
COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

COMP2521 24T3
Analysis of Algorithms

Hao Xue
cs2521@cse.unsw.edu.au

Slides adapted from those by Kevin 24T1



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Motivation

What are the requirements for an algorithm?
• Correctness
• Readability
• Robustness
• Efficiency



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Motivation

• Program efficiency is critical for many applications:
• Finance, robotics, games, database systems, AI, ...

• We may want to compare programs to decide which one to use
• We may want to determine whether a program will be “fast enough”



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Motivation

• Each line of code we execute, takes time.
• Each variable we create, takes up space.



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Motivation

For an application to be useful in real-world, it must:
• Run “fast enough”
• Not take up too much space



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Tradeoffs

In computer science:
• Sometimes you will need to make a tradeoff:

• sacrifice space for speed
• sacrifice speed for space

• Example
• Array & Linked list
• If you need fast access to elements by index and don’t expect frequent
insertions or deletions, an array might be better, favouring time over space.

• If you expect frequent insertions and deletions and don’t require fast
access by index, a linked list might be better, favouring space over time.



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Factors Affecting Efficiency

What determines how fast a program runs?
• The operating system?
• Compilers?
• Hardware?

• E.g., CPU, GPU, cache
• Load on the machine?



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Factors Affecting Efficiency

As software engineers, there are many factors influencing how usable our
applications will be.
• Factors outside of our control:

• The machine our code will be running on
• How much data the application will need to handle

• Factors within our control:
• Which data structure(s) we use → how much space is needed to store and
manipulate the provided data

• Which algorithm(s) we use → how much time (and space)it takes to process
the provided data



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Algorithm Efficiency

• The running time of an algorithm tends to be a function of input size
• Typically: larger input⇒ longer running time

• Small inputs: fast running time , regardless of algorithm
• Larger inputs: slower, but how much slower?



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

What to Analyse?

• Best-case performance
• Not very useful
• Usually only occurs for specific types of input

• Average-case performance
• Difficult; need to know how the program is used

• Worst-case performance
• Most important; determines how long the program could possibly run



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Time Complexity

Time complexity is
the amount of time it takes to run an algorithm,

as a function of the input size



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Time Complexity

Example functions:

n2

6n
n log2 n

20 log2 n



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Analysing Time Complexity

The time complexity of an algorithm can be analysed in two ways:
• Empirically: Measuring the time that a program implementing the
algorithm takes to run

• Theoretically: Counting the number of operations or “steps” performed
by the algorithm as a function of input size



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Searching

The search problem:

Given an array of size n and a value,
return the index containing the value if it exists,

otherwise return -1.

[0]

2

[1]

16

[2]

11

[3]

1

[4]

9

[5]

4

[6]

15



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis
Measuring running
time
Demonstration
Limitations

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Empirical Analysis

1 Write a program that implements the algorithm
2 Run the program with inputs of varying size and composition
3 Measure the running time of the algorithm
4 Plot the results



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis
Measuring running
time
Demonstration
Limitations

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Timing Execution

We can measure the running time of an algorithm using clock(3).
• The clock() function determines the amount of processor time used
since the start of the process.

#include <time.h>

clock_t start = clock();
// algorithm code here...
clock_t end = clock();

double seconds = (double)(end - start) / CLOCKS_PER_SEC;



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis
Measuring running
time
Demonstration
Limitations

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Timing Execution

Absolute times will differ
between machines, between languages
…so we’re not interested in absolute time.

We are interested in the relative change
as the input size increases



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis
Measuring running
time
Demonstration
Limitations

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Empirical Analysis

Let’s empirically analyse the following search algorithm:

// Returns the index of the given value in the array if it exists,
// or -1 otherwise
int linearSearch(int arr[], int size, int val) {

for (int i = 0; i < size; i++) {
if (arr[i] == val) {

return i;
}

}
return -1;

}



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis
Measuring running
time
Demonstration
Limitations

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Empirical Analysis

Sample results:
Input Size Running Time
1,000,000 0.002
10,000,000 0.023
100,000,000 0.240
200,000,000 0.471
300,000,000 0.702
400,000,000 0.942
500,000,000 1.196

1,000,000,000 2.384

The worst-case running time of linear search
grows linearly as the input size increases.



