Kruskal's Algorithm

Prim's Algorithm

Comparison

Other Algorithms

Appendix

COMP2521 24T3

Graphs (VII) Minimum Spanning Trees

Hao Xue

cs2521@cse.unsw.edu.au

minimum spanning trees kruskal's algorithm prim's algorithm

Minimum Spanning Trees

Kruskal's Algorithm

Algorithm

Comparison

Other Algorithms

Appendix

A spanning tree of an undirected graph G is a subgraph of G that contains all vertices of G, that is connected and contains no cycles

A minimum spanning tree of an undirected weighted graph G is a spanning tree of G that has minimum total edge weight among all spanning trees of G

Applications:
Electrical grids, networks
Any situation where we want to connect nodes as cheaply as possible

Example

Minimum Spanning Trees

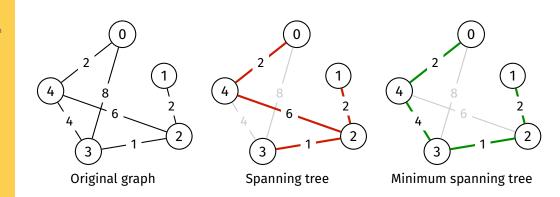
Kruskal's Algorithm

Prim's Algorithm

Comparison

Other Algorithms

Appendix



Spanning Tree

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Comparison

Other Algorithms

Appendix

The number of edges in a spanning tree of a graph is always one less than the number of vertices in the graph.

Minimum Spanning Tree Algorithms

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Comparison

Other Algorithms

Appendix

Basic minimum spanning tree algorithms:

- Kruskal's algorithm
- Prim's algorithm

Kruskal's Algorithm

Example Pseudocod

Prim's Algorithm

Comparison

Other Algorithms

Appendix

Invented in 1956 by American mathematician, statistician, computer scientist Joseph Kruskal

Kruskal's Algorithm

Example Pseudocod Analysis

Prim's Algorithm

Comparison

Other Algorithms

Appendix

Algorithm:

- 1 Start with an empty graph
 - With same vertices as original graph
- 2 Consider edges in increasing weight order
 - Add edge if it does not form a cycle in the MST
- **3** Repeat until V-1 edges have been added

Critical operations:

- Iterating over edges in weight order
- Checking if adding an edge would form a cycle

Kruskal's Algorithm

Example

Analysis

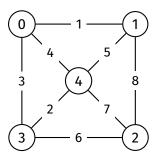
Prim's Algorithm

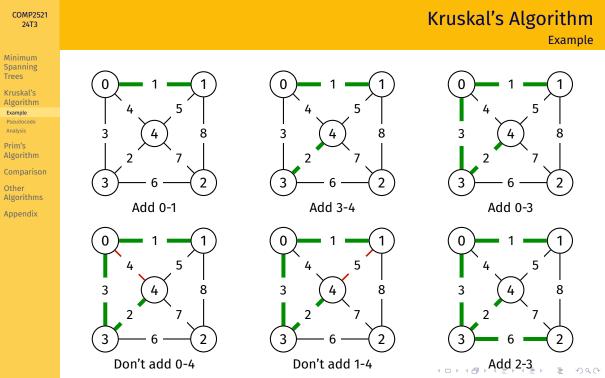
Comparison

Other Algorithms

Appendix

Run Kruskal's algorithm on this graph:





