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Background

e Each line of code we execute, takes time.

e Each variable we create, takes up space.
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Motivation

¢ |n order for an application to be useful, it must:
® Run “fast enough”

® Not take up too much space
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Factors Affecting Efficiency

As software engineers, there are many factors influencing how usable our
application will be.
e Factors outside of our control:

e Factors within our control:
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Factors Affecting Efficiency

As software engineers, there are many factors influencing how usable our
application will be.
e Factors outside of our control:
¢ The machine our code will be running on, including:

® How much memory the computer has
® How fast the computer can execute each line of code

® How much data the application will need to handle
e Factors within our control:



Oz Factors Affecting Efficiency

Background

Motivation

Z?rcet?tﬁg As software engineers, there are many factors influencing how usable our
:Z':;: application will be.

e * Factors outside of our control:

Complexity ¢ The machine our code will be running on, including:

Seeiting ® How much memory the computer has

/E\Taloliyr;icsal ® How fast the computer can execute each line of code

heoreticat ® How much data the application will need to handle

Analysis e Factors within our control:

sl seareh e Which data structure(s) we use — how much space is needed to store and
e manipulate the provided data

Appendix e Which algorithm(s) we use — how much time (and space) it takes to

process the provided data
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Tradeoffs

Scenario:

You're going camping. You have 1 car, and you're going for 4 nights. You will
be camping near your car and there’s a river nearby.

You're trying to decide what mattresses to sleep on. There are 2 main
contenders.
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Time to pack up
(per mattress)

Exercise Mat

80cm x 30cm x 30cm

15 seconds

Tradeoffs

Self-Inflating Mattress

S

20cm x 10cm x 10cm

5 minutes



How do you decide?
Tradeoffs

e Case 1: You go with 3 friends

e Case 2: You go with 2 young children
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How do you decide?
Tradeoffs

e Case 1: You go with 3 friends
® Space is limited

e Case 2: You go with 2 young children
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How do you decide?
e Case 1: You go with 3 friends
— e Space is limited

® Time is freely available

e Case 2: You go with 2 young children
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How do you decide?
Tradeoffs

e Case 1: You go with 3 friends
® Space is limited

® Time is freely available
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e Case 2: You go with 2 young children
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How do you decide?
Tradeoffs

e Case 1: You go with 3 friends
® Space is limited

® Time is freely available
b ]

e Case 2: You go with 2 young children
® There's plenty of space
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How do you decide?
Tradeoffs

e Case 1: You go with 3 friends
® Space is limited

® Time is freely available
b ]

e Case 2: You go with 2 young children
® There's plenty of space
® Time is limited
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How do you decide?
e Case 1: You go with 3 friends
® Space is limited
® Time is freely available
Q

e Case 2: You go with 2 young children

® There's plenty of space
® Time is limited

5e

Tradeoffs
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Tradeoffs

In computer science:
e Sometimes you will make a tradeoff:
® sacrifice space for speed
® sacrifice speed for space
e And sometimes you will find beautiful data structures and algorithms
which take up less space and less time than the one you were using until
now



Tradeoffs

Throughout this term we will be looking at different data structures and
more efficiently.

algorithms which although they accomplish the same goal, some will do so
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Tradeoffs

Throughout this term we will be looking at different data structures and
algorithms which although they accomplish the same goal, some will do so
more efficiently.

In some cases, different data structures and algorithms will be more efficient
in accomplishing the same goal, because details of the data it is being
applied to is different.



e The running time of an algorithm tends to be a function of input size
Tradeoffs
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Tradeoffs

e The running time of an algorithm tends to be a function of input size
e Typically: larger input = longer running time
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Tradeoffs

e The running time of an algorithm tends to be a function of input size
e Typically: larger input = longer running time

® Small inputs: fast running time, regardless of algorithm
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Oz Algorithm Efficiency
Fackeround e The running time of an algorithm tends to be a function of input size

o e Typically: larger input = longer running time

B ® Small inputs: fast running time, regardless of algorithm
® Larger inputs: slower, but how much slower?
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e Algorithm Efficiency

Background

e The running time of an algorithm tends to be a function of input size
o e Typically: larger input = longer running time

B ® Small inputs: fast running time, regardless of algorithm
® Larger inputs: slower, but how much slower?