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis
Measuring running
time
Demonstration
Limitations

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Empirical Analysis



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis
Measuring running
time
Demonstration
Limitations

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Limitations of Empirical Analysis

• Requires implementation of algorithm
• Different choice of input data⇒ different results

• Choosing good inputs is extremely important
• Timing results affected by runtime environment

• E.g., load on the machine
• In order to compare two algorithms...

• Need “comparable” implementation of each algorithm
• Must use same inputs, same hardware, same O/S, same load



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Asymptotic analysis
Big-Oh notation
Analysing complexity

Binary Search

Multiple
Variables

Appendix

Theoretical Analysis

• Uses high-level description of algorithm (pseudocode)
• Can use the code if it is implemented already

• Characterises running time as a function of input size
• Allows us to evaluate the efficiency of the algorithm

• Independent of the hardware/software environment



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Asymptotic analysis
Big-Oh notation
Analysing complexity

Binary Search

Multiple
Variables

Appendix

Pseudocode

• Pseudocode is a plain language description of the steps in an algorithm
• Uses structural conventions of a regular programming language

• if statements, loops
• Omits language-specific details

• variable declarations
• allocating/freeing memory



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Asymptotic analysis
Big-Oh notation
Analysing complexity

Binary Search

Multiple
Variables

Appendix

Pseudocode

Pseudocode for linear search:

linearSearch(A, val):
Input: array A of size n, value val
Output: index of val in A if it exists

-1 otherwise

for i from 0 up to n − 1:
if A[i] = val:

return i

return -1



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Asymptotic analysis
Big-Oh notation
Analysing complexity

Binary Search

Multiple
Variables

Appendix

Primitive Operations

Every algorithm uses a core set of basic operations.

Examples:
• Assignment
• Indexing into an array
• Calling/returning from a function
• Evaluating an expression
• Increment/decrement

We call these operations primitive operations.

Assume that primitive operations take the same constant amount of time.



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Asymptotic analysis
Big-Oh notation
Analysing complexity

Binary Search

Multiple
Variables

Appendix

Counting Primitive Operations
Example

How many primitive operations are performed by this line of code?

for (int i = 0; i < n; i++)

The assignment i = 0 occurs 1 time
The comparison i < n occurs n + 1 times

The increment i++ occurs n times

Total: 1 + (n + 1) + n primitive operations



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Asymptotic analysis
Big-Oh notation
Analysing complexity

Binary Search

Multiple
Variables

Appendix

Counting Primitive Operations
Example

How many primitive operations are performed by this line of code?

for (int i = 0; i < n; i++)

The assignment i = 0 occurs 1 time
The comparison i < n occurs n + 1 times

The increment i++ occurs n times

Total: 1 + (n + 1) + n primitive operations



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Asymptotic analysis
Big-Oh notation
Analysing complexity

Binary Search

Multiple
Variables

Appendix

Counting Primitive Operations

By inspecting the pseudocode, we can determine the maximum number of
primitive operations executed by an algorithm as a function of the input size.

linearSearch(A, val):
Input: array A of size n, value val
Output: index of val in A if it exists

-1 otherwise

for i from 0 up to n − 1: 1 + (n + 1) + n
if A[i] = val: 2n

return i

return -1 1
---------------
4n + 3 (total)



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Asymptotic analysis
Big-Oh notation
Analysing complexity

Binary Search

Multiple
Variables

Appendix

Counting Primitive Operations

Linear search requires 4n + 3 primitive operations in the worst case.

