
COMP2521
24T3

Motivation

Sorting

Analysis

Properties

Programming

COMP2521 24T3
Sorting Algorithms (I)

Introduction to Sorting Algorithms

Sushmita Ruj
cs2521@cse.unsw.edu.au

sorting
properties of sorting algorithms



COMP2521
24T3

Motivation

Sorting

Analysis

Properties

Programming

Motivation

• Sorting enables faster searching
• Binary search

• Sorting arranges data in useful ways (for humans and computers)
• For example, a list of students in a tutorial

• Sorting provides a useful intermediate for other algorithms
• For example, duplicate detection/removal, merging two collections



COMP2521
24T3

Motivation

Sorting

Analysis

Properties

Programming

Sorting

• Sorting involves arranging a collection of items in order
• Arrays, linked lists, files

• Items are sorted based on some property (called the key), using an
ordering relation on that property

• Numbers are sorted numerically
• Strings are sorted alphabetically



COMP2521
24T3

Motivation

Sorting

Analysis

Properties

Programming

Sorting

We sort arrays of Items, which could be:
• Simple values: int, char, double
• Aggregate values: strings
• Structured values: struct

The items are sorted based on a key, which could be:
• The entire item, if the item is a single value
• One or more fields, if the item is a struct



COMP2521
24T3

Motivation

Sorting

Analysis

Properties

Programming

Sorting

Example: Each student has an ID and a name

5151515
John

5012345
Jane

3456789
Bob

5050505
Alice

5555555
John

5432109
Andrew

Sorting by ID (i.e., key is ID):

3456789
Bob

5012345
Jane

5050505
Alice

5151515
John

5432109
Andrew

5555555
John

Sorting by name (i.e., key is name):

5050505
Alice

5432109
Andrew

3456789
Bob

5012345
Jane

5151515
John

5555555
John



COMP2521
24T3

Motivation

Sorting

Analysis

Properties

Programming

Sorting

Arrange items in array slice a[lo..hi] into sorted order:

a
lo hi

unordered

sort(a, lo, hi)

a
lo hi

ordered

To sort an entire array of size N, lo == 0 and hi == N - 1.



COMP2521
24T3

Motivation

Sorting

Analysis

Properties

Programming

Examples of Sorting Algorithms

Elementary sorting algorithms:
• Selection sort
• Bubble sort
• Insertion sort
• Shell sort

Divide-and-conquer sorting algorithms:
• Merge sort
• Quick sort

Non-comparison-based sorting algorithms:
• Radix sort
• Key-indexed counting sort



COMP2521
24T3

Motivation

Sorting

Analysis

Properties

Programming

Analysis of Sorting Algorithms

Three main cases to consider for input order:
• Random order
• Sorted order
• Reverse-sorted order

When analysing sorting algorithms, we consider:
• n: the number of items (hi− lo+ 1)
• C : the number of comparisons between items
• S : the number of times items are swapped



COMP2521
24T3

Motivation

Sorting

Analysis

Properties
Stability
Adaptability
In-place

Programming

Properties of Sorting Algorithms

Properties:
• Stability
• Adaptability
• In-place



COMP2521
24T3

Motivation

Sorting

Analysis

Properties
Stability
Adaptability
In-place

Programming

Properties of Sorting Algorithms
Stability

• A stable sort preserves the relative order of items with equal keys.
• Formally: For all pairs of items x and y where key(x) ≡ key(y), if x
precedes y in the original array, then x precedes y in the sorted array.

A stable sorting algorithm always performs a stable sort.



COMP2521
24T3

Motivation

Sorting

Analysis

Properties
Stability
Adaptability
In-place

Programming

Properties of Sorting Algorithms
Stability

Example: Each card has a value and a suit

A stable sort on value: p



COMP2521
24T3

Motivation

Sorting

Analysis

Properties
Stability
Adaptability
In-place

Programming

Properties of Sorting Algorithms
Stability

Example: Each card has a value and a suit

Example of an unstable sort on value:



COMP2521
24T3

Motivation

Sorting

Analysis

Properties
Stability
Adaptability
In-place

Programming

Properties of Sorting Algorithms
Stability

When is stability important?
• When sorting the same array multiple times on different keys