Motivation

Tradeoffs

Time
Complexity A bad
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Tradeoffs

e Best-case performance

® Average-case performance

® Worst-case performance
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Tradeoffs

® Best-case performance
® Not very useful

e Usually only occurs for specific types of input
® Average-case performance

® Worst-case performance
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Tradeoffs

® Best-case performance
® Not very useful

e Usually only occurs for specific types of input
® Average-case performance

e Difficult; need to know how the program is used
e Worst-case performance
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What to Analyse?

® Best-case performance

® Not very useful
e Usually only occurs for specific types of input

® Average-case performance
e Difficult; need to know how the program is used
e Worst-case performance
® Most important; determines how long the program could possibly run



Time
Complexity

Time complexity is

the amount of time it takes to run an algorithm,

as a function of the input size
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Time
Complexity

n

2

Example functions:
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Oz Analysing Time Complexity

Background
Motivation

Factors
Affecting
Efficiency

Tradeoffs

Time The time complexity of an algorithm can be analysed in two ways:

Complexity

Searching e Empirically: Measuring the time that a program implementing the
Empirical algorithm takes to run
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Analysing Time Complexity

The time complexity of an algorithm can be analysed in two ways:
e Empirically: Measuring the time that a program implementing the
algorithm takes to run
e Theoretically: Counting the number of operations or “steps” performed
by the algorithm as a function of input size



COMP2521
2412

Background
Motivation

Factors
Affecting
Efficiency

Tradeoffs

Time
Complexity

Searching

Empirical
Analysis

Theoretical
Analysis

Binary Search

Multiple
Variables

Appendix

Searching

The search problem:

Given an array of size n and a value,
return the index containing the value if it exists,
otherwise return -1.

(ol [0l 21 B8 [41 [5]1 el
2 16| 1M| 1 9 4 115
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Empirical Analysis

© Write a program that implements the algorithm

@ Run the program with inputs of varying size and composition
© Measure the running time of the algorithm

O Plot the results



COMP2521

i Timing Execution

Background
Motivation

Factors

B We can measure the running time of an algorithm using clock(3).

Tradeoffs ¢ The clock() function determines the amount of processor time used
Time since the start of the process.

Complexity

Searching

A #include <time.h>
Analysis

Measuring running

time clock_t start = clock();
Demonstration // algorithm Code here. ..
clock_t end = clock();

Limitations

Theoretical
Analysis

Binary Search double seconds = (double) (end - start) / CLOCKS_PER_SEC;

Multiple
Variables

Appendix



Absolute times will differ
between machines, between languages
...50 we're not interested in absolute time

We are interested in the relative change
as the input size increases

«aO>» «F»r « =>»



Demonstration

Let's empirically analyse the following search algorithm:

// or -1 otherwise

// Returns the index of the given value in the array if it exist

int linearSearch(int arr[], 1int size, int val) {

for (int i = 0; i < size; i++) {

if (arr[i] == val) {

return 1i;
}

}

return -1;
}

«aO>» «F»r « =>»

<

DA



Oz Empirical Analysis

Background

Motivation

Factors Sample results:

Affecting

Efciency Input Size | Running Time
e 1,000,000 0.002
it 10,000,000 0.023
Searching 100,000,000 0.240
R 200,000,000 0.471
T 300,000,000 0.702
o 400,000,000 0.942
;I:]eazloyr;tsical 500,000,000 1.196
Sinary Search 1,000,000,000 2.384
Multiple . . .
Variables The worst-case running time of linear search

Appendix grows linearly as the input size increases.
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Limitations of Empirical Analysis

Requires implementation of algorithm

Different choice of input data = different results
e Choosing good inputs is extremely important

Timing results affected by runtime environment
® E.g., load on the machine

In order to compare two algorithms...