If the time taken by a primitive operation is c, then the time taken by linear
search in the worst case is c(4n + 3).



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Asymptotic analysis
Big-Oh notation
Analysing complexity

Binary Search

Multiple
Variables

Appendix

Asymptotic Analysis

We are mainly interested in
how the running time of an algorithm changes

as the input size increases.

This is called the asymptotic behaviour of the running time.



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Asymptotic analysis
Big-Oh notation
Analysing complexity

Binary Search

Multiple
Variables

Appendix

Asymptotic Analysis
Lower-Order Terms

Asymptotic behaviour is not affected by lower-order terms.
• For example, suppose the running time of an algorithm is 4n + 100.
• As n increases, the lower-order term (i.e., 100) becomes less significant
(i.e., becomes a smaller proportion of the running time)



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Asymptotic analysis
Big-Oh notation
Analysing complexity

Binary Search

Multiple
Variables

Appendix

Asymptotic Analysis
Constant Factors

Asymptotic behaviour is not affected by constant factors.

Example: Suppose the running time T(n) of an algorithm is n2.
• What happens when we double the input size?

T(2n) = (2n)2

= 4n2

= 4T(n)

When we double the input size, the time taken quadruples.



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Asymptotic analysis
Big-Oh notation
Analysing complexity

Binary Search

Multiple
Variables

Appendix

Asymptotic Analysis
Constant Factors

Example: Now suppose the running time T(n) of an algorithm is 10n2.
• Now what happens when we double the input size?

T(2n) = 10× (2n)2

= 10× 4n2

= 4× 10n2

= 4T(n)

When we double the input size, the time taken also quadruples!



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Asymptotic analysis
Big-Oh notation
Analysing complexity

Binary Search

Multiple
Variables

Appendix

Asymptotic Analysis

To summarise:
• Asymptotic behaviour is unaffected by lower-order terms
• Asymptotic behaviour is unaffected by constant factors

This means we can ignore lower-order terms and constant factors when
characterising the asymptotic behaviour of an algorithm.

Examples:
• If T(n) = 100n + 500, ignoring lower-order terms and constant factors
gives n

• If T(n) = 5n2 + 2n + 3, ignoring lower-order terms and constant factors
gives n2



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Asymptotic analysis
Big-Oh notation
Analysing complexity

Binary Search

Multiple
Variables

Appendix

Asymptotic Analysis

This also means that for sufficiently large inputs, the algorithm that has the
running time with the highest-order term will always take longer.



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Asymptotic analysis
Big-Oh notation
Analysing complexity

Binary Search

Multiple
Variables

Appendix

Big-Oh Notation

Big-Oh notation
is used to classify the asymptotic behaviour of an algorithm,

and this is how we usually express time complexity in this course.

For example, linear search is O(n) in the worst case.



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Asymptotic analysis
Big-Oh notation
Analysing complexity

Binary Search

Multiple
Variables

Appendix

Big-Oh Notation

Big-Oh notation allows us to easily compare the efficiency of algorithms
• For example, if algorithm A has a time complexity of O(n) and algorithm
B has a time complexity of O(n2), then we can say that for sufficiently
large inputs, algorithm A will perform better.



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Asymptotic analysis
Big-Oh notation
Analysing complexity

Binary Search

Multiple
Variables

Appendix

Big-Oh Notation

Formally, big-Oh is actually a notation used to describe the asymptotic
relationship between functions.

Formally:
Given functions f (n) and g(n), we say that f (n) is O(g(n)) if:
• There are positive constants c and n0 such that:

• f (n) ≤ c · g(n) for all n ≥ n0

Informally:
Given functions f (n) and g(n), we say that f (n) is O(g(n)) if for sufficiently
large n, f (n) is bounded above by some multiple of g(n).



