BSTs

Insertion Search

Traversal

Haversa

Join

Deletion

Exercises

COMP2521 24T3 Binary Search Trees

Sushmita Ruj

cs2521@cse.unsw.edu.au

trees binary search trees binary search tree operations

Examples
Binary Trees
BSTs

Insertion

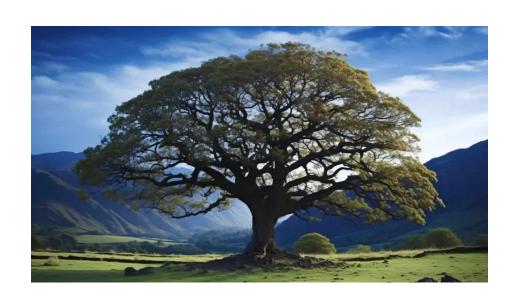
Search

Traversal

Join

Deletion

Exercises



BSTs

Insertion

Search Traversal

Deletion

Exercises

A tree is a hierarchical data structure consisting of a set of connected nodes where:

Each node may have multiple other nodes as children (depending on the type of tree)

Each node is connected to one parent except the root node

Trees Examples

Binary Trees

BSTs

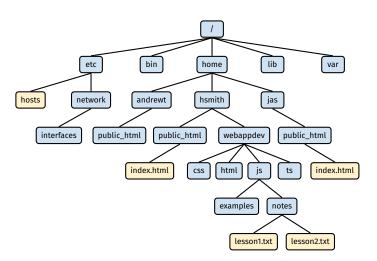
Insertion

Search Traversal

Ioin

Deletion

Exercises



Source: https://www.openbookproject.net/tutorials/getdown/unix/lesson2.html

BSTs

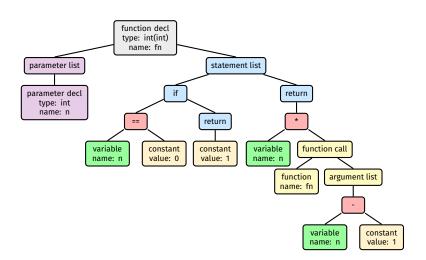
Insertion

Search Traversal

Ioin

Deletion

Exercises



BSTs Insertion

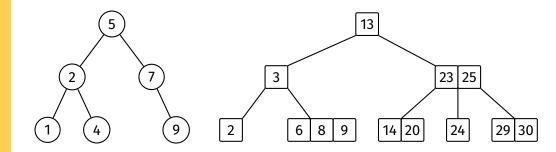
Search

Traversal

Join

Deletion

Exercises



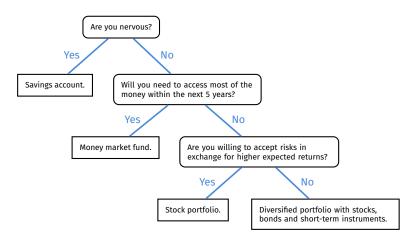
BSTs Insertion

Search

Traversal Ioin

Deletion

Exercise



Source: "Data Structures and Algorithms in Java" (6th ed) by Goodrich et al.

Trees Examples

Binary Trees

BSTs

Insertion

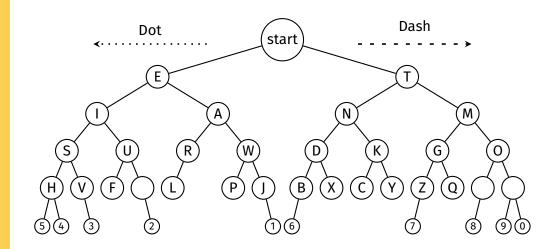
Search

Traversal

Join

Deletion

Exercises



BSTs

Insertion

Search

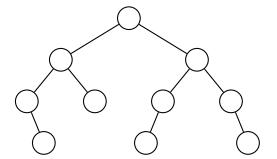
Traversal

Ioin

Deletion

Exercises

A binary tree is a tree where each node can have up to two child nodes, referred to as the left child and the right child.



