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Motivation

• Sorting enables faster searching
• Binary search

• Sorting arranges data in useful ways (for humans and computers)
• For example, a list of students in a tutorial

• Sorting provides a useful intermediate for other algorithms
• For example, duplicate detection/removal, merging two collections
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Sorting

• Sorting involves arranging a collection of items in order
• Arrays, linked lists, files

• Items are sorted based on some property (called the key), using an
ordering relation on that property

• Numbers are sorted numerically
• Strings are sorted alphabetically
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Sorting

We sort arrays of Items, which could be:
• Simple values: int, char, double
• Aggregate values: strings
• Structured values: struct

The items are sorted based on a key, which could be:
• The entire item, if the item is a single value
• One or more fields, if the item is a struct
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Sorting

Example: Each student has an ID and a name

5151515
John

5012345
Jane

3456789
Bob

5050505
Alice

5555555
John

5432109
Andrew

Sorting by ID (i.e., key is ID):

3456789
Bob

5012345
Jane

5050505
Alice

5151515
John

5432109
Andrew

5555555
John

Sorting by name (i.e., key is name):

5050505
Alice

5432109
Andrew

3456789
Bob

5012345
Jane

5151515
John

5555555
John
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Sorting

Arrange items in array slice a[lo..hi] into sorted order:

a
lo hi

unordered

sort(a, lo, hi)

a
lo hi

ordered

To sort an entire array of size N, lo == 0 and hi == N - 1.
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Examples of Sorting Algorithms

Elementary sorting algorithms:
• Selection sort
• Bubble sort
• Insertion sort
• Shell sort

Divide-and-conquer sorting algorithms:
• Merge sort
• Quick sort

Non-comparison-based sorting algorithms:
• Radix sort
• Key-indexed counting sort
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Analysis of Sorting Algorithms

Three main cases to consider for input order:
• Random order
• Sorted order
• Reverse-sorted order

When analysing sorting algorithms, we consider:
• n: the number of items (hi− lo+ 1)
• C : the number of comparisons between items
• S : the number of times items are swapped
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Properties of Sorting Algorithms

Properties:
• Stability
• Adaptability
• In-place
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Properties of Sorting Algorithms
Stability

• A stable sort preserves the relative order of items with equal keys.
• Formally: For all pairs of items x and y where key(x) ≡ key(y), if x
precedes y in the original array, then x precedes y in the sorted array.

A stable sorting algorithm always performs a stable sort.
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Properties of Sorting Algorithms
Stability

Example: Each card has a value and a suit

A stable sort on value: p
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Properties of Sorting Algorithms
Stability

Example: Each card has a value and a suit

Example of an unstable sort on value:
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Properties of Sorting Algorithms
Stability

When is stability important?
• When sorting the same array multiple times on different keys

• Some sorting algorithms rely on this, for example, radix sort
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Properties of Sorting Algorithms
Stability

Example: Array of first names and last names

Alice
Wunder

Andrew
Bennett

Jake
Renzella

Alice
Hatter

Andrew
Taylor

John
Shepherd

Sort by last name:

Andrew
Bennett

Alice
Hatter

Jake
Renzella

John
Shepherd

Andrew
Taylor

Alice
Wunder

Then sort by first name (using stable sort):

Alice
Hatter

Alice
Wunder

Andrew
Bennett

Andrew
Taylor

Jake
Renzella

John
Shepherd
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Properties of Sorting Algorithms
Stability

Stability doesn’t matter if...
• All items have unique keys

• Example: Sorting students by ID
• The key is the entire item

• Example: Sorting an array of integer values
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Properties of Sorting Algorithms
Adaptability

• An adaptive sorting algorithm takes advantage of existing order in its
input

• The nature of the algorithm allows sorted or nearly-sorted inputs to be
sorted much quicker than other inputs
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Properties of Sorting Algorithms
Adaptability

Warning!

Just because a sorting algorithm
sorts sorted input faster than it sorts random input,

does not necessarily mean that it is adaptive.
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Properties of Sorting Algorithms
Adaptability

Example of data for non-adaptive sorting algorithm:
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Properties of Sorting Algorithms
Adaptability

Example of data for adaptive sorting algorithm:
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Properties of Sorting Algorithms
In-place

• An in-place sorting algorithm sorts the data within the original structure,
without using temporary arrays
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Implementing Sorting Algorithms

Generic sort function:

void sort(Item a[], int lo, int hi);

Helper function to swap elements at indices i and j:

void swap(Item a[], int i, int j);
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Implementing Sorting Algorithms

Item is a typedef,
which is a way to give a new name to a type.

For example, if we want to sort integers:

typedef int Item;

For example, if we want to sort strings:

typedef char *Item;
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Implementing Sorting Algorithms

We also define macros which indicate
(1) how to extract keys from an item, and
(2) how items should be compared.

For example, when sorting integers:

typedef int Item;

#define key(A) (A)
#define lt(A, B) (key(A) < key(B)) // less than
#define le(A, B) (key(A) <= key(B)) // less than or equal to
#define ge(A, B) (key(A) >= key(B)) // greater than or equal to
#define gt(A, B) (key(A) > key(B)) // greater than
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Implementing Sorting Algorithms

When sorting structs:

typedef struct {
char *name;
char *course;

} Item;

#define key(A) (A.name)
#define lt(A, B) (strcmp(key(A), key(B)) < 0)
#define le(A, B) (strcmp(key(A), key(B)) <= 0)
#define ge(A, B) (strcmp(key(A), key(B)) >= 0)
#define gt(A, B) (strcmp(key(A), key(B)) > 0)
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Feedback

https://forms.office.com/r/zEqxUXvmLR

 https://forms.office.com/r/zEqxUXvmLR
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