
COMP2521
24T2

Merge Sort

Quick Sort

Comparison

Summary COMP2521 24T2
Sorting Algorithms (III)

Divide-and-Conquer Sorting Algorithms

Sim Mautner
cs2521@cse.unsw.edu.au

Slides adapted from those by Kevin Luxa 2521 24T1



COMP2521
24T2

Merge Sort

Quick Sort

Comparison

Summary

Divide-and-Conquer Algorithms

divide-and-conquer algorithms
split a problem into two or more subproblems,

solve the subproblems recursively,
and then combine the results.



COMP2521
24T2

Merge Sort
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up

Quick Sort

Comparison

Summary

Merge Sort



COMP2521
24T2

Merge Sort
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up

Quick Sort

Comparison

Summary

Merge Sort

Invented by John von Neumann
in 1945



COMP2521
24T2

Merge Sort
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up

Quick Sort

Comparison

Summary

Merge Sort

A divide-and-conquer sorting algorithm:

split the array into two roughly equal-sized parts
recursively sort each of the partitions

merge the two now-sorted partitions into a sorted array



COMP2521
24T2

Merge Sort
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up

Quick Sort

Comparison

Summary

Merge Sort

unsorted unsorted

mergesort mergesort

sorted sorted

merge

sorted



COMP2521
24T2

Merge Sort
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up

Quick Sort

Comparison

Summary

Merge Sort



COMP2521
24T2

Merge Sort
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up

Quick Sort

Comparison

Summary

Merge Sort
Splitting

How do we split the array?
• We don’t physically split the array
• We simply calculate the midpoint of the array

• mid = (lo + hi) / 2
• Then recursively sort each half by passing in appropriate indices

• Sort between indices lo and mid
• Sort between indices mid + 1 and hi

• This means the time complexity of splitting the array is O(1)



COMP2521
24T2

Merge Sort
Method
Splitting
Merging
Example 1
Example 2
Analysis
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up

Quick Sort

Comparison

Summary

Merge Sort
Merging

How do we merge two sorted subarrays?
• We merge the subarrays into a temporary array
• Keep track of the smallest element that has not been merged in each
subarray

• Copy the smaller of the two elements into the temporary array
• If the elements are equal, take from the left subarray

• Repeat until all elements have been merged
• Then copy from the temporary array back to the original array



COMP2521
24T2

Merge Sort
Method
Splitting
Merging
Example 1
Example 2
Analysis
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up

Quick Sort

Comparison

Summary

Merge Sort
Merging - Example 1

2 4 5 7 1 2 3 6

When items are equal, merge takes from the left subarray
(this ensures stability)

Now copy back to original array

1 2 2 3 4 5 6 7



COMP2521
24T2

Merge Sort
Method
Splitting
Merging
Example 1
Example 2
Analysis
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up

Quick Sort

Comparison

Summary

Merge Sort
Merging - Example 2

5 2

Now copy back to original array

2 5



COMP2521
24T2

Merge Sort
Method
Splitting
Merging
Example 1
Example 2
Analysis
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up

Quick Sort

Comparison

Summary

Merge Sort
Merging

• The time complexity of merging two sorted subarrays is O(n), where n is
the total number of elements in both subarrays

• Therefore:
• Merging two subarrays of size 1 takes 2 “steps”
• Merging two subarrays of size 2 takes 4 “steps”
• Merging two subarrays of size 4 takes 8 “steps”
• …



COMP2521
24T2

Merge Sort
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up

Quick Sort

Comparison

Summary

Merge Sort
C Implementation: Sort

void mergeSort(Item items[], int lo, int hi) {
if (lo >= hi) return;
int mid = (lo + hi) / 2;
mergeSort(items, lo, mid);
mergeSort(items, mid + 1, hi);
merge(items, lo, mid, hi);

}



COMP2521
24T2

Merge Sort
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up

Quick Sort

Comparison

Summary

Merge Sort
C Implementation: Merge

void merge(Item items[], int lo, int mid, int hi) {
Item *tmp = malloc((hi - lo + 1) * sizeof(Item));
int i = lo, j = mid + 1, k = 0;

// Scan both segments, copying to `tmp'.
while (i <= mid && j <= hi) {

if (le(items[i], items[j])) {
tmp[k++] = items[i++];

} else {
tmp[k++] = items[j++];

}
}

// Copy items from unfinished segment.
while (i <= mid) tmp[k++] = items[i++];
while (j <= hi) tmp[k++] = items[j++];

