
COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods

COMP2521 25T2
Balancing Binary Search Trees

Sim Mautner
cs2521@cse.unsw.edu.au

balancing operations
balancing methods

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods

Recap

Height of a tree: Maximum path length from the root node to a leaf
• The height of an empty tree is considered to be -1
• The height of the following tree is 3

5

2

1 3

4

8

6 9

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods

Binary Search Trees

The structure, height, and hence
performance

of a binary search tree
depends on the order of insertion.

5

3

1 4

7

9

1

3

4

5

7

9

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods

Binary Search Trees
The Best Case

Best case

Items are inserted evenly on the left and right throughout the tree
Height of tree will be O(log n)

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods

Binary Search Trees
The Worst Case

Worst case

Items are inserted in ascending or descending order
such that tree consists of a single branch

Height of tree will be O(n)

…

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods

Binary Search Trees

A binary tree of n nodes is said to be
balanced if its height is minimal (or close to minimal) (O(log n)), and
degenerate if it its height is maximal (or close to maximal) (O(n)).

COMP2521
25T2

BSTs Recap

Balance
Examples

Balancing
Operations

Balancing
Methods

Types of Balance

size-balanced
a size-balanced tree has,

for every node,
|size (l)− size (r)| ≤ 1

height-balanced
a height-balanced tree has,

for every node,
|height (l)− height (r)| ≤ 1

COMP2521
25T2

BSTs Recap

Balance
Examples

Balancing
Operations

Balancing
Methods

Types of Balance
Example

4

2

3

5

6

5

2 2

1 1

2

1 1

0 0

Size-balanced?

Yes

For every node,
|size (l)− size (r)| ≤ 1

Height-balanced?

Yes

For every node,
|height (l)− height (r)| ≤ 1

COMP2521
25T2

BSTs Recap

Balance
Examples

Balancing
Operations

Balancing
Methods

Types of Balance
Example

4

2

3

5

6

5

2 2

1 1

2

1 1

0 0

Size-balanced?
Yes

For every node,
|size (l)− size (r)| ≤ 1

Height-balanced?

Yes

For every node,
|height (l)− height (r)| ≤ 1

COMP2521
25T2

BSTs Recap

Balance
Examples

Balancing
Operations

Balancing
Methods

Types of Balance
Example

4

2

3

5

6

5

2 2

1 1

2

1 1

0 0

Size-balanced?
Yes

For every node,
|size (l)− size (r)| ≤ 1

Height-balanced?
Yes

For every node,
|height (l)− height (r)| ≤ 1

COMP2521
25T2

BSTs Recap

Balance
Examples

Balancing
Operations

Balancing
Methods

Types of Balance
Example

4

2

1 3

5

5

3 1

1 1

2

1 0

0 0

Size-balanced?

No

At node 4,
|size (l)− size (r)|
= |3− 1| = 2 > 1

||

Height-balanced?

Yes

For every node,
|height (l)− height (r)| ≤ 1

||
||

COMP2521
25T2

BSTs Recap

Balance
Examples

Balancing
Operations

Balancing
Methods

Types of Balance
Example

4

2

1 3

5

5

3 1

1 1

2

1 0

0 0

Size-balanced?
No

At node 4,
|size (l)− size (r)|
= |3− 1| = 2 > 1

||

Height-balanced?

Yes

For every node,
|height (l)− height (r)| ≤ 1

||
||

COMP2521
25T2

BSTs Recap

Balance
Examples

Balancing
Operations

Balancing
Methods

Types of Balance
Example

4

2

1 3

5

5

3 1

1 1

2

1 0

0 0

Size-balanced?
No

At node 4,
|size (l)− size (r)|
= |3− 1| = 2 > 1

||

Height-balanced?
Yes

For every node,
|height (l)− height (r)| ≤ 1

||
||

COMP2521
25T2

BSTs Recap

Balance
Examples

Balancing
Operations

Balancing
Methods

Types of Balance
Example

4

3

2

1

5

6

6

3 2

2 1

1

3

2 1

1 0

0

Size-balanced?