Kruskal's Algorithm

Example Pseudocode

Analysis

Prim's Algorithm

Comparison

Other Algorithms

Appendix

MST: 0 1 5 3 4 5

Pseudocode (Version 1)

```
Minimum
Spanning
Trees
```

Kruskal's Algorithm

Pseudocode Analysis

Prim's Algorithm

Comparison

Other Algorithms

Appendix

```
kruskalMst(G):
    Input: graph G with
```

Input: graph G with V vertices **Output:** minimum spanning tree of G

 ${\sf mst}$ = ${\sf empty}$ graph with V vertices

sortedEdges = sort edges of G by weight
for each edge e in sortedEdges:
 add e to mst
 if mst has a cycle:
 remove e from mst

if mst has V-1 edges: return mst

Pseudocode (Version 2)

```
Minimum
Spanning
Trees
```

Kruskal's Algorithm

Pseudocode Analysis

Prim's Algorithm

Comparison

Other Algorithms

Appendix

```
kruskalMst(G):
   Input: graph G with V vertices
   Output: minimum spanning tree of G

mst = empty graph with V vertices

sortedEdges = sort edges of G by weight
   for each edge (v, w, weight) in sortedEdges:
     if there is no path between v and w in mst:
        add edge (v, w, weight) to mst

if mst has V-1 edges:
```

return mst

Analysis - Correctness

Minimum Spanning Trees Kruskal's

Algorithm
Example
Pseudocode
Analysis
Correctness

Time complexi

Prim's Algorithm

Comparison

Other Algorithms

Proof by exchange argument.

Idea:Suppose there exists another algorithm A which makes a different set

- of choices
 - In this case, chooses a different set of edges for the MST
- Identify *one* choice made by A which is not made by our algorithm
- Show that by exchanging that choice with one of the choices made by our algorithm, the solution does not become worse or less optimal
 - In this case, the "solution" is the spanning tree produced
 - In this case, an "optimal" solution is a spanning tree that costs as little as possible

Analysis - Correctness

Minimum Spanning Trees

Kruskal's Algorithm Example Pseudocode Analysis Correctness

Prim's

Algorithm

Comparison

Other Algorithms

Appendix

Sort the edges of G in increasing order.

Let K be the set of edges selected by Kruskal's algorithm. Let A be the set of edges selected by a different algorithm.

edges of G	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	• • •
edges of K	e_1	e_2		e_4	e_5		e_7		e_9	
edges of A	e_1	e_2		e_4			e_7	e_8	e_9	

Analysis - Correctness

Minimum Spanning Trees

Kruskal's Algorithm

Example Pseudocod

Correctness

Time complex

Prim's

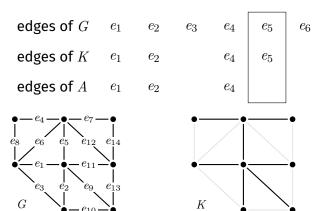
Algorithm

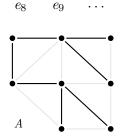
Comparison

Other Algorithms

Appendix

Consider the first edge that is chosen by K but not by A.





 e_9

 e_9

 e_7

 e_7

 e_7

 e_8

Analysis - Correctness

Minimum Spanning Trees

Kruskal's Algorithm

Pseudocode Analysis

Correctness
Time complexit

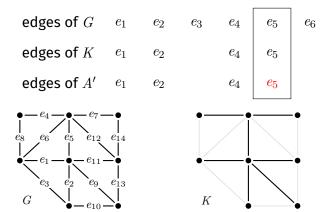
Prim's Algorithm

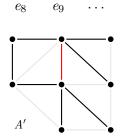
Comparison

Other Algorithms

Appendix

Consider the first edge that is chosen by K but *not* by A. Add this edge to a copy of A (call it A'). This forms a cycle in A'.





 e_9

 e_9

 e_7

 e_7

 e_7

 e_8

Analysis - Correctness

Minimum Spanning Trees

Kruskal's Algorithm Example

Correctness

. .

Algorithm

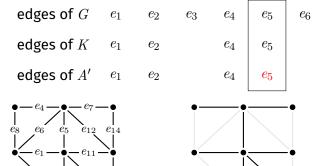
Comparison

Other Algorithms

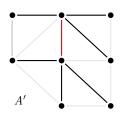
G

Appendix

Consider the first edge that is chosen by K but *not* by A. Add this edge to a copy of A (call it A'). This forms a cycle in A'. Now find the highest-weight edge in this cycle and *remove* it from A'.



