationships between items.

… on a map: cities, connected by roads
… on the Web: pages, connected by hyperlinks
… in a game: states, connected by legal moves
… in a social network: people, connected by friendships
… in scheduling: tasks, connected by constraints
… in circuits: components, connected by traces
… in networking: computers, connected by cables
… in programs: functions, connected by calls
… etc. etc. etc.

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Graphs

A graph is a data structure consisting of:
• A set of vertices V

• Also called nodes
• A set of edges E between pairs of vertices

v1

v2 v3

v4
V = {v1, v2, v3, v4}

E = {(v1, v2), (v1, v3), (v1, v4),
(v2, v3), (v3, v4)}

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Graphs

Vertices are distinguished by a unique identifier.
• In this course, usually an integer between 0 and |V | − 1

Edges may be (optionally) directed, weighted and/or labelled.

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Example

Example: Australian cities and roads

2716

4049

3051

732

2055

3429

1671

658

873

982

309
PER

ADL

DAR

MEL

BRI

CAN

SYD

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Graphs
Problems

Questions we could answer with a graph:
• Is there a way to get from A to B?
• What is the best way to get from A to B?
• In general, what vertices can we reach from A?
• Is there a path that lets me visit all vertices?
• Can we form a tree linking all vertices?
• Are two graphs “equivalent”?

Graph problems are generally more complex to solve than linked list
problems:
• Items are not ordered
• Graphs may contain cycles
• Concrete representation is more complex

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Graphs
Types of Graphs

Graphs can be a combination of these types:

undirected

unweighted

without loops

non-multigraph

or

or

or

or

directed

weighted

with loops

multigraph

... and others ...

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Undirected Graphs

In an undirected graph, edges do not have direction.
For example, Facebook friends.

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Directed Graphs

In a directed graph or digraph, each edge has a direction.
For example, road maps, Twitter follows.

undirected graph directed graph

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Weighted Graphs

In a weighted graph, each edge has an associated weight.
For example, road maps, networks.

unweighted graph

3

5

1
2

weighted graph

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Graphs with Loops

A loop is an edge from a vertex to itself.

Depending on the context,
a graph may or may not be able to have loops.

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Multigraphs

In a multigraph,
multiple edges are allowed between two vertices.

For example, call graphs, maps.

Multigraphs will not be considered in this course.

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Simple Graphs

A simple graph is an undirected graph
with no loops and no multiple edges.

For now, we will only consider simple graphs.

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Simple Graphs

Question:
For a simple graph with V vertices,

what is the maximum possible number of edges?

(E = 0) E = V (V − 1)/2

Note on notation:
The number of vertices |V | and the number of edges |E|

are normally written as V and E for simplicity.

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Simple Graphs

Question:
For a simple graph with V vertices,

what is the maximum possible number of edges?

(E = 0) E = V (V − 1)/2

Note on notation:
The number of vertices |V | and the number of edges |E|

are normally written as V and E for simplicity.

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Graph Terminology
(I)

Two vertices v and w are adjacent
if an edge e := (v,w) connects them;
we say e is incident on v and w.

The degree of a vertex v (deg(v))
is the number of edges incident on v.

0

1

2

3 4

deg(0) = 2
deg(1) = 3
deg(2) = 2
deg(3) = 1
deg(4) = 4

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Graph Terminology
(II)

The ratio E :V can vary considerably.

If E is closer to V 2, the graph is dense.
If E is closer to V , the graph is sparse.

dense graph sparse graph

Knowing whether a graph is dense or sparse will affect
our choice of representation and algorithms.

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Graph Terminology
(III)

A path is
a sequence of vertices where

each vertex has a edge to the next in the
sequence

A path is simple
if it has no repeating vertices

A cycle is a path where
only the first and last vertices are the same

0-1-2-0, 1-2-3-1, 0-1-3-2-0

0

1

2

3

4

5

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Graph Terminology
(IV)

A complete graph is a graph where
every vertex is connected to every other vertex via an edge.

In a complete graph, E = 1
2V (V − 1).

K3 K5 K6

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Graph Terminology
(V)

A connected graph is a graph where
there is a path from every vertex to every other vertex.

0

1

2

3

4

5

Connected graph

0

1

2

3

4

5

Disconnected graph

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Graph Terminology
(VI)

A tree is a connected graph with no cycles.