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Asymptotic analysis
Big-Oh notation
Analysing complexity

Binary Search

Multiple
Variables

Appendix

Big-Oh Notation



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Asymptotic analysis
Big-Oh notation
Analysing complexity

Binary Search

Multiple
Variables

Appendix

Relatives of Big-Oh
All The Mathematics!

f (n) is O(g(n))
if f (n) is asymptotically less than or equal to g(n)

f (n) is Ω(g(n))
if f (n) is asymptotically greater than or equal to g(n)

f (n) is Θ(g(n))
if f (n) is asymptotically equal to g(n)



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Asymptotic analysis
Big-Oh notation
Analysing complexity

Binary Search

Multiple
Variables

Appendix

Analysing Complexity

Since time complexity is not affected by constant factors, instead of counting
primitive operations, we can simply count line executions.

linearSearch(A, value):
Input: array A of size n, value
Output: index of value in A if it exists

-1 otherwise

for i from 0 up to n − 1: n
if A[i] = value: n

return i

return -1 1
---------------
2n + 1 (total)

Worst-case time complexity: O(n)



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Asymptotic analysis
Big-Oh notation
Analysing complexity

Binary Search

Multiple
Variables

Appendix

Analysing Complexity

To determine the worst-case time complexity of an algorithm:
• Determine the number of line executions performed in the worst case in
terms of the input size

• Discard lower-order terms and constant factors
• The worst-case time complexity is then the big-Oh of the term that
remains



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Asymptotic analysis
Big-Oh notation
Analysing complexity

Binary Search

Multiple
Variables

Appendix

Common Functions

Commonly encountered functions in algorithm analysis:
• Constant: 1
• Logarithmic: log n
• Linear: n
• N-Log-N: n log n
• Quadratic: n2

• Cubic: n3

• Exponential: 2n

• Factorial: n!



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Asymptotic analysis
Big-Oh notation
Analysing complexity

Binary Search

Multiple
Variables

Appendix

Common Functions



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Back to Linear Search

Linear search requires 4n + 3 primitive operations in the worst case.

Therefore, linear search is O(n) in the worst case.



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Searching in a Sorted Array

Is there a faster algorithm for searching an array?

Yes... if the array is sorted.

[0]

1

[1]

2

[2]

4

[3]

9

[4]

11

[5]

15

[6]

16

Let’s start in the middle.
• If a[N/2] = val, we found val; we’re done!
• Otherwise, we split the array:
… if val < a[N/2], we search the left half (a[0] to a[(N/2)− 1)])
… if val > a[N/2], we search the right half (a[(N/2) + 1)] to a[N − 1])



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Binary Search

Binary search is a more efficient search algorithm for sorted arrays:

int binarySearch(int arr[], int size, int val) {
int lo = 0;
int hi = size - 1;

while (lo <= hi) {
int mid = (lo + hi) / 2;

if (val < arr[mid]) {
hi = mid - 1;

} else if (val > arr[mid]) {
lo = mid + 1;

} else {
return mid;

}
}

return -1;
}



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Binary Search
Example

Successful search for 6:

[0]

2
[1]

3
[2]

5
[3]

6
[4]

8
[5]

9

[0]

2
[1]

3
[2]

5
[3]

6
[4]

8
[5]

9

[0]

2
[1]

3
[2]

5
[3]

6
[4]

8
[5]

9

6 > 5

6 < 8

lo mid hi

lo mid hi

lo
mid
hi



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Binary Search
Example

Unsuccessful search for 7:
[0]

2
[1]

3
[2]

5
[3]

6
[4]

8
[5]

9

[0]

2
[1]

3
[2]

5
[3]

6
[4]

8
[5]

9

[0]

2
[1]

3
[2]

5
[3]

6
[4]

8
[5]

9

[0]

2
[1]

3
[2]

5
[3]

6
[4]

8
[5]

9

7 > 5

7 < 8

7 > 6

lo mid hi

lo mid hi

lo
mid
hi

lohi



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Binary Search
Analysis

How many iterations of the loop?
• Best case: 1 iteration

• Item is found right away
• Worst case: log2 n iterations

• Item does not exist
• Every iteration, the size of the subarray being searched is halved

Thus, binary search is O(log2 n) or simply O(log n)



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Binary Search
O(log n)

O(log2 n) = O(log n)

Why drop the base?