// Copy `tmp' back to main array.
for (i = lo, k = 0; i <= hi; i++, k++) {

items[i] = tmp[k];
}

free(tmp);
}



COMP2521
24T2

Merge Sort
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up

Quick Sort

Comparison

Summary

Merge Sort
Analysis

Split
n − 1 splits
(log2 n levels
of splitting)

Merge
We have to merge
n numbers exactly

log2 n times

O(n)

O(n log n)



COMP2521
24T2

Merge Sort
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up

Quick Sort

Comparison

Summary

Merge Sort
Analysis

Analysis:
• Merge sort splits the array into equal-sized partitions
halving at each level⇒ log2 n levels

• The same operations happen at every recursive level
• Each ‘level’ requires ≤ n comparisons

Therefore:
• The time complexity of merge sort is O(n log n)

• Best-case, average-case, and worst-case time complexities are all the same



COMP2521
24T2

Merge Sort
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up

Quick Sort

Comparison

Summary

Merge Sort
Analysis - Alternative Method

Note: Not required knowledge in COMP2521!

Let T(n) be the time taken to sort n elements.

Splitting arrays into two halves takes constant time.
Merging two sorted arrays takes n steps.

So we have that:
T(n) = 2T(n/2) + n

Then the Master Theorem (see COMP3121) can be used to
show that the time complexity is O(n log n).



COMP2521
24T2

Merge Sort
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up

Quick Sort

Comparison

Summary

Merge Sort
Properties

Stable
Due to taking from left subarray if items are equal during merge

Non-adaptive
O(n log n) best case, average case, worst case

Not in-place
Merge uses a temporary array of size up to n

Note: Merge sort also uses O(log n) stack space



COMP2521
24T2

Merge Sort
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up

Quick Sort

Comparison

Summary

Merge Sort on Lists

It is possible to apply merge sort on linked lists.

5 2 4 7 3 1 2 6

split

5 2 4 7
a

3 1 2 6
b

mergesort(a) mergesort(b)

2 4 5 7
a

1 2 3 6
b

merge(a, b)

1 2 2 3 4 5 6 7



COMP2521
24T2

Merge Sort
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up
Implementation

Quick Sort

Comparison

Summary

Bottom-Up Merge Sort

An approach that works non-recursively!

• On each pass, our array contains sorted runs of length m.
• Initially, n sorted runs of length 1.
• The first pass merges adjacent elements into runs of length 2.
• The second pass merges adjacent elements into runs of length 4.
• Continue until we have a single sorted run of length n.

Can be used for external sorting;
e.g., sorting disk-file contents



COMP2521
24T2

Merge Sort
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up
Implementation

Quick Sort

Comparison

Summary

Bottom-Up Merge Sort
Example



COMP2521
24T2

Merge Sort
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up
Implementation

Quick Sort

Comparison

Summary

Bottom-Up Merge Sort
C Implementation

void mergeSortBottomUp(Item items[], int lo, int hi) {
for (int m = 1; m <= hi - lo; m *= 2) {

for (int i = lo; i <= hi - m; i += 2 * m) {
int end = min(i + 2 * m - 1, hi);
merge(items, i, i + m - 1, end);

}
}

}



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Sorting Lists

Comparison

Summary

Quick Sort



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Sorting Lists

Comparison

Summary

Quick Sort

Invented by Tony Hoare
in 1959



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Sorting Lists

Comparison

Summary

Quick Sort

Method:
1 Choose an item to be a pivot
2 Rearrange (partition) the array so that

• All elements to the left of the pivot are less than (or equal to) the pivot
• All elements to the right of the pivot are greater than (or equal to) the pivot

3 Recursively sort each of the partitions



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Sorting Lists

Comparison

Summary

Quick Sort

x unsorted

partition

≤ x, unsorted x ≥ x, unsorted

quicksort quicksort

≤ x, sorted x ≥ x, sorted



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Example 1
Example 2
Analysis
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Sorting Lists

Comparison

Summary

Partitioning

How to partition an array?
• Assume the pivot is stored at index lo
• Create index l to start of array (lo + 1)
• Create index r to end of array (hi)
• Until l and r meet:

• Increment l until a[l] is greater than pivot
• Decrement r until a[r] is less than pivot
• Swap items at indices l and r

• Swap the pivot with index l or l - 1 (depending on the item at index l)



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Example 1
Example 2
Analysis
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Sorting Lists

Comparison

Summary

Partitioning
Example 1

41 2 72 3 614 16 27 5
≤ 4 ≥ 4

Pivot is 4Create left and right indices
Until the indices meet:

Increment left index while element is ≤ pivotDecrement right index while element is ≥ pivotSwap the two elementsIncrement left index while element is ≤ pivotDecrement right index while element is ≥ pivotSwap the two elementsIncrement left index while element is ≤ pivotSwap the pivot into the middle (be careful!)Done



