$n \log n$ Lower Bound Radix Sort

COMP2521 24T2 Sorting Algorithms (IV) Non-Comparison-Based Sorting Algorithms

Sim Mautner

cs2521@cse.unsw.edu.au

 $n\log n$ lower bound radix sort

Slides adapted from those by Kevin Luxa 2521 24T1

COMP2521

24T2

Radix Sort

All of the sorting algorithms so far have been comparison-based sorts.

It can be shown that these algorithms require $\Omega(n \log n)$ comparisons. That is, they require at least $kn \log n$ comparisons for some constant k.

Why?

 $n \log n$ Lower Bound

Radix Sort

Suppose we need to sort 3 items.

Obviously, one comparison is not sufficient to sort them.

 $n \log n$ Lower Bound

Radix Sort

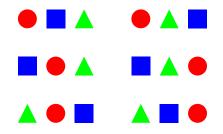
Suppose we need to sort 3 items.

Even two comparisons are not sufficient to sort them. Why?

If we have 3 items, there are 3! = 6 ways to order them:

COMP2521 24T2

n log n Lower Bound Radix Sort



Assuming items are unique, one of these permutations is in sorted order.

COMP2521 24T2

Radix Sort

Suppose we performed the following comparisons:

Four combinations of results are possible:

(true, true), (true, false), (false, true), (false, false)

COMP2521

24T2

Radix Sort

The two comparisons create four groups, and each permutation of items belongs to one of these groups

● <	true	true	false	false
<	true	false	true	false

COMP2521

24T2

Radix Sort

Mathematically,

If we have 3 items, then there are 3! = 6 ways to order them. In other words, 6 possible permutations.

But if we only perform 2 comparisons, then there are only $2^2 = 4$ groups, so at least one group will contain more than one permutation.

We need at least 3 comparisons, because this creates $2^3 = 8$ groups, so each permutation can belong in its own group.

Radix Sort

If we have n items, then there are n! permutations. If we perform k comparisons, that creates up to 2^k groups.

So given n items, we must perform enough comparisons k such that $2^k \geq n!$

The $n \log n$ Lower Bound

 $n \log n$ Lower Bound

Radix Sort

So given n items, we must perform enough comparisons k such that $2^k \geq n!$

Taking the \log_2 of both sides gives $\log_2 2^k \ge \log_2 n!$

Since $\log_2 2^k = k$, we get $k \ge \log_2 n!$

Using Stirling's approximation, we get $k \ge n \log_2 n - n \log_2 e + O(\log_2 n)$

Removing lower-order terms gives $k = \Omega(n \log_2 n)$

The $n \log n$ Lower Bound

 $n \log n$ Lower Bound

Radix Sort

Therefore:

The theoretical lower bound on worst-case execution time for comparison-based sorts is $\Omega(n \log n)$.

 $n \log n$ Lower Bound

Radix Sort

If we aren't limited to just comparing keys, we can achieve better than $O(n \log n)$ worst-case time.

Non-comparison-based sorting algorithms exploit specific properties of the data to sort it.

COMP2521 24T2

Radix Sort

Pseudocode Example Analysis Properties

Radix sort is a non-comparison-based sorting algorithm.

It requires us to be able to decompose our keys into individual symbols (digits, characters, bits, etc.), for example:

- The key 372 is decomposed into (3, 7, 2)
- The key "sydney" is decomposed into ('s', 'y', 'd', 'n', 'e', 'y')

Formally, each key k is decomposed into a tuple (k_1 , k_2 , k_3 , ..., k_m).

24T2

COMP2521

 $n \log n$ Lower Bound

Radix Sort

Pseudocode Example Analysis Properties Ideally, the range of possible symbols is reasonably small, for example:

- Numeric: 0-9
- Alphabetic: a-z

The number of possible symbols is known as the radix, and is denoted by *R*.

- Numeric: R = 10 (for base 10)
- Alphabetic: R = 26

If the keys have different lengths, pad them with a suitable symbol, for example:

- Numeric: 123, 015, 007
- Alphabetic: "abc", " zz_{u} ", " t_{uu} "

 $n \log n$ Lower Bound

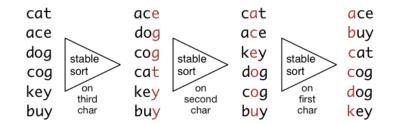
Radix Sort

Pseudocode Example Analysis Properties

Method:

- Perform stable sort on k_m
- Perform stable sort on k_{m-1}
- ...
- Perform stable sort on k_1

Example:



$n \log n$ Lower Bound

Radix Sort

Pseudocode Example Analysis Properties

```
radixSort(A):
Input: array A of keys where
       each key consists of m symbols from an "alphabet"
initialise R buckets // one for each symbol
for i from m down to 1:
    empty all buckets
    for each key in A:
        append key to bucket key[i]
    clear A
    for each bucket (in order):
        for each key in bucket:
            append key to A
```

Radix Sort Example

 $n \log n$ Lower Bound

Radix Sort

Example

Analysis Properties Assume alphabet is {'a', 'b', 'c'}, so R = 3.