K



 e_9

 e_9

 e_9

 e_7

 e_7

 e_7

 e_8

Analysis - Correctness

Minimum Spanning Trees

Kruskal's Algorithm Example

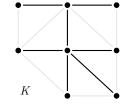
Pseudocode Analysis Correctness

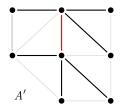
Time complexit

Prim's Algorithm

Comparison

Other Algorithms Appendix





Now A' is once again a spanning tree, but it is more similar to K than A and it costs no more than A.

Analysis - Correctness

Minimum Spanning Trees

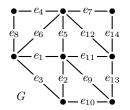
Kruskal's Algorithm Example Pseudocode Analysis

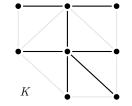
Time complexit

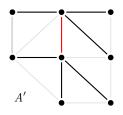
Prim's Algorithm

Comparison

Other Algorithms







Now A' is once again a spanning tree, but it is more similar to K than A and it costs no more than A.

Repeat until A' is identical to K. Each time we perform an exchange, the spanning tree does not increase in cost.

Therefore, K is an optimal spanning tree (MST).

Analysis - Time complexity

Minimum Spanning Trees

Kruskal's Algorithm

Pseudocod Analysis

Time complexity

Prim's Algorithm

Comparison

Other Algorithms

Appendi

Analysis:

- Sorting edges is $O(E \cdot \log E)$
- ullet Main loop has at most E iterations
- Checking if adding an edge would form a cycle
 - There are different ways to implement this
 - Cycle/path checking is O(V) in the worst case (adjacency list)

$$\Rightarrow$$
 overall cost = $O(E \cdot \log E + E \cdot V) = O(E \cdot V)$

- Note: The typical cycle checking is O(V+E). But in spanning tree, the max number of edges is V-1. Hence, cycle checking is O(V).
- Using union-find data structure (Disjoint-Set) is close to ${\cal O}(1)$ in the worst case

$$\Rightarrow$$
 overall cost = $O(E \cdot \log E + E) = O(E \cdot \log E) = O(E \cdot \log V)$ (since $E < V^2$)

Kruskal's Algorithm

Prim's Algorithm

Example Pseudocoo Analysis

Comparison

Other Algorithms

Appendix

Developed by Vojtěch Jarník in 1930 and rediscovered by Robert C. Prim in 1957

Vojtěch Jarník

Robert C. Prim

Kruskal's Algorithn

Prim's Algorithm

Example Pseudocod Analysis

Comparisor

Other Algorithms

Appendix

Algorithm:

- Start with an empty graph
- Start from any vertex, add it to the MST
- **3** Choose cheapest edge s-t such that:
 - s has been added to the MST, and
 - t has not been added to the MST

and add this edge and the vertex t to the MST

- 4 Repeat previous step until V-1 edges have been added
 - Or until all vertices have been added

Critical operations:

Finding the cheapest edge s-t such that
 s has been added to the MST and t has not been added to the MST

Kruskal's Algorithm

Prim's Algorithm

Example

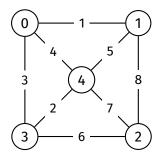
Analysis

Comparison

Other Algorithms

Appendix

Run Prim's algorithm on this graph (starting at 0):