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Example 1
Example 2
Analysis
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Sorting Lists

Comparison

Summary

Partitioning
Example 2

1 2 3 4 5
≥ 1

Pivot is 1Create left and right indices
Until the indices meet:

Increment left index while element is ≤ pivotDecrement right index while element is ≥ pivotSwap the pivot into the middle (be careful!)Done



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Example 1
Example 2
Analysis
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Sorting Lists

Comparison

Summary

Partitioning
Analysis

• Partitioning is O(n), where n is the number of elements being
partitioned

• About n comparisons are performed, at most n
2 swaps are performed



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Sorting Lists

Comparison

Summary

Quick Sort
C Implementation: Sort

void naiveQuickSort(Item items[], int lo, int hi) {
if (lo >= hi) return;
int pivotIndex = partition(items, lo, hi);
naiveQuickSort(items, lo, pivotIndex - 1);
naiveQuickSort(items, pivotIndex + 1, hi);

}



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Sorting Lists

Comparison

Summary

Quick Sort
C Implementation: Partition

int partition(Item items[], int lo, int hi) {
Item pivot = items[lo];

int l = lo + 1;
int r = hi;
while (l < r) {

while (l < r && le(items[l], pivot)) l++;
while (l < r && ge(items[r], pivot)) r--;
if (l == r) break;
swap(items, l, r);

}

if (lt(pivot, items[l])) l--;
swap(items, lo, l);
return l;

}



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Sorting Lists

Comparison

Summary

Quick Sort
Analysis

Best case: O(n log n)
• Choice of pivot gives two equal-sized partitions
• Same happens at every recursive call

• Resulting in log2 n recursive levels
• Each “level” requires approximately n comparisons

≤ x ≤x≥ ≥ x

recursively sort recursively sort

≤ y ≤y≥ ≥ y ≤ z ≤z≥ ≥ z

… … … …



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Sorting Lists

Comparison

Summary

Quick Sort
Analysis

Worst case: O(n2)

• Always choose lowest/highest value for pivot
• Resulting in partitions of size 0 and n − 1
• Resulting in n recursive levels

• Each “level” requires one less comparison than the level above

x ≥ x

y ≥ y

z ≥ z
…



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Sorting Lists

Comparison

Summary

Quick Sort
Analysis

Average case: O(n log n)
• If array is randomly ordered, chance of repeatedly choosing a bad pivot
is very low

• Can also show empirically by generating random sequences and sorting
them



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Sorting Lists

Comparison

Summary

Quick Sort
Properties

Unstable
Due to long-range swaps

Non-adaptive
O(n log n) average case, sorted input does not improve this

In-place
Partitioning is done in-place

Stack depth is O(n) worst-case, O(log n) average



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Sorting Lists

Comparison

Summary

Issues with Quick Sort

Choice of pivot can have a significant effect:
• Ideal pivot is the median value
• Always choosing largest/smallest⇒ worst case

Therefore, always picking the first or last element as pivot is not a good idea:
• Existing order is a worst case
• Existing reverse order is a worst case
• Will result in partitions of size n − 1 and 0

• This pivot selection strategy is called naïve quick sort



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Sorting Lists

Comparison

Summary

Quick Sort with Median-of-Three Partitioning

Pick three values: left-most, middle, right-most.
Pick the median of these three values as our pivot.

Ordered data is no longer a worst-case scenario.
In general, doesn’t eliminate the worst-case …

… but makes it much less likely.

lo (lo + hi)/2 hi



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Sorting Lists

Comparison

Summary

Quick Sort with Median-of-Three Partitioning

lo (lo + hi)/2 hi

1 Sort a[lo],a[(lo + hi)/2],a[hi], such that a[(lo + hi)/2] ≤ a[lo] ≤ a[hi]
2 Partition on a[lo] to a[hi]



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Sorting Lists

Comparison

Summary

Quick Sort with Median-of-Three Partitioning
Example

Which element is selected as the pivot?Answer: 5

25

lo

3 7 82

(lo + hi)/2

1 4 6 58

hi



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Sorting Lists

Comparison

Summary

Quick Sort with Median-of-Three Partitioning
C Implementation

void medianOfThreeQuickSort(Item items[], int lo, int hi) {
if (lo >= hi) return;
medianOfThree(items, lo, hi);
int pivotIndex = partition(items, lo, hi);
medianOfThreeQuickSort(items, lo, pivotIndex - 1);
medianOfThreeQuickSort(items, pivotIndex + 1, hi);