A tree has exactly one path between each pair of vertices.

0

1

2

3

4

5

Tree

0

1

2

3

4

5

Not a tree

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Graph Terminology
(VII)

A subgraph of a graph G
is a graph that contains a subset of the vertices of G
and a subset of the edges between these vertices.

0

1

2

3

4

5

0

1

2

3

4

5

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Graph Terminology
(VIII)

A connected component is a maximally connected subgraph.

A connected graph has one connected component — the graph itself.
A disconnected graph has two or more connected components.

0

1

2

3

4 5

6

7

8

9
10

11

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Graph Terminology
(IX)

A spanning tree of a graph G
is a subgraph that contains all the vertices of G

and is a single tree.

Spanning trees only exist for connected graphs.

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Graph Terminology
(X)

A spanning forest of a graph G
is a subgraph that contains all the vertices of G

and contains one tree for each connected component.

0

1

2

3

4 5

6

7

8

9
10

11

COMP2521
25T2

Graphs
Types of Graphs
Graph Terminology

Graph ADT

Graph Reps

Graph Terminology
(XI)

A clique is a complete subgraph.

A clique is non-trivial if it has 3 or more vertices.

0

1

2

3

4

5

6 7 8 9

10
11

COMP2521
25T2

Graphs

Graph ADT

Graph Reps

Graph ADT

COMP2521
25T2

Graphs

Graph ADT

Graph Reps

Graph ADT

What do we need to represent?
What operations do we need to support?

COMP2521
25T2

Graphs

Graph ADT

Graph Reps

Graph ADT

What do we need to represent?
A set of vertices V := {v1, · · · , vn}

A set of edges E := {(v,w) | v,w ∈ V}

What operations do we need to support?
create/destroy graph
add/remove edges
get #vertices, #edges
check if an edge exists

COMP2521
25T2

Graphs

Graph ADT

Graph Reps

Graph ADT
Operations

create/destroy
create a graph

free memory allocated to graph

query
get number of vertices
get number of edges
check if an edge exists

update
add edge

remove edge

We will extend this ADT with more complex operations later.

COMP2521
25T2

Graphs

Graph ADT

Graph Reps

A Graph ADT
"Graph.h" - Operations to Create/Destroy

typedef struct graph *Graph;

// vertices denoted by integers 0..V-1
typedef int Vertex;

/** Creates a new graph with nV vertices */
Graph GraphNew(int nV);

/** Frees all memory allocated to a graph */
void GraphFree(Graph g);

COMP2521
25T2

Graphs

Graph ADT

Graph Reps

A Graph ADT
"Graph.h" - Operations to Query

/** Returns the number of vertices in a graph */
int GraphNumVertices(Graph g);

/** Returns the number of edges in a graph */
int GraphNumEdges(Graph g);

/** Returns true if there is an edge between the given vertices
and false otherwise */

bool GraphIsAdjacent(Graph g, Vertex v, Vertex w);

COMP2521
25T2

Graphs

Graph ADT

Graph Reps

A Graph ADT
"Graph.h" - Operations to Update

/** Inserts an edge into a graph */
void GraphInsertEdge(Graph g, Vertex v, Vertex w);

/** Removes an edge from a graph */
void GraphRemoveEdge(Graph g, Vertex v, Vertex w);

COMP2521
25T2

Graphs

Graph ADT

Graph Reps
Adjacency Matrix
Adjacency List
Array of Edges
Summary

Graph Representations

COMP2521
25T2

Graphs

Graph ADT

Graph Reps
Adjacency Matrix
Adjacency List
Array of Edges
Summary

Graph Representations

3 main graph representations:

Adjacency Matrix
Edges defined by presence value in V × V matrix

Adjacency List
Edges defined by entries in array of V lists

Array of Edges
Explicit representation of edges as (v,w) pairs

We’ll consider these representations for unweighted, undirected graphs.