No

At node 3,
|size (l)− size (r)|
= |2− 0| = 2 > 1

Height-balanced?

No

At node 3,
|height (l)− height (r)|

= |1− (−1)| = 2 > 1

COMP2521
25T2

BSTs Recap

Balance
Examples

Balancing
Operations

Balancing
Methods

Types of Balance
Example

4

3

2

1

5

6

6

3 2

2 1

1

3

2 1

1 0

0

Size-balanced?
No

At node 3,
|size (l)− size (r)|
= |2− 0| = 2 > 1

Height-balanced?

No

At node 3,
|height (l)− height (r)|

= |1− (−1)| = 2 > 1

COMP2521
25T2

BSTs Recap

Balance
Examples

Balancing
Operations

Balancing
Methods

Types of Balance
Example

4

3

2

1

5

6

6

3 2

2 1

1

3

2 1

1 0

0

Size-balanced?
No

At node 3,
|size (l)− size (r)|
= |2− 0| = 2 > 1

Height-balanced?
No

At node 3,
|height (l)− height (r)|

= |1− (−1)| = 2 > 1

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Partition

Balancing
Methods

Balancing Operations

Rotation
• Left rotation
• Right rotation

Partition
• Rearrange tree around a specified node by rotating it up to the root

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations

left rotation and right rotation:
a pair of operations

that change the balance of a tree

n1

n2

t1 t2

t3

Right rotation

Left rotation

n2

t1
n1

t2 t3

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations

Rotations maintain the order of a search tree:

n1

n2

t1 t2

t3

Right rotation

Left rotation

n2

t1
n1

t2 t3

(all values in t1) < n2 < (all values in t2) < n1 < (all values in t3)

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Example

Rotate right at 5

5

3

2 4

6

3

2 5

4 6

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Example

Rotate right at 5

5

3

2 4

6

3

2 5

4 6

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Example

Rotate left at 3

3

2 5

4 6

5

3

2 4

6

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Example

Rotate left at 3

3

2 5

4 6

5

3

2 4

6

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Example

Rotate right at 23

23

7

3 16

11

10

20

30

28 35

7

3 23

16

11

10

20

30

28 35

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Example

Rotate right at 23

23

7

3 16

11

10

20

30

28 35

7

3 23

16

11

10

20

30

28 35

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Implementation

struct node *rotateRight(struct node *root) {
if (root == NULL || root->left == NULL) return root;
struct node *newRoot = root->left;
root->left = newRoot->right;
newRoot->right = root;
return newRoot;

}

struct node *rotateLeft(struct node *root) {
if (root == NULL || root->right == NULL) return root;
struct node *newRoot = root->right;
root->right = newRoot->left;
newRoot->left = root;
return newRoot;

}

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Implementation

struct node *rotateRight(struct node *root) {
if (root == NULL || root->left == NULL) return root;

struct node *newRoot = root->left;
root->left = newRoot->right;
newRoot->right = root;
return newRoot;

}

7

4 9

1 5

root

newRoot
4

1 7

5 9

newRoot

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Implementation

struct node *rotateRight(struct node *root) {
if (root == NULL || root->left == NULL) return root;
struct node *newRoot = root->left;

root->left = newRoot->right;
newRoot->right = root;
return newRoot;

}

7

4 9

1 5

root

newRoot

4

1 7

5 9

newRoot

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Implementation

struct node *rotateRight(struct node *root) {
if (root == NULL || root->left == NULL) return root;
struct node *newRoot = root->left;
root->left = newRoot->right;

newRoot->right = root;
return newRoot;

}

7

4 9

1 5

root

newRoot

4

1 7

5 9

newRoot

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Implementation

struct node *rotateRight(struct node *root) {
if (root == NULL || root->left == NULL) return root;
struct node *newRoot = root->left;
root->left = newRoot->right;
newRoot->right = root;

return newRoot;

