Directed Graphs

Weighted Graphs

COMP2521 24T3 Graphs (IV) Directed and Weighted Graphs

Hao Xue

cs2521@cse.unsw.edu.au

directed graphs weighted graphs

Directed Graphs

Weighted Graphs

In graphs representing real-world scenarios, edges are often directional and have a sense of cost

Thus, we need to consider directed and weighted graphs

▲□▶▲□▶▲□▶▲□▶ □ ● ○ ○ ○

Directed Graphs

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Directed Graphs

COMP2521 24T3

Applications Terminology Representatio

Weighted Graphs

Some applications require us to consider directional edges: $v \rightarrow w \neq w \rightarrow v$ e.g., 'follow' on Twitter, one-way streets, etc.

> In a directed graph or digraph: edges have direction.

Each edge (v, w) has a source v and a destination w.

Directed Graphs

Example

Directed Graphs

Applications Terminology Representations

Weighted Graphs

▲□▶▲□▶▲□▶▲□▶▲□▶▲□▶▲□

Directed Graphs Applications Terminology Representations

Weighted Graphs

domain	vertex is	edge is
WWW	web page	hyperlink
chess	board state	legal move
scheduling	task	precedence
program	function	function call
journals	article	citation
make	target	dependency

Directed Graphs Applications Terminology Representation

Weighted Graphs $\frac{\text{in-degree}}{\deg^-(v) \text{ or } \operatorname{in}(v)}$ the number of incoming edges to a vertex

out-degree

 $\deg^+(v)$ or $\operatorname{out}(v)$ the number of outgoing edges from a vertex

Directed Graphs Applications Terminology Representation

Weighted Graphs

A directed path is a sequence of vertices where each vertex has an outgoing edge to the next vertex in the sequence

If there is a directed path from v to w, then we say that w is reachable from v

A directed cycle is a directed path where the first and last vertices are the same e.g., 0-2-3-1-0, 1-2-3-1

Digraph Terminology

▲□▶▲□▶▲□▶▲□▶ □ ● ○ ○ ○

Directed Graphs Applications Terminology Representatio

Weighted Graphs Digraph Terminology

A digraph is strongly connected if there is a directed path from every vertex to every other vertex

not strongly connected

strongly connected

Digraph Terminology

Directed Graphs Applications Terminology Representation

COMP2521 24T3

Weighted Graphs A strongly-connected component is a maximally strongly-connected subgraph.

A digraph that is not strongly connected has two or more strongly-connected components.

▲ロト ▲ 虚 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● の Q () ●

Directed Graphs Applications Terminology Representations

Weighted Graphs

Directed Graphs

Representations

Same representations as for undirected graphs:

- Adjacency matrix
- Adjacency list
- Array of edges

Directed Graphs

Representations: Adjacency Matrix

Directed Graphs Applications Terminology Representations

COMP2521 24T3

Weighted Graphs

[0	1	1	1	0
1	0	1	0	0
1	1	0	1	1
1	0	1	0	1
0	0	1	1	0

undirected, unweighted

Γ0	1	1	1	0]
0	0	1	0	0
0	0	0	1	1
0	0	0	0	0
0	0	1	1	0

directed, unweighted

Directed Graphs Applications Terminology Representations

Weighted Graphs

Directed Graphs

Representations

Directed Graphs Applications Terminology Representations

Weighted Graphs

	Adjacency Matrix	Adjacency List	Array of Edges
Space usage	$O(V^2)$	O(V+E)	O(E)
Insert edge	O(1)	$O(\deg(v))$	O(E)
Remove edge	O(1)	$O(\deg(v))$	O(E)
Contains edge	O(1)	$O(\deg(v))$	$O(\log(E))$

Real digraphs tend to be sparse (large V, small average deg(v)), so we use deg(v) to denote the degree of the source vertex v.

Directed Graphs

Weighted Graphs

Representations

Weighted Graphs

Directed Graphs

Weighted Graphs

Some applications require us to consider a cost or weight assigned to a relation between two nodes.

In a weighted graph, each edge (s, t, w) has a weight w.

Weighted Graph

Directed Weighted Graph

Weighted Graphs

Directed Graphs

Weighted Graphs

Representations

COMP2521 24T3

Example: Major airline routes in Australia

Directed Graphs

Weighted Graphs Representations

Adjacency matrix:

• store weight in each cell, not just true/false

Weighted Graphs

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Representations

• need some "no edge exists" value

Adjacency list:

• add weight to each list node

Array of edges:

• add weight to each edge

Weighted Graphs

Representations: Adjacency Matrix

COMP2521 24T3

Directed Graphs

Weighted Graphs Representations

[0]	1	1	1	[0
1	0	1	0	0
1	1	0	1	1
1	0	1	0	1
0	0	1	1	0

undirected, unweighted

$$\begin{bmatrix} - & 0.2 & 0.4 & 0.5 & - \\ 0.2 & - & 0.5 & - & - \\ 0.4 & 0.5 & - & 0.1 & 0.1 \\ 0.5 & - & 0.1 & - & 0.9 \\ - & - & 0.1 & 0.9 & - \end{bmatrix}$$

undirected, weighted

Weighted Graph Representations: Adjacency Matrix

Directed Graphs

COMP2521 24T3

Weighted Graphs Representations

Weighted Graph Representations: Adjacency List

Directed Graphs

COMP2521 24T3

Weighted Graphs Representations

Weighted Graph Representations: Array of Edges

Directed Graphs

COMP2521 24T3

Weighted Graphs Representations

<ロト 4 回 h 4 □ h 4 □

Directed Graphs

Weighted Graphs Representations https://forms.office.com/r/zEqxUXvmLR

Feedback