BSTs

Motivation Terminology Representation

Insertio

Search

Traversal

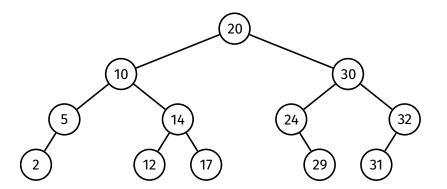
Lain

Deletion

Evercise

A binary search tree is an ordered binary tree, where for each node:

- All values in the left subtree are less than the value in the node
- All values in the right subtree are greater than the value in the node



BSTs

Motivation Terminology Representati

Insertion

Search

Traversal

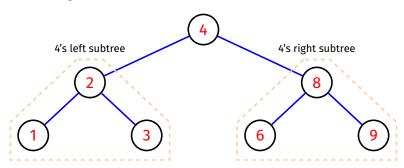
Ioin

Deletion

Exercises

A binary search tree is either:

- · empty; or
- consists of a node with two subtrees
 - left and right subtrees are also BSTs (recursive)



VI

Tree

.. . .

Mouvauu

Representa

Insert

Search

Traversal

.

Deletion

Exercises

Why use binary search trees?

Search is an extremely common operation in computing:

- selecting records in databases
- searching for pages on the web

Typically, there is a very large amount of data (very many items)

We need a more efficient way to search and maintain large amounts of data.

Motivation

Terminology

Representati Operations

Insertic

Search

Traversal

JOIII

Deletion

Exercises

We've explored multiple approaches for searching:

- Ordered array
 - Searching/finding insertion point is $O(\log n)$ due to binary search
 - Inserting is O(n) due to the need to shift items to preserve sortedness
- Ordered linked list
 - Searching/finding insertion point is O(n) due to the nature of linked lists
 - Inserting once we have found the insertion point is ${\cal O}(1)$ as there is no need to shift

Trees

BSTs

Terminology

Operations

Insertio

Search

Traversal

Ioin

Deletion

Exercises

Binary search trees are efficient to search and maintain:

- Searching in a binary search tree is similar to how binary search works
- A binary search tree is a linked data structure (like a linked list), so there
 is no need to shift elements when inserting/deleting

BSTs

Motivation

Terminology Representation Operations

Insertion

Search

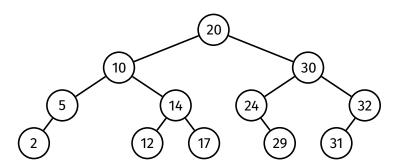
Traversal

Join

Deletion

Exercises

								I			
2	5	l 10	12	14	17	20	24	1 29	30	21	32
_	,	10	12	17	17	20	27	~ /	50	יי	32



Terminology

Trees

BSTs

Terminology

Represent

Insertion

Search

Traversal

Ioin

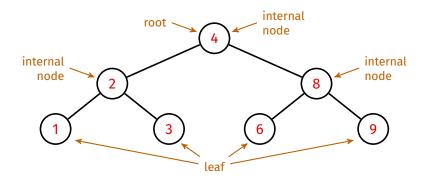
Deletion

Exercises

The root node is the node with no parent node.

A leaf node is a node that has no child nodes.

An internal node is a node that has at least one child node.



Terminology

Trees

BSTs

Terminology

Operation

Insertio

Search

Traversal

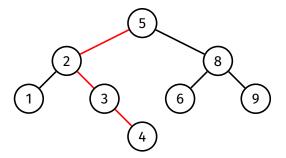
Join

Deletion

Exercise

Height of a tree: Maximum path length from the root node to a leaf

- The height of an empty tree is considered to be -1
- The height of the following tree is 3



BSTs

Terminology

Operations

Insertion

Search

Traversal

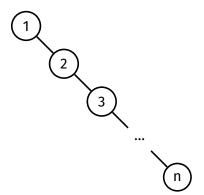
Ioin

Deletion

Exercises

For a tree with n nodes:

The maximum possible height is n-1



BSTs

Terminology

Operation

Insertion

Search

Traversal

Ioin

Deletion

Exercises

For a tree with n nodes:

The minimum possible height is $\lfloor \log_2 n \rfloor$

n	minimum height = $\lfloor \log_2 n \rfloor$	tree
1	0	0
2-3	1	8
4-7	2	
•••		

Terminology

Trees

BSTs

Terminology

Represent

Operations

Insertion

Search

Traversal

Ioin

Deletion

---- For a given number of nodes, a tree is said to be balanced if it has (close to) minimal height, and degenerate if it has (close to) maximal height.