}

7

4 9

1 5

root

newRoot

4

1 7

5 9

newRoot

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Implementation

struct node *rotateRight(struct node *root) {
if (root == NULL || root->left == NULL) return root;
struct node *newRoot = root->left;
root->left = newRoot->right;
newRoot->right = root;
return newRoot;

}

7

4 9

1 5

root

newRoot

4

1 7

5 9

newRoot

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Analysis

Time complexity: O(1)

• Rotation requires only a few localised pointer re-arrangements

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition

partition(tree, i)

Rearrange the tree so that the element with index i becomes the root

13
[6]

5
[2]

3
[1]

1
[0]

8
[4]

6
[3]

10
[5]

17
[8]

16
[7]

20
[10]

19
[9]

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition

Method:
• Find element with index i
• Perform rotations to lift it to the root

• If it is the left child of its parent, perform right rotation at its parent
• If it is the right child of its parent, perform left rotation at its parent
• Repeat until it is at the root of the tree

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Example

Partition this tree around index 3:

10
[1]

5
[0]

14
[2]

30
[4]

29
[3]

32
[5]

3

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Example

Partition this tree around index 3:

10
[1]

5
[0]

14
[2]

30
[4]

29
[3]

32
[5]

1

2

3

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Example

After right rotation at 30:

10

5 14

29

30

32

2

3

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Example

After left rotation at 14:

10

5 29

14 30

32

3

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Example

After left rotation at 10:

29

10

5 14

30

32

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Pseudocode

partition(t, i):
Input: tree t, index i
Output: tree with i-th item moved to root

leftSize = size(t->left)

if i < leftSize:
t->left = partition(t->left, i)
t = rotateRight(t)

else if i > leftSize:
t->right = partition(t->right, i - leftSize - 1)
t = rotateLeft(t)

return t

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Pseudocode - Example

Partition this tree around index 4

13
[6]

5
[2]

3
[1]

1
[0]

8
[4]

7
[3]

10
[5]

17
[8]

16
[7]

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Pseudocode - Example

Size of left subtree is 6, and 4 < 6...

so partition left subtree around index 4
and then rotate right at 13

13
[6]

5
[2]

3
[1]

1
[0]

8
[4]

7
[3]

10
[5]

17
[8]

16
[7]

13
[6]

5
[2]

3
[1]

1
[0]

8
[4]

7
[3]

10
[5]

17
[8]

16
[7]

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Pseudocode - Example

Size of left subtree is 6, and 4 < 6...
so partition left subtree around index 4

and then rotate right at 13

13
[6]

5
[2]

3
[1]

1
[0]

8
[4]

7
[3]

10
[5]

17
[8]

16
[7]

13
[6]

5
[2]

3
[1]

1
[0]

8
[4]

7
[3]

10
[5]

17
[8]

16
[7]

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Pseudocode - Example

Size of left subtree is 2, and 4 > 2...

so partition right subtree around index (4 - 2 - 1 = 1)
and then rotate left at 5

13
[6]

5
[2]

3
[1]

1
[0]

8
[4]

7
[3]

10
[5]

17
[8]

16
[7]

13
[6]

5
[2]

3
[1]

1
[0]

8
[4]
[1]7

[3]
[0]

10
[5]
[2]

17
[8]

16
[7]

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Pseudocode - Example

Size of left subtree is 2, and 4 > 2...
so partition right subtree around index (4 - 2 - 1 = 1)

and then rotate left at 5

13
[6]

5
[2]

3
[1]

1
[0]

8
[4]

7
[3]

10
[5]

17
[8]

16
[7]

13
[6]

5
[2]

3
[1]

1
[0]

8
[4]
[1]7

[3]
[0]

10
[5]
[2]

17
[8]

16
[7]

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Pseudocode - Example

Size of left subtree is 1, and 1 = 1...

so we have found the desired node

13
[6]

5
[2]

3
[1]

1
[0]

8
[4]
[1]7

[3]
[0]

10
[5]
[2]

17
[8]

16
[7]

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Pseudocode - Example

Size of left subtree is 1, and 1 = 1...
so we have found the desired node

13
[6]