According to the change of base formula:

loga n =
logb n
logb a

If a and b are constants,
loga n and logb n differ by a constant factor



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Binary Search
O(log n)

For example:

log2 n =
log5 n
log5 2

≈ 2.32193 log5 n



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Multiple Variables

What if an algorithm takes multiple arrays as input?

If there is no constraint on the relative sizes of the arrays,
their sizes would be given as two variables, usually n and m



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Multiple Variables

Example time complexities with two variables:

O(n + m)

O(nm)

O(max(n,m))

O(min(n,m))

O(n log m)

O(n log m + m log n)



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Multiple Variables
Example

Problem:

Given two arrays, where each array contains no repeats,
find the number of elements in common



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Multiple Variables
Example

numCommonElements(A, B):
Input: array A of size n

array B of size m
Output: number of elements in common

numCommon = 0
for i from 0 up to n − 1:

for j from 0 up to m − 1:
if A[i] = B[j]:

numCommon = numCommon + 1

return numCommon

Time complexity: O(nm)



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Feedback

https://forms.office.com/r/zEqxUXvmLR

https://forms.office.com/r/zEqxUXvmLR


COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix
Exercise
More Examples

Appendix



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix
Exercise
More Examples

Predicting Time

If I know my algorithm is quadratic (i.e., O(n2)),
and I know that for a dataset of 1000 items,
it takes 1.2 seconds to run …
• how long for 2000?

4.8 seconds

• how long for 10,000?

120 seconds (2 mins)

• how long for 100,000?

12000 seconds (3.3 hours)

• how long for 1,000,000?

1200000 seconds (13.9 days)

(answers on the next slide)



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix
Exercise
More Examples

Predicting Time

If I know my algorithm is quadratic (i.e., O(n2)),
and I know that for a dataset of 1000 items,
it takes 1.2 seconds to run …
• how long for 2000? 4.8 seconds
• how long for 10,000? 120 seconds (2 mins)
• how long for 100,000? 12000 seconds (3.3 hours)
• how long for 1,000,000? 1200000 seconds (13.9 days)

(answers on the next slide)



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix
Exercise
More Examples

Example 1

Figure: Example 1

• Big O?

O(
√

n)

(answers on the next slide)



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix
Exercise
More Examples

Example 1

Figure: Example 1

• Big O? O(
√

n)

(answers on the next slide)



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix
Exercise
More Examples

Example 2

Figure: Example 2

• Big O?

O(log n)

(answers on the next slide)



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix
Exercise
More Examples

Example 2

Figure: Example 2

• Big O? O(log n)

(answers on the next slide)



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix
Exercise
More Examples

Example 3

Figure: Example 3

• Big O?

O(n3)

(answers on the next slide)



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix
Exercise
More Examples

Example 3

Figure: Example 3

• Big O? O(n3)

(answers on the next slide)



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix
Exercise
More Examples

Example 4

Figure: Example 4

• Big O?

O(n2)

(answers on the next slide)



COMP2521
24T3

Motivation

Factors
Affecting
Efficiency

Efficiency

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix
Exercise
More Examples

Example 4

Figure: Example 4

• Big O? O(n2)

(answers on the next slide)


	Motivation
	Factors Affecting Efficiency
	Efficiency
	Time Complexity
	Searching
	Empirical Analysis
	Measuring running time
	Demonstration
	Limitations

	Theoretical Analysis
	Pseudocode
	Primitive operations
	Asymptotic analysis
	Big-Oh notation
	Analysing complexity

	Binary Search
	Multiple Variables
	Appendix
	Exercise
	More Examples