Concrete Representation

rrees

BSTs

Taxable of

Representation

Insertion

Search

Traversal

Ioin

Deletion

Exercises

Binary trees are typically represented by node structures

• Where each node contains a value and pointers to child nodes

```
struct node {
    int item;
    struct node *left;
    struct node *right;
};
```

Concrete Representation

Trees

BSTs

Motivation

Representation

Operations

Insertion

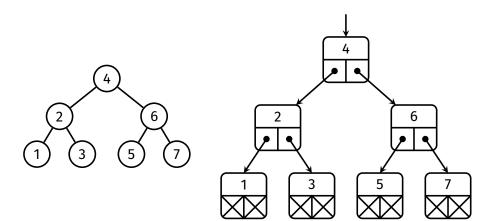
Search

Traversal

Ioin

Deletion

Exercises



Binary Search Trees Operations

Trees

BSTs

Motivation Terminology

Representat Operations

Insertion

Search

Traversal

Join

Deletion

Exercises

Key operations on binary search trees:

- Insert
- Search
- Traversal
- Join
- Delete

Operations - Analysis

Trees

BSTs

Terminology

Operations

Insertion

Search Traversal

Ioin

Deletion

Exercises

The height h of a binary search tree determines the efficiency of many operations, so we will use both n and h in our analyses.

BSTs

Insertion

Examples

Pseudocode

Search

Traversal

Ioin

Deletion

Exercises

Insertion

bstInsert(t, v)

Given a BST t and a value v, insert v into the BST and return the root of the updated BST

BSTs

Insertion

Examples Pseudoco

Analysis Search

Traversal

Deletion

Detetioi

Exercises

Insertion is straightforward:

- Start at the root
- Compare value to be inserted with value in the node
 - If value being inserted is less, descend to left child
 - If value being inserted is greater, descend to right child
- Repeat until...
 you have to go left/right but current node has no left/right child
 - Create new node and attach to current node

Method

RSTs

Insertio

....

Proudo

Analysis

Search

Traversal

Join

Deletion

Exercises

Recursive method:

- t is empty
 - \Rightarrow make a new node with v as the root of the new tree
- v < t->item
 - \Rightarrow insert v into t's left subtree
- v > t->item
 - \Rightarrow insert v into t's right subtree
- v = t->item
 - \Rightarrow tree unchanged (assuming no duplicates)

EXERCISE Try writing an iterative version.

Trees BSTs

Insertion

Method

Examples Pseudocode

. . .

Search

Traversal

Ioin

Deletion

Exercises

Insert the following values into an empty tree:

 $4\ 2\ 6\ 5\ 1\ 7\ 3$

BSTs

Insertion Method

Examples Pseudocode

PSeudoci

Search

Traversal

Ioin

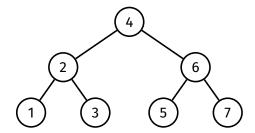
Deletion

Detetion

Exercises

Insert the following values into an empty tree:

4 2 6 5 1 7 3



Trees BSTs

Insertion

Method

Examples Pseudocode

Applysis

Search

Traversal

Ioin

Deletion

Exercises

Insert the following values into an empty tree:

5 6 2 3 4 7 1

BSTs

Insertion Method

Examples

Pseudocode

Search

Traversal

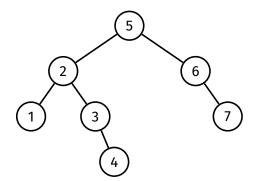
Ioin

Deletion

Exercises

Insert the following values into an empty tree:

5 6 2 3 4 7 1



Trees BSTs

Insertion

Method Examples

Pseudocode

Analyeie

Search

Traversal

Ioin

Deletion

Exercises

Insert the following values into an empty tree:

1 2 3 4 5 6 7

BSTs

Insertion Method

Examples Pseudocode

.