5
[2]

3
[1]

1
[0]

8
[4]
[1]7

[3]
[0]

10
[5]
[2]

17
[8]

16
[7]

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Pseudocode - Example

Unwinding...
Rotate left at 5

13

5

3

1

8

7 10

17

16

2

1

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Pseudocode - Example

Unwinding...
Rotate right at 13

13

8

5

3

1

7

10

17

16

2

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Pseudocode - Example

Done

8

5

3

1

7

13

10 17

16

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Analysis

Analysis:
• size() operation is expensive
• Can cause partition to be O(n2) in the worst case

• For example, in the following tree:

n

n-1

n-2

…

2

1

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Analysis

Analysis (continued):
• To improve efficiency, can change node structure so that each node
stores the size of its subtree in the node itself

• However, this will require extra work in other functions to maintain

struct node {
int item;
struct node *left;
struct node *right;
int size;

};

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Summary

Balancing Methods

Two categories:

global rebalancing
visit every node and balance its subtree;
⇒ perfectly balanced tree — at cost.

local rebalancing
perform small, efficient, localised operations
to try to improve the overall balance of the tree

… at the cost of imperfect balance

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Summary

Global Rebalancing

Idea:
Completely rebalance whole tree so it is size-balanced

Method:
Lift the median node to the root
by partitioning on index size(t)/2,

then rebalance both subtrees (recursively)

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Summary

Global Rebalancing

First, partition on index n/2…
a

0 (indices)

t1

n/2 n - 1

t2
b

x y

partition b
n/2

a

0

t1
x

n - 1

t′2

y

…then rebalance both subtrees

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Summary

Global Rebalancing
Pseudocode

rebalance(t):
Input: tree t
Output: rebalanced t

if size(t) < 3:
return t

t = partition(t, size(t) / 2)
t->left = rebalance(t->left)
t->right = rebalance(t->right)
return t

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Summary

Global Rebalancing
Example

Rebalance the following tree:

15

12

5

4

2

10

8

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Summary

Global Rebalancing
Example

First, partition the tree on index 7/2 = 3 (node 8)

15

12

5

4

2

10

8

1

2

3

4

8

5

4

2

15

12

10

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Summary

Global Rebalancing
Example

First, partition the tree on index 7/2 = 3 (node 8)

15

12

5

4

2

10

8

1

2

3

4

8

5

4

2

15

12

10

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Summary

Global Rebalancing
Example

Then, recursively rebalance subtrees

8

5

4

2

15

12

10

8

4

2 5

12

10 15

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Summary

Global Rebalancing
Example

Then, recursively rebalance subtrees

8

5

4

2

15

12

10

8

4

2 5

12

10 15

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Summary

Global Rebalancing
Analysis

Worst-case time complexity: O(n log n)
• Assume nodes store the size of their subtrees
• First step: partition entire tree on index n/2

• This takes at most n recursive calls, n rotations⇒ n steps
• Result is two subtrees of size ≈ n/2

• Then partition both subtrees
• Partitioning these subtrees takes n/2 steps each⇒ n steps in total
• Result is four subtrees of size ≈ n/4

• …and so on…
• About log2 n levels of partitioning in total, each requiring n steps
⇒ O(n log n)

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Summary

Global Rebalancing
Problems

What if we insert more items?
• Options:

• Rebalance on every insertion
• Not feasible

• Rebalance every k insertions; what k is good?
• Rebalance when imbalance exceeds threshold.