We want to sort the array:

["abc", "cab", "baa", "a", "ca"]

First, pad keys with blank characters:

["abc", "cab", "baa", "a_{⊔⊔}", "ca_⊔"]

Each key contains three characters, so m = 3.

Radix Sort Example

 $n \log n$ Lower Bound

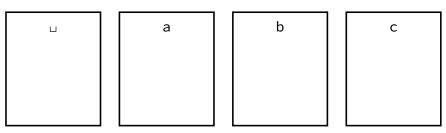
Radix Sort

Example

Analysis

Properties

"abc"	"cab"	"baa"	"a _{⊔⊔} "	"ca⊔"
-------	-------	-------	--------------------	-------



Radix Sort Example

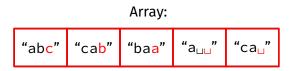
 $n \log n$ Lower Bound

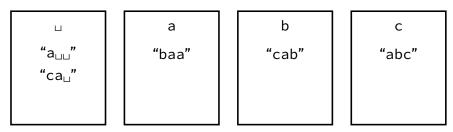
Radix Sort

Example

Analysis

Propertie





 $n \log n$ Lower Bound

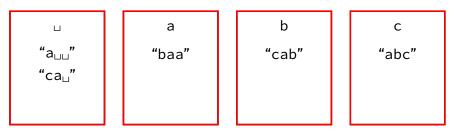
Radix Sort

Example

Analysis

Propertie

Buckets:



Radix Sort

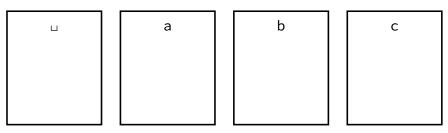
 $n \log n$ Lower Bound

Radix Sort

Example

Analysis

Properties



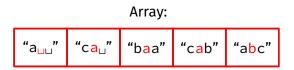
Radix Sort Example

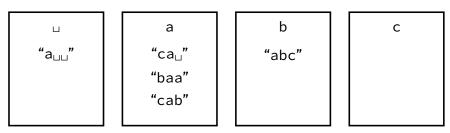
 $n \log n$ Lower Bound

Radix Sort

Example

Analysis





Radix Sort Example

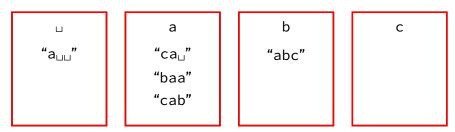
 $n \log n$ Lower Bound

Radix Sort

Example

Analysis

Properties



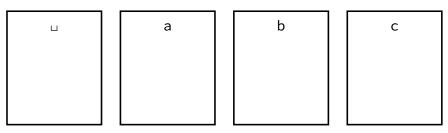
 $n \log n$ Lower Bound

Radix Sort

Example

Analysis

Properties



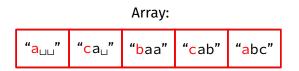
 $n \log n$ Lower Bound

Radix Sort

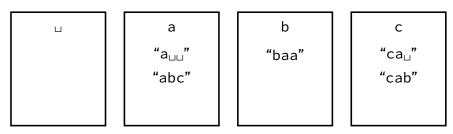
Example

Analysis

Properties



Buckets:



 $n \log n$ Lower Bound

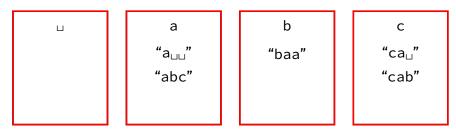
Radix Sort

Example

Analysis

Properties

Buckets:



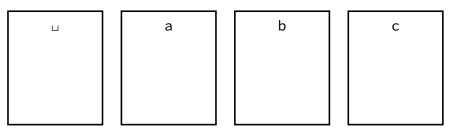
 $n \log n$ Lower Bound

Radix Sort

Example

Analysis

Properties



Radix Sort Pseudocode Example Analysis

Analysis:

- Array contains n keys
- Each key contains m symbols
- Radix sort uses *R* buckets
- A single stable sort runs in time O(n+R)
- Radix sort uses stable sort m times

Hence, time complexity for radix sort is O(m(n+R)).

• $\approx O(mn)$, assuming R is small

Therefore, radix sort performs better than comparison-based sorting algorithms:

• When keys are short (i.e., m is small) and arrays are large (i.e., n is large)

Radix Sort

Analysis

 $n \log n$ Lower Bound

Radix Sort Pseudocode Example Analysis

Properties

Stable All sub-sorts performed are stable

Non-adaptive

Same steps performed, regardless of sortedness

Not in-place

Uses O(R + n) additional space for buckets and storing keys in buckets

Radix Sort Pseudocode Example Analysis Properties

- Bucket sort
- MSD Radix Sort
 - The version shown was LSD
- Key-indexed counting sort
- ...and others

Feedback

 $n \log n$ Lower Bound

Radix Sort Pseudocode Example Analysis

Properties

https://forms.office.com/r/riGKCze1cQ