Search

Traversal

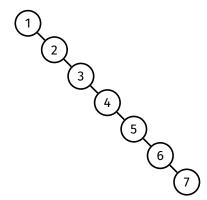
Ioin

Deletion

Exercises

Insert the following values into an empty tree:

1 2 3 4 5 6 7



BST Insertion

Pseudocode

```
BSTs
Insertion
Method
Examples
Pseudocode
```

bstInsert(t, v):

Trees

Search Traversal

Ioin

Deletion

Exercises

```
Input: tree t, value v
Output: t with v inserted

if t is empty:
    return new node containing v
else if v < t->item:
    t->left = bstInsert(t->left, v)
else if v > t->item:
    t->right = bstInsert(t->right, v)
return t
```

Tree

BSTs

Insertior

Method

Examples

Pseudocode

Analysis

Search Traversal

11446130

Join

Deletion

Exercises

Analysis:

- At most one node is examined on each level
- Number of operations performed per node is constant
- \bullet Therefore, the worst-case time complexity of insertion is O(h) where h is the height of the BST

BSTs

Insertion

Search Method

Example

rseudoc

Analysis

Traversal

Join

Deletion

Exercises

Search

bstSearch(t, v)

Given a BST t and a value v, return true if v is in the BST and false otherwise

BST Search

Trees

BSTs

Insertion

Search

Example Pseudocoo

Traversal

Deletion

Exercises

Recursive method:

- *t* is empty:
 - \Rightarrow return false
- v < t->item
 ⇒ search for v in t's left subtree
- v > t→item
 ⇒ search for v in t's right subtree
- v = t->item \Rightarrow return true

EXERCISE Try writing an iterative version.

Insertion

Search

Method

Example

A -- I -- I

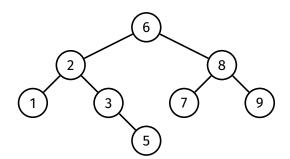
Traversal

Join

Deletion

Exercises

Search for 4 and 7 in the following BST:



```
Insertion
Search
           bstSearch(t, v):
                 Input: tree t, value v
Pseudocode
                Output: true if v is in t
                           false otherwise
Traversal
Ioin
                if t is empty:
Deletion
                      return false
Exercises
                else if v < t \rightarrow \text{item}:
                      return bstSearch(t->left, v)
                else if v > t->item:
                      return bstSearch(t->right, v)
                else:
                      return true
```

RSTs

Insertion Search

> Method Example

Example Pseudocod

Analysis

Traversal

loin

Deletion

Exercises

Analysis:

- At most one node is examined on each level
- Number of operations performed per node is constant
- \bullet Therefore, the worst-case time complexity of search is O(h) where h is the height of the BST

BSTs

Insertion Search

Traversal

Pseudocode Examples Analysis

Join

Deletion

Exercises

Traversal

Given a BST, visit every node of the tree

Search

Traversal

Pseudocod Examples Analysis

Join

Deletion

Exercise

There are 4 common ways to traverse a binary tree:

- 1 Pre-order (NLR): visit root, then traverse left subtree, then traverse right subtree
- 2 In-order (LNR): traverse left subtree, then visit root, then traverse right subtree
- 3 Post-order (LRN): traverse left subtree, then traverse right subtree, then visit root
- Level-order: visit root, then its children, then their children, and so on

BSTs

Insertion Search

Traversal

Pseudocode

Example Analysis

Anatysis

, - . . .

Deletion

Exercises

Pseudocode:

```
preorder(t):
                           inorder(t):
                                                    postorder(t):
                               Input: tree t
                                                        Input: tree t
    Input: tree t
    if t is empty:
                               if t is empty:
                                                        if t is empty:
        return
                                   return
                                                            return
    visit(t)
                               inorder(t->left)
                                                        postorder(t->left)
    preorder(t->left)
                               visit(t)
                                                        postorder(t->right)
    preorder(t->right)
                               inorder(t->right)
                                                        visit(t)
```

Note:

Level-order traversal is difficult to implement recursively. It is typically implemented using a queue.