• It’s a tradeoff…
• We either have more costly insertions
• Or we have degraded performance for periods of time

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Summary

Periodic Rebalancing

bstInsert(t, v):
Input: tree t, value v
Output: t with v inserted

t = insertAtLeaf(t, v)

if size(t) mod k = 0:
t = rebalance(t)

return t

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Summary

Periodic Rebalancing
Remarks

• Good if tree is not modified very often
• Otherwise…

• Insertion will be slow occasionally due to rebalancing
• Performance will gradually degrade until next rebalance

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Root Insertion
Randomised
Insertion
Summary

Local Rebalancing

Perform small, efficient, localised operations
in an attempt to improve the overall balance of the tree

1. root insertion

2. randomised insertion

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Root Insertion
Randomised
Insertion
Summary

Root Insertion

Idea:

Rotations change the structure of a tree

If we perform some rotations every time we insert,
that may restructure the tree randomly enough

such that it is more balanced

One systematic way to perform these rotations:
Insert new values at the root

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Root Insertion
Randomised
Insertion
Summary

Root Insertion

Method:
Insert new value normally (at the leaf) …

… and then rotate the new node up to the root.

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Root Insertion
Randomised
Insertion
Summary

Root Insertion
Example

Insert 24 at the root of this tree:

10

5 14

30

29 32

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Root Insertion
Randomised
Insertion
Summary

Root Insertion
Example

Insert 24 at the root of this tree:

10

5 14

30

29

24

32

1

2

3

4

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Root Insertion
Randomised
Insertion
Summary

Root Insertion
Example

Rotate right at 29

10

5 14

30

29

24

32

1

2

3

4

10

5 14

30

24

29

32

2

3

4

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Root Insertion
Randomised
Insertion
Summary

Root Insertion
Example

Rotate right at 30

10

5 14

30

24

29

32

2

3

4

10

5 14

24

30

29 32

3

4

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Root Insertion
Randomised
Insertion
Summary

Root Insertion
Example

Rotate left at 14

10

5 14

24

30

29 32

3

4

10

5 24

14 30

29 32

4

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Root Insertion
Randomised
Insertion
Summary

Root Insertion
Example

Rotate left at 10

10

5 24

14 30

29 32

4

24

10

5 14

30

29 32

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Root Insertion
Randomised
Insertion
Summary

Root Insertion
Pseudocode

insertAtRoot(t, v):
Input: tree t, value v
Output: t with v inserted at the root

if t is empty:
return new node containing v

else if v < t->item:
t->left = insertAtRoot(t->left, v)
t = rotateRight(t)

else if v > t->item:
t->right = insertAtRoot(t->right, v)
t = rotateLeft(t)

return t

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Root Insertion
Randomised
Insertion
Summary

Root Insertion
Analysis

Analysis:
• Same time complexity as normal insertion: O(h)
• Tree is more likely to be balanced, but no guarantee
• Root insertion ensures recently inserted items are close to the root

• Useful for applications where recently added items are more likely to be
searched

• Major problem: ascending-ordered and descending-ordered data is still
a worst case for root insertion

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Root Insertion
Randomised
Insertion
Summary

Randomised Insertion

BSTs don’t have control over insertion order.
Worst cases — (partially) ordered data — are common.

Idea:
Introduce some randomness into insertion algorithm:

Randomly choose whether to insert normally or insert at root

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Root Insertion
Randomised
Insertion
Summary

Randomised Insertion
Pseudocode

insertRandom(t, v):
Input: tree t, value v
Output: t with v inserted

if t is empty:
return new node containing v

// p/q chance of inserting at root
if random() mod q < p:

return insertAtRoot(t, v)
else:

return insertAtLeaf(t, v)

Note: random() is a pseudo-random number generator
30% chance of root insertion⇒ choose p = 3, q = 10

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Root Insertion
Randomised
Insertion
Summary

Randomised Insertion
Remarks

Randomised insertion creates similar results to
inserting items in random order.

Tree is more likely to be balanced (but no guarantee)

COMP2521
25T2

BSTs Recap

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Local Rebalancing
Summary

Summary

Advantages Disadvantages

Global
rebalancing Guarantees a balanced tree

Inefficient (O(n log n) per
rebalance), or periods of
degraded performance

Local
rebalancing

Efficient (adds only a
constant factor overhead to

insertion)

Not guaranteed to produce
a balanced tree

	BSTs Recap
	Balance
	Examples

	Balancing Operations
	Rotations
	Partition

	Balancing Methods
	Global Rebalancing
	Local Rebalancing
	Summary