COMP2521
25T2

Graphs

Graph ADT

Graph Reps
Adjacency Matrix
Adjacency List
Array of Edges
Summary

Adjacency Matrix

A V × V matrix
Each cell represents a pair of vertices,

with a 1 indicating an edge between them

0

1

2

3

0 1 0 1

1 0 0 1

0 0 0 1

1 1 1 0

[0] [1] [2] [3]

[0]

[1]

[2]

[3]

COMP2521
25T2

Graphs

Graph ADT

Graph Reps
Adjacency Matrix
Adjacency List
Array of Edges
Summary

Adjacency Matrix

A V × V matrix
Each cell represents a pair of vertices,

with a 1 indicating an edge between them

0

1

2

3

0 1 0 1

1 0 0 1

0 0 0 1

1 1 1 0

[0] [1] [2] [3]

[0]

[1]

[2]

[3]

COMP2521
25T2

Graphs

Graph ADT

Graph Reps
Adjacency Matrix
Adjacency List
Array of Edges
Summary

Adjacency Matrix

A V × V matrix
Each cell represents a pair of vertices,

with a 1 indicating an edge between them

0

1

2

3

0 1 0 1

1 0 0 1

0 0 0 1

1 1 1 0

[0] [1] [2] [3]

[0]

[1]

[2]

[3]

COMP2521
25T2

Graphs

Graph ADT

Graph Reps
Adjacency Matrix
Adjacency List
Array of Edges
Summary

Adjacency Matrix

A V × V matrix
Each cell represents a pair of vertices,

with a 1 indicating an edge between them

0

1

2

3

0 1 0 1

1 0 0 1

0 0 0 1

1 1 1 0

[0] [1] [2] [3]

[0]

[1]

[2]

[3]

COMP2521
25T2

Graphs

Graph ADT

Graph Reps
Adjacency Matrix
Adjacency List
Array of Edges
Summary

Adjacency Matrix

A V × V matrix
Each cell represents a pair of vertices,

with a 1 indicating an edge between them

0

1

2

3

0 1 0 1

1 0 0 1

0 0 0 1

1 1 1 0

[0] [1] [2] [3]

[0]

[1]

[2]

[3]

COMP2521
25T2

Graphs

Graph ADT

Graph Reps
Adjacency Matrix
Adjacency List
Array of Edges
Summary

Adjacency Matrix
Implementation in C

struct graph {
int nV;
int nE;
bool **edges;

};

0

1

2

3

graph

edges

nV 4

nE 4

[0]

[1]

[2]

[3]

0 1 0 1

[0] [1] [2] [3]

1 0 0 1

0 0 0 1

1 1 1 0

COMP2521
25T2

Graphs

Graph ADT

Graph Reps
Adjacency Matrix
Adjacency List
Array of Edges
Summary

Adjacency Matrix
Advantages and Disadvantages

Advantages

Efficient
edge insertion/deletion

and adjacency check (O(1))

Disadvantages

Huge memory usage (O(V 2))
sparse graph⇒ wasted space!

undirected graph⇒ wasted space!

COMP2521
25T2

Graphs

Graph ADT

Graph Reps
Adjacency Matrix
Adjacency List
Array of Edges
Summary

Adjacency List

Array of V lists
List at index v contains the neighbours of vertex v

0

1

2

3

[0] 1, 3

[1] 0, 3

[2] 3

[3] 0, 1, 2

COMP2521
25T2

Graphs

Graph ADT

Graph Reps
Adjacency Matrix
Adjacency List
Array of Edges
Summary

Adjacency List

Array of V lists
List at index v contains the neighbours of vertex v

0

1

2

3

[0] 1, 3

[1] 0, 3

[2] 3

[3] 0, 1, 2

COMP2521
25T2

Graphs

Graph ADT

Graph Reps
Adjacency Matrix
Adjacency List
Array of Edges
Summary

Adjacency List

Array of V lists
List at index v contains the neighbours of vertex v

0

1

2

3

[0] 1, 3

[1] 0, 3

[2] 3

[3] 0, 1, 2

COMP2521
25T2

Graphs

Graph ADT

Graph Reps
Adjacency Matrix
Adjacency List
Array of Edges
Summary

Adjacency List

Array of V lists
List at index v contains the neighbours of vertex v

0

1

2

3

[0] 1, 3

[1] 0, 3

[2] 3

[3] 0, 1, 2

COMP2521
25T2

Graphs

Graph ADT

Graph Reps
Adjacency Matrix
Adjacency List
Array of Edges
Summary

Adjacency List

Array of V lists
List at index v contains the neighbours of vertex v

0

1

2

3

[0] 1, 3

[1] 0, 3

[2] 3

[3] 0, 1, 2

COMP2521
25T2

Graphs

Graph ADT

Graph Reps
Adjacency Matrix
Adjacency List
Array of Edges
Summary

Adjacency List
Implementation in C

struct graph {
int nV;
int nE;
struct adjNode **edges;

