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Radix Sort

All of the sorting algorithms so far have been
comparison-based sorts.

It can be shown that these algorithms require Q(nlogn) comparisons.
That is, they require at least knlog n comparisons for some constant k.

Why?
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Suppose we need to sort 3 items.

OH A

Obviously, one comparison is not sufficient to sort them.
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Suppose we need to sort 3 items.

OH A

Even two comparisons are not sufficient to sort them. Why?
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Radix Sort

If we have 3 items, there are 3! = 6 ways to order them:

Assuming items are unique, one of these permutations is in sorted order.
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Radix Sort

Suppose we performed the following comparisons:
o<
B <

Four combinations of results are possible:
(true, true), (true, false), (false, true), (false, false)
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Radix Sort
The two comparisons create four groups, and
each permutation of items belongs to one of these groups

®-<B true true false false

B - true false true false




O The nlogn Lower Bound

n log n Lower
Bound

Radix Sort

Mathematically,

If we have 3 items, then there are 3! = 6 ways to order them.
In other words, 6 possible permutations.

But if we only perform 2 comparisons, then there are only 22 = 4 groups,
so at least one group will contain more than one permutation.

We need at least 3 comparisons, because this creates 23 = 8 groups,
so each permutation can belong in its own group.
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Radix Sort

If we have n items, then there are n! permutations.
If we perform k comparisons, that creates up to 2* groups.

So given n items, we must perform enough comparisons £ such that
2k > pl
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So given n items, we must perform enough comparisons k£ such that
2k > pl

Taking the log, of both sides gives
log, 2% > log, n!

Since log, 2% = k, we get
k > log, n!

Using Stirling’s approximation, we get
k > nlogy n — nlogy e + O(logy n)

Removing lower-order terms gives
k= Q(nlogy n)


https://en.wikipedia.org/wiki/Stirling%27s_approximation
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Therefore:

The theoretical lower bound on
worst-case execution time
for comparison-based sorts is Q(nlogn).
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Radix Sort

If we aren’t limited to just comparing keys,
we can achieve better than O(nlogn) worst-case time.

Non-comparison-based sorting algorithms exploit specific properties
of the data to sort it.
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Radix Sort

Radix sort is a non-comparison-based sorting algorithm.

It requires us to be able to decompose our keys into individual symbols
(digits, characters, bits, etc.), for example:

e The key 372 is decomposed into (3, 7, 2)
* The key “sydney” is decomposed into (‘s ‘y’, ‘d’, ‘n’, ‘e’, ‘y’)

? 1

Formally, each key & is decomposed into a tuple (ki, ks, k3, ...y k).
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Radix Sort

Ideally, the range of possible symbols is reasonably small, for example:

e Numeric: 0-9
e Alphabetic: a-z

The number of possible symbols is known as the radix, and is denoted by R.
e Numeric: R = 10 (for base 10)

e Alphabetic: R = 26

If the keys have different lengths, pad them with a suitable symbol, for

example:

e Numeric: 123, 015, 007

e Alphabetic: “abc”, “

n u

27y,

”
t\_l\_l
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Method:

e Perform stable sort on &,
e Perform stable sort on %,,_1

e Perform stable sort on k&

Example:

cat
ace
dog
cog
key
buy

stable
sort
on

third
char

ace
dog
cog
cat
key
buy

stable
sort

on
second
char

cat
ace
key
dog
cog
buy

stable
sort
on

first
char

ace
buy
cat
cog
dog
key

Radix Sort



Pseudocode

radixSort(A):
Input: array A of keys where
each key consists of m symbols from an "alphabet"

initialise R buckets // one for each symbol

for i from m down to 1:
empty all buckets
for each key 1in A:
append key to bucket key[i]

clear A
for each bucket (in order):
for each key 1in bucket:
append key to A



Assume alphabet is {‘a’, ‘b’, ‘c’}, so R = 3.

We want to sort the array:

[“abC", “Cab", llbaa"' lla", ucan]

First, pad keys with blank characters:

[UabC"’ "Cab", ﬂbaa"' "auu"' “Cau"]

Each key contains three characters, so m = 3.




COMP2521
2412

n log n Lower
Bound

Radix Sort
Pseudocode
Example
Analysis

Properties

Radix Sort

Example

Array:
llabC" Mcab" Ubaa" “auu" Ucau"
Buckets:
a b
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Radix Sort

Pseudocode

S Array:
Analysis
Properties
llabC" Hcab" Ubaa" “a\_”_’" “Cau"
Buckets:
U a b C
“ ” u ” u ” u ”
Ay baa cab abc
" ”




Array:

“a|_|l_|" “Ca|_|" ubaan ucabn uabcn
Buckets:
U a b [e
"a|_||_|" Ubaa" “Cab" Uabcn
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Radix Sort

Example

Array:
Mauu" “Cau" Ubaa" “Cab" “abC"
Buckets:
a b
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Pseudocode

Example Array:
Analysis
Properties “auu" ucau" ubaan ucabn uabcn
Buckets:
“al_n_ln “Cau" “abC"
uba a"
“cab”




Array:

“a|_|l_|" “Ca|_|" ubaan ucabn uabcn
Buckets:
u a b
uauu" “Cau" “abc"
llbaa"

Ucab"
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Radix Sort

Example

Array:
Mauu" “Cau" Ubaa" “Cab" “abC"
Buckets:
a b
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Radix Sort

Pseudocode

Example Array:
Analysis
Properties “auu" “Cau" Ubaa" “Cab" UabC"
Buckets:
[} a b c
“auu" “baa” uca'—'"
uabcn ucab"




Array:

“auu" “abC" llbaa" ucau" “Cab"
Buckets:
a b [e
"a|_||_|" "baa" ucaun
llabC" “Cab"
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Radix Sort

Example

Array:
“auu" MabC" Ubaa" “Cal_’" Mcab"
Buckets:
a b
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Radix Sort

Analysis

Analysis:
e Array contains n keys
Each key contains m symbols
Radix sort uses R buckets
A single stable sort runs in time O(n + R)
Radix sort uses stable sort m times

Hence, time complexity for radix sortis O(m(n + R)).
e ~ O(mn), assuming R is small

Therefore, radix sort performs better than comparison-based sorting
algorithms:

e When keys are short (i.e., m is small) and arrays are large (i.e., n is large)



Properties

Stable
All sub-sorts performed are stable

Non-adaptive
Same steps performed, regardless of sortedness

Not in-place
Uses O(R + n) additional space for buckets
and storing keys in buckets



Properties

Bucket sort
MSD Radix Sort
® The version shown was LSD

Key-indexed counting sort
...and others
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psoudocods https://forms.office.com/r/riGKCzelcQ

Of30

Properties



https://forms.office.com/r/riGKCze1cQ
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