}

void medianOfThree(Item a[], int lo, int hi) {
int mid = (lo + hi) / 2;
if (gt(a[mid], a[lo])) swap(a, mid, lo);
if (gt(a[lo], a[hi])) swap(a, lo, hi);
if (gt(a[mid], a[lo])) swap(a, mid, lo);
// now, we have a[mid] <= a[lo] <= a[hi]

}



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Sorting Lists

Comparison

Summary

Quick Sort with Randomised Partitioning

Idea: Pick a random value for the pivot

This makes it nearly impossible to
systematically generate inputs that would lead to

O(n2) performance



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Sorting Lists

Comparison

Summary

Quick Sort with Randomised Partitioning
C Implementation

void randomisedQuickSort(Item items[], int lo, int hi) {
if (lo >= hi) return;
swap(items, lo, randint(lo, hi));
int pivotIndex = partition(items, lo, hi);
randomisedQuickSort(items, lo, pivotIndex - 1);
randomisedQuickSort(items, pivotIndex + 1, hi);

}

int randint(int lo, int hi) {
int i = rand() % (hi - lo + 1);
return lo + i;

}

Note: rand() is a pseudo-random number generator provided by <stdlib.h>.
The generator should be initialised with srand().



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Insertion Sort
Sorting Lists

Comparison

Summary

Insertion Sort Improvement

For small sequences (when n < 5, say),
quick sort is expensive

because of the recursion overhead.

Solution: Handle small partitions with insertion sort



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Insertion Sort
Sorting Lists

Comparison

Summary

Insertion Sort Improvement
C Implementation - Version 1

#define THRESHOLD 5

void quickSort(Item items[], int lo, int hi) {
if (hi - lo < THRESHOLD) {

insertionSort(items, lo, hi);
return;

}

medianOfThree(items, lo, hi);
int pivotIndex = partition(items, lo, hi);
quickSort(items, lo, pivotIndex - 1);
quickSort(items, pivotIndex + 1, hi);

}



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Insertion Sort
Sorting Lists

Comparison

Summary

Insertion Sort Improvement
C Implementation - Version 2

#define THRESHOLD 5

void quickSort(Item items[], int lo, int hi) {
doQuickSort(items, lo, hi);
insertionSort(items, lo, hi);

}

void doQuickSort(Item items[], int lo, int hi) {
if (hi - lo < THRESHOLD) return;

medianOfThree(items, lo, hi);
int pivotIndex = partition(items, lo, hi);
doQuickSort(items, lo, pivotIndex - 1);
doQuickSort(items, pivotIndex + 1, hi);

}



COMP2521
24T2

Merge Sort

Quick Sort
Method
Partitioning
Implementation
Analysis
Properties
Issues
Median-of-Three
Partitioning
Randomised
Partitioning
Improvements
Sorting Lists

Comparison

Summary

Quick Sort on Lists

It is possible to quick sort a linked list:
1 Pick first element as pivot

• Note that this means ordered data is a worst case again
• Instead, can use median-of-three or random pivot

2 Create two empty linked lists A and B
3 For each element in original list (excluding pivot):

• If element is less than (or equal to) pivot, add it to A
• If element is greater than pivot, add it to B

4 Recursively sort A and B
5 Form sorted linked list using sorted A, the pivot, and then sorted B



COMP2521
24T2

Merge Sort

Quick Sort

Comparison

Summary

Quick Sort vs Merge Sort

Design of modern cpus mean,
for sorting arrays in ram

quick sort generally outperforms merge sort.

Quick sort is more ‘cache friendly’:
good locality of access on arrays.

On the other hand, merge sort is
readily stable, readily parallel,

a good choice for sorting linked lists



COMP2521
24T2

Merge Sort

Quick Sort

Comparison

Summary

Summary of Divide-and-Conquer Sorts

Time complexity Properties

Best Average Worst Stable Adaptive

Merge sort O(n log n) O(n log n) O(n log n) Yes No

Quick sort O(n log n) O(n log n) O(n2) No No



COMP2521
24T2

Merge Sort

Quick Sort

Comparison

Summary

Feedback

https://forms.office.com/r/riGKCze1cQ

https://forms.office.com/r/riGKCze1cQ

	Merge Sort
	Method
	Splitting
	Merging
	Implementation
	Analysis
	Properties
	Sorting Lists
	Bottom-Up

	Quick Sort
	Method
	Partitioning
	Implementation
	Analysis
	Properties
	Issues
	Median-of-Three Partitioning
	Randomised Partitioning
	Improvements
	Sorting Lists

	Comparison
	Summary