Tree Traversal

Example: Binary Search Tree

Trees

BSTs

Insertion Search

Traversal

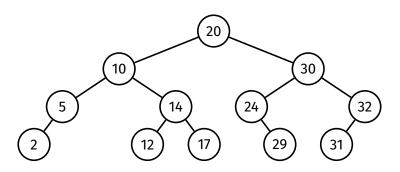
Pseudocod Examples

Analysis

JOIN

Detetio

Exercises



Pre-order 20 10 5 2 14 12 17 30 24 29 32 31

In-order 2 5 10 12 14 17 20 24 29 30 31 32

Post-order 2 5 12 17 14 10 29 24 31 32 30 20

Level-order 20 10 30 5 14 24 32 2 12 17 29 31

BSTs

Insertion Search

Traversal

Pseudocode Examples

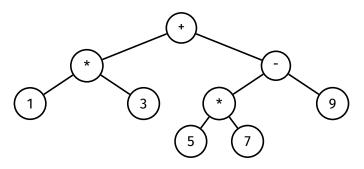
Analysis

, - . . .

Deletion

Exercises

Expression tree for 1 * 3 + (5 * 7 - 9)



Pre-order + * 1 3 - * 5 7 9

In-order 1 * 3 + 5 * 7 - 9

Post-order 1 3 * 5 7 * 9 - +

Tree Traversal Applications

Trees

BSTs

Insertion

Search

Traversal Pseudocode Examples

Analysis

Deletion

Exercises

Pre-order traversal:

Useful for reconstructing a tree

In-order traversal:

Useful for traversing a BST in ascending order

Post-order traversal:

- Useful for evaluating an expression tree
- Useful for freeing a tree

Level-order traversal:

• Useful for printing a tree

BSTs

Insertion Search

Traversal
Pseudocode
Examples

Analysis

Deletion

Exercises

Analysis:

- Each node is visited once
- Hence, time complexity of tree traversal is O(n), where n is the number of nodes

BSTs

Insertion Search

Traversal

Join

Method

Pseudocod

Analysis

Deletion

Exercises

Join

 $bstJoin(t_1, t_2)$

Given two BSTs t_1 and t_2 where $\max{(t_1)} < \min{(t_2)}$ return a BST containing all items from t_1 and t_2

BST Join Method

Trees

BSTs

Insertion Search

Traversal

.....

Method

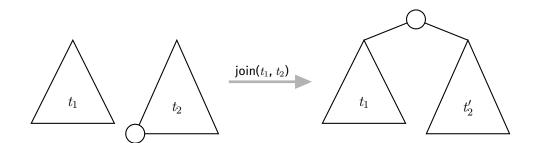
Examples Pseudocod Analysis

Deletion

Exercises

Method:

- **1** Find the minimum node min in t_2
- 2 Replace min by its right subtree (if it exists)
- 3 Elevate min to be the new root of t_1 and t_2



BSTs

Insertion

Search Traversal

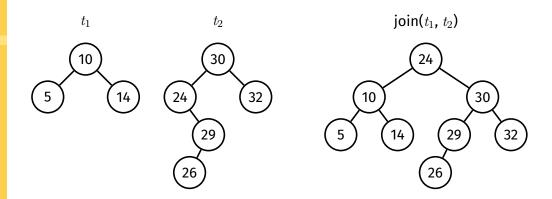
Ioin Method

Examples

Pseudocode Analysis

Deletion

Exercises



BSTs

Insertion Search

Traversal

Haverso

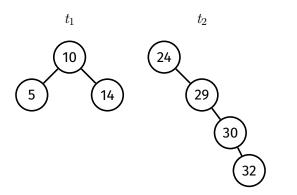
Join Method

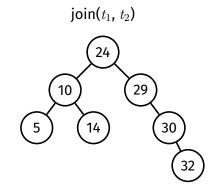
Examples

Pseudocode Analysis

Deletion

Exercises





BST Join Pseudocode

Trees bstJoin(t_1, t_2): **BSTs Input:** trees t_1 , t_2 Insertion **Output:** t_1 and t_2 joined together Search Traversal **if** t_1 is empty: return t_2 Method else if t_2 is empty: Pseudocode return t_1 else: Deletion $curr = t_2$ Exercises parent = NULL while curr->left ≠ NULL: parent = curr curr = curr->left **if** parent \neq NULL: parent->left = curr->right curr->right = t_2 $curr -> left = t_1$ return curr