Prim's Algorithm

Example

Minimum Spanning Trees Kruskal's

Algorithm Prim's

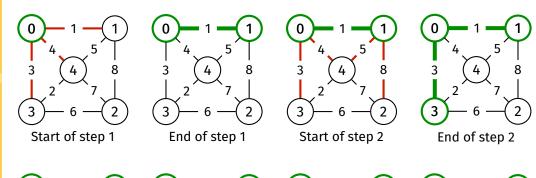
Algorithm Example

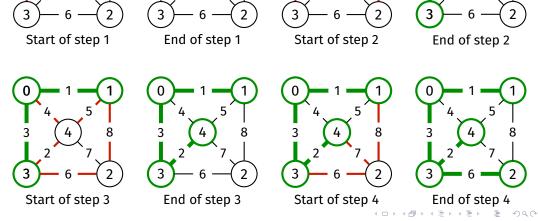
Analysis

Comparison

Other Algorithms

Appendix





Kruskal's Algorithm

Prim's Algorithm

Example Pseudocode

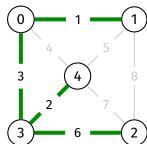
Analysis

Comparison

Other Algorithms

Appendix

MST:



Prim's Algorithm

Pseudocode

```
Minimum
Spanning
Trees
```

Kruskal's Algorithm

Prim's Algorithm Example

Pseudocode

Comparison

Other

Algorithms

Appendix

return mst

```
primMst(G):
    Input: graph G with V vertices
    Output: minimum spanning tree of G
    mst = empty graph with V vertices
    usedV = \{0\}
    unusedE = edges of G
    while |usedV| < V:
         find cheapest edge e (s, t, weight) in unusedE such that
                 s \in \mathsf{usedV} and t \notin \mathsf{usedV}
         add e to mst
         add t to usedV
        remove e from unusedE
```

Kruskal's Algorithm

Algorithm
Example
Pseudocode
Analysis

Comparison

Other Algorithms

Appendix

Analysis:

- Algorithm considers at most E edges $\Rightarrow O(E)$
- ullet Loop has V iterations
- In each iteration, finding the minimum-weighted edge:
 - With set of edges is O(E)
 - \Rightarrow overall cost = $O(E + V \cdot E) = O(V \cdot E)$
 - With Fibonacci heap is $O(\log E) = O(\log V)$
 - \Rightarrow overall cost = $O(E + V \cdot \log V)$

Minimum Spanning Trees Kruskal's

Algorithm
Prim's
Algorithm

Comparison

Other Algorithms

Appendix

Kruskal's algorithm...

- is $O(E \cdot \log V)$
- uses array-based data structures
- performs better on sparse graphs

Prim's algorithm...

- is $O(E + V \cdot \log V)$
- uses complex linked data structures
 - in its most efficient implementation (Fibonacci heap)
- performs better on dense graphs

Other MST Algorithms

Minimum Spanning Trees

Kruskal's Algorithm

Algorithm

Comparison

Other Algorithms

Appendix

- Boruvka's algorithm
 - Oldest MST algorithm
 - ullet Start with V separate components
 - Join components using min cost links
 - Continue until only a single component
 - Worst-case time complexity: $O(E \cdot \log V)$
- Karger, Klein and Tarjan
 - Based on Boruvka's algorithm, but non-deterministic
 - Randomly selects subset of edges to consider
 - ullet Time complexity: O(E) on average