};

struct adjNode {
Vertex v;
struct adjNode *next;

};

0

1

2

3

graph

edges

nV 4

nE 4

[0]

[1]

[2]

[3]

1 3

0 3

3

0 1 2

COMP2521
25T2

Graphs

Graph ADT

Graph Reps
Adjacency Matrix
Adjacency List
Array of Edges
Summary

Adjacency List
Advantages and Disadvantages

Advantages

Space-efficient for
sparse graphs

O(V + E) memory usage

Disadvantages

Inefficient
edge insertion/deletion (O(V))
(matters less for sparse graphs)

COMP2521
25T2

Graphs

Graph ADT

Graph Reps
Adjacency Matrix
Adjacency List
Array of Edges
Summary

Array of Edges

Explicit array of edges (pairs of vertices)

0

1

2

3

[0] (0,1)

[1] (0,3)

[2] (1,3)

[3] (2,3)

COMP2521
25T2

Graphs

Graph ADT

Graph Reps
Adjacency Matrix
Adjacency List
Array of Edges
Summary

Array of Edges

Explicit array of edges (pairs of vertices)

0

1

2

3

[0] (0,1)

[1] (0,3)

[2] (1,3)

[3] (2,3)

COMP2521
25T2

Graphs

Graph ADT

Graph Reps
Adjacency Matrix
Adjacency List
Array of Edges
Summary

Array of Edges

Explicit array of edges (pairs of vertices)

0

1

2

3

[0] (0,1)

[1] (0,3)

[2] (1,3)

[3] (2,3)

COMP2521
25T2

Graphs

Graph ADT

Graph Reps
Adjacency Matrix
Adjacency List
Array of Edges
Summary

Array of Edges

Explicit array of edges (pairs of vertices)

0

1

2

3

[0] (0,1)

[1] (0,3)

[2] (1,3)

[3] (2,3)

COMP2521
25T2

Graphs

Graph ADT

Graph Reps
Adjacency Matrix
Adjacency List
Array of Edges
Summary

Array of Edges

Explicit array of edges (pairs of vertices)

0

1

2

3

[0] (0,1)

[1] (0,3)

[2] (1,3)

[3] (2,3)

COMP2521
25T2

Graphs

Graph ADT

Graph Reps
Adjacency Matrix
Adjacency List
Array of Edges
Summary

Array of Edges
Implementation in C

struct graph {
int nV;
int nE;
int maxE;
struct edge *edges;

};

struct edge {
Vertex v;
Vertex w;

};

0

1

2

3

graph

edges

nV 4

nE 4

maxE 8

(0,1) (0,3) (1,3) (2,3)

[0] [1] [2] [3] [4] [5] [6] [7]

COMP2521
25T2

Graphs

Graph ADT

Graph Reps
Adjacency Matrix
Adjacency List
Array of Edges
Summary

Array of Edges
Advantages and Disadvantages

Advantages

Very space-efficient for
sparse graphs where E < V

Disadvantages

Inefficient
edge insertion/deletion (O(E))

COMP2521
25T2

Graphs

Graph ADT

Graph Reps
Adjacency Matrix
Adjacency List
Array of Edges
Summary

Summary of Graph Representations

Adjacency Matrix Adjacency List Array of Edges

Space usage O(V 2) O(V + E) O(E)

Create O(V 2) O(V) O(1)

Destroy O(V) O(V + E) O(1)

Insert edge O(1) O(V) O(E)

Remove edge O(1) O(V) O(E)

Is adjacent O(1) O(V) O(E)*

Degree O(V) O(V) O(E)*

* Can be O(log E) if the array is ordered
and both directions of each edge are stored in an undirected graph

	Graph Fundamentals
	Types of Graphs
	Graph Terminology

	Graph ADT
	Graph Representations
	Adjacency Matrix
	Adjacency List
	Array of Edges
	Summary