• Some sorting algorithms rely on this, for example, radix sort



COMP2521
24T3

Motivation

Sorting

Analysis

Properties
Stability
Adaptability
In-place

Programming

Properties of Sorting Algorithms
Stability

Example: Array of first names and last names

Alice
Wunder

Andrew
Bennett

Jake
Renzella

Alice
Hatter

Andrew
Taylor

John
Shepherd

Sort by last name:

Andrew
Bennett

Alice
Hatter

Jake
Renzella

John
Shepherd

Andrew
Taylor

Alice
Wunder

Then sort by first name (using stable sort):

Alice
Hatter

Alice
Wunder

Andrew
Bennett

Andrew
Taylor

Jake
Renzella

John
Shepherd



COMP2521
24T3

Motivation

Sorting

Analysis

Properties
Stability
Adaptability
In-place

Programming

Properties of Sorting Algorithms
Stability

Stability doesn’t matter if...
• All items have unique keys

• Example: Sorting students by ID
• The key is the entire item

• Example: Sorting an array of integer values



COMP2521
24T3

Motivation

Sorting

Analysis

Properties
Stability
Adaptability
In-place

Programming

Properties of Sorting Algorithms
Adaptability

• An adaptive sorting algorithm takes advantage of existing order in its
input

• The nature of the algorithm allows sorted or nearly-sorted inputs to be
sorted much quicker than other inputs



COMP2521
24T3

Motivation

Sorting

Analysis

Properties
Stability
Adaptability
In-place

Programming

Properties of Sorting Algorithms
Adaptability

Warning!

Just because a sorting algorithm
sorts sorted input faster than it sorts random input,

does not necessarily mean that it is adaptive.



COMP2521
24T3

Motivation

Sorting

Analysis

Properties
Stability
Adaptability
In-place

Programming

Properties of Sorting Algorithms
Adaptability

Example of data for non-adaptive sorting algorithm:



COMP2521
24T3

Motivation

Sorting

Analysis

Properties
Stability
Adaptability
In-place

Programming

Properties of Sorting Algorithms
Adaptability

Example of data for adaptive sorting algorithm:



COMP2521
24T3

Motivation

Sorting

Analysis

Properties
Stability
Adaptability
In-place

Programming

Properties of Sorting Algorithms
In-place

• An in-place sorting algorithm sorts the data within the original structure,
without using temporary arrays



COMP2521
24T3

Motivation

Sorting

Analysis

Properties

Programming

Implementing Sorting Algorithms

Generic sort function:

void sort(Item a[], int lo, int hi);

Helper function to swap elements at indices i and j:

void swap(Item a[], int i, int j);



COMP2521
24T3

Motivation

Sorting

Analysis

Properties

Programming

Implementing Sorting Algorithms

Item is a typedef,
which is a way to give a new name to a type.

For example, if we want to sort integers:

typedef int Item;

For example, if we want to sort strings:

typedef char *Item;



COMP2521
24T3

Motivation

Sorting

Analysis

Properties

Programming

Implementing Sorting Algorithms

We also define macros which indicate
(1) how to extract keys from an item, and
(2) how items should be compared.

For example, when sorting integers:

typedef int Item;

#define key(A) (A)
#define lt(A, B) (key(A) < key(B)) // less than
#define le(A, B) (key(A) <= key(B)) // less than or equal to
#define ge(A, B) (key(A) >= key(B)) // greater than or equal to
#define gt(A, B) (key(A) > key(B)) // greater than



COMP2521
24T3

Motivation

Sorting

Analysis

Properties

Programming

Implementing Sorting Algorithms

When sorting structs:

typedef struct {
char *name;
char *course;

} Item;

#define key(A) (A.name)
#define lt(A, B) (strcmp(key(A), key(B)) < 0)
#define le(A, B) (strcmp(key(A), key(B)) <= 0)
#define ge(A, B) (strcmp(key(A), key(B)) >= 0)
#define gt(A, B) (strcmp(key(A), key(B)) > 0)



COMP2521
24T3

Motivation

Sorting

Analysis

Properties

Programming

Feedback

https://forms.office.com/r/zEqxUXvmLR

 https://forms.office.com/r/zEqxUXvmLR

	Motivation
	Sorting
	Analysis
	Properties
	Stability
	Adaptability
	In-place

	Programming