Kruskal's Algorithm

Prim's Algorithm

Comparison

Other Algorithms

Appendix

https://forms.office.com/r/zEqxUXvmLR

Kruskal's Algorithm

Prim's Algorithm

Comparison

Other Algorithms

Appendix

Kruskal's Algorithm Example Prim's Algorithm

Appendix

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Comparison

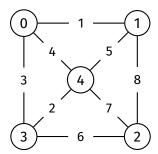
Other Algorithms

Appendix

Kruskal's Algorithm Example

Prim's Algorithm Example

Original graph



Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Comparison

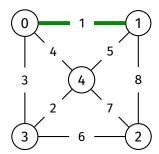
Other Algorithms

Appendix

Kruskal's Algorithm Example

Prim's Algorithm

Adding 0-1 would not create a cycle



Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Comparison

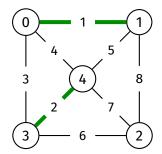
Other Algorithms

Appendix

Kruskal's Algorithm Example

Prim's Algorithm

Adding 3-4 would not create a cycle



Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Comparison

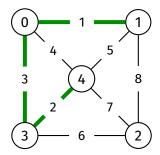
Other Algorithms

Appendix

Kruskal's Algorithm Example

Prim's Algorithm Example

Adding 0-3 would not create a cycle



Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Comparison

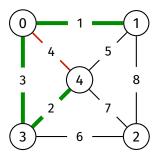
Other Algorithms

Appendix

Kruskal's Algorithm Example

Prim's Algorithm

Adding 0-4 would create a cycle



Kruskal's Algorithm Example

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Comparison

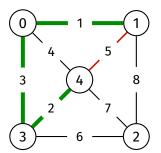
Other Algorithms

Appendix

Kruskal's Algorithm Example

Prim's Algorithm
Example

Adding 1-4 would create a cycle



Kruskal's Algorithm Example

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Comparison

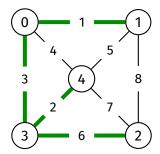
Other Algorithms

Appendix

Kruskal's Algorithm Example

Prim's Algorithm Example

Adding 2-3 would not create a cycle



Kruskal's Algorithm Example

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Comparison

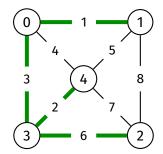
Other Algorithms

Appendix

Kruskal's Algorithm Example

Prim's Algorithm
Example

Done - MST has 4 edges



Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Comparison

Other

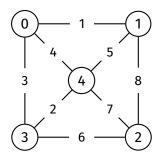
Algorithms

Appendix Kruskal's Algorithm

Example

Example
Prim's Algorithm

Original graph



Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Comparison

Other Algorithms

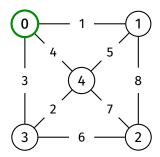
Appendix

Kruskal's Algorithm

Prim's Algorithm

Example

Start at vertex 0



Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Comparison

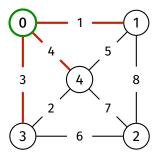
Other Algorithms

Appendix

Kruskal's Algorithm

Example

Prim's Algorithm Example



Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Comparison

Other Algorithms

Algorithms

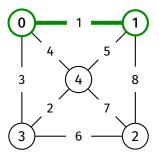
Example

Kruskal's Algorithm

Example
Prim's Algorithm

Appendix

Add 0-1 to MST



Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Comparison

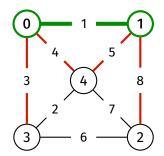
Other Algorithms

Appendix

Kruskal's Algorithm

Example

Prim's Algorithm Example



Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Comparison

Other

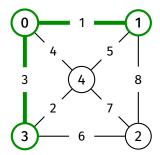
Algorithms

Appendix Kruskal's Algorithm

Example

Prim's Algorithm Example

Add 0-3 to MST



Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Comparison

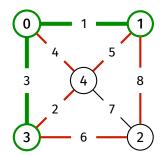
Other Algorithms

Algorithm: Appendix

Kruskal's Algorithm

Example

Prim's Algorithm Example



Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Comparison

Other Algorithms

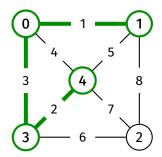
Appendix

Example

Kruskal's Algorithm

Example
Prim's Algorithm

Add 3-4 to MST



Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Comparison

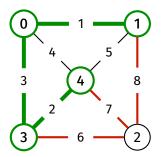
Other Algorithms

Appendix

Example

Kruskal's Algorithm

Example
Prim's Algorithm



Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Comparison

Other Algorithms

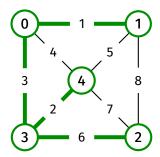
Appendix

Kruskal's Algorithm

Example
Prim's Algorithm

Example

Add 3-2 to MST



Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Comparison

Other

Algorithms

Example

Appendix Kruskal's Algorithm

Example
Prim's Algorithm

Done - MST has 4 edges