BST Join Analysis

Trees

BSTs

Insertion Search

Traversal

Join Method

Examples Pseudoco

Analysis

Deletion

Exercise

Analysis:

- ullet The join algorithm simply finds the minimum node in t_2
- ullet Thus, at most one node is visited per level of t_2
- \bullet Therefore, the worst-case time complexity of join is $O(h_2)$ where h_2 is the height of t_2

BSTs

Insertion Search

Traversal

Join

Deletion

Method Examples Pseudocode Analysis

Exercises

Deletion

bstDelete(t, v)

 $\begin{array}{c} \text{Given a BST } t \text{ and a value } v \\ \text{delete } v \text{ from the BST} \\ \text{and return the root of the updated BST} \end{array}$

rrees

BSTs

Insertion Search

Traversal

.

Deletion

Examples Pseudocod

Exercises

Recursive method:

- *t* is empty:
 - \Rightarrow result is empty
- v < t->item
 - \Rightarrow delete v from t's left subtree
- v > t->item
 - \Rightarrow delete v from t's right subtree
- v = t->item
 - \Rightarrow three sub-cases:
 - *t* is a leaf
 - \Rightarrow result is empty tree
 - *t* has one subtree
 - \Rightarrow replace with subtree
 - t has two subtrees
 - ⇒ join the two subtrees

Insertion

Search

Traversal

.....

Join

Deletic Method

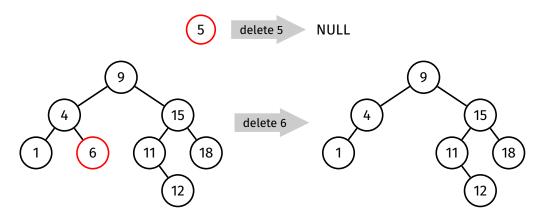
Examples

Dooudoo

Analysis

Exercises

If the node being deleted is a leaf, then the result is an empty tree



BSTs

Insertion Search

Traversal

.....

Join Deletion

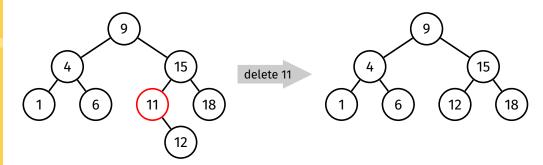
Method

Examples

Pseudocode

Exercises

Node to be deleted has one subtree



Insertion Search

Traversal

Ioin

Deletion

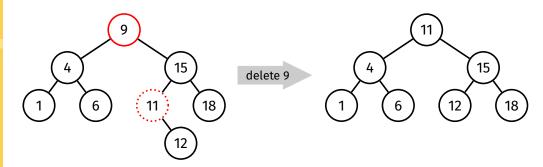
Method Examples

Pseudocode

Analysis

Exercises

Node to be deleted has two subtrees



```
BSTs
              bstDelete(t, v):
Insertion
                   Input: tree t, value v
                   Output: t with v deleted
Search
Traversal
                   if t is empty:
                        return empty tree
                   else if v < t->item:
Deletion
Method
                        t->left = bstDelete(t->left, v)
                   else if v > t->item:
Pseudocode
                        t->right = bstDelete(t->right, v)
                   else:
Exercises
                       if t->left is empty:
                            new = t - > right
                        else if t\rightarrowright is empty:
                            new = t \rightarrow left
                       else:
                            new = bstJoin(t->left, t->right)
                        free(t)
                        t = \text{new}
                   return t
```

Tree

BSTs

Insertion Search

Traversal

. . . .

Deletion Method Examples Pseudocod Analysis

Exercises

Analysis:

- The deletion algorithm traverses down just one branch
 - First, the item being deleted is found
 - If the item exists and has two subtrees, its successor is found
- Thus, at most one node is visited per level
- \bullet Therefore, the worst-case time complexity of deletion is O(h) where h is the height of the BST

Insertion

Search

Traversal

Ioin

Deletion

Exercises

- bstFree free a tree
- bstSize return the size of a tree
- bstHeight return the height of a tree
- bstPrune given values lo and hi, remove all values outside the range [lo, hi]

Insertion

Search

Traversal

Ioin

Deletion

Exercises

https://forms.office.com/r/zEqxUXvmLR