* Need “comparable” implementation of each algorithm
® Must use same inputs, same hardware, same 0/S, same load
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Theoretical Analysis

e Uses high-level description of algorithm (pseudocode)
® Can use the code if it is implemented already
e Characterises running time as a function of input size

e Allows us to evaluate the efficiency of the algorithm
® Independent of the hardware/software environment
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Pseudocode

e Pseudocode is a plain language description of the steps in an algorithm
e Uses structural conventions of a regular programming language

e if statements, loops
e Omits language-specific details

® variable declarations
e allocating/freeing memory



Pseudocode

Pseudocode for linear search:

linearSearch(A4, wal):
Input:

array A of size n, value wal
Output: index of wal in A if it exists
-1 otherwise
for i from O up to n—1:
if A[i] = wal:
return ¢

return -1

«0O0>» «Fr «=» «
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Oz Primitive Operations

Background

Motivation

o Every algorithm uses a core set of basic operations.
Efficiency

Tradeoffs Examples:

Ti H

Complexity e Assignment

Searching ¢ Indexing into an array

e e Calling/returning from a function
Tz sl e Evaluating an expression

Analysis

Pseudocode

Increment/decrement

Primitive operations
Asymptotic analysis
Big-Oh notation

s We call these operations primitive operations.

Binary Search

Multiple

Variables Assume that primitive operations take the same constant amount of time.

Appendix



Primitive operations

How many primitive operations are performed by this line of code?
for (int i = 0;

0; i < nj d++)
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Oz Counting Primitive Operations
Example
Background
Motivation

Factors
Affecting
Efficiency

S, How many primitive operations are performed by this line of code?
Time

Carmplteiay for (int i = 0; i < n; i++)

Searching

Empirical
Analysis

S— The assignment i = 0 occurs 1 time
AIElpElE The comparison i < n occurs n + 1 times

Pseudocode

RS The increment i++ occurs n times

Asymptotic analysis
Big-Oh notation

Total: 1+ (n + 1) + n primitive operations

Binary Search

Multiple
Variables

Appendix
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Counting Primitive Operations

By inspecting the pseudocode, we can determine the maximum number of
primitive operations executed by an algorithm as a function of the input size.

linearSearch(4, wal):
Input: array A of size n, value wal
Output: index of wal in A if it exists
-1 otherwise

for i from © up to n—1: 1+ (n+ 1) +n
if A[i] = wal: 2n
return ¢
return -1 1

4n + 3 (total)
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Counting Primitive Operations

Linear search requires 4n + 3 primitive operations in the worst case.

If the time taken by a primitive operation is ¢, then the time taken by linear
search in the worst case is ¢(4n + 3).
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Asymptotic Analysis

We are mainly interested in
how the running time of an algorithm changes
as the input size increases.

This is called the asymptotic behaviour of the running time.



Oz Asymptotic Analysis
Lower-Order Terms

Background
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Factors
Affecting
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Tradeoffs
Time

Complexity

earting Asymptotic behaviour is not affected by lower-order terms.
Empirical e For example, suppose the running time of an algorithm is 4n + 100.

Analysis . . . .
heoretical * As nincreases, the lower-order term (i.e., 100) becomes less significant
Analysis (i.e., becomes a smaller proportion of the running time)
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Oz Asymptotic Analysis
Constant Factors

Background
Motivation

Factors
Affecting
Efficiency

Asymptotic behaviour is not affected by constant factors.

Tradeoffs

Time

Complexity Example: Suppose the running time T'(n) of an algorithm is n?.
S e What happens when we double the input size?

Empirical
Analysis

Theoretical

T(2n) = (2n)?
Analysis

Pseudocode = 4”2

Primitive operations

Asymptotic analysis == 4 T ( n)

Big-Oh notation
Analysing complexity

BifEiyiGeatch When we double the input size, the time taken quadruples.

Multiple
Variables

Appendix



Asymptotic analysis

Example: Now suppose the running time 7'(n) of an algorithm is 10n?
e Now what happens when we double the input size?

T(2n) = 10 x (2n)?
=10 x 4n?
=4 x 10n?
=4T(n)
When we double the input size, the time taken also quadruples!
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Oz Asymptotic Analysis

Background

Motivation

Factors To summarise:

Affegtmg . . .

Efciency e Asymptotic behaviour is unaffected by lower-order terms

Tradeoffs . . .

e e Asymptotic behaviour is unaffected by constant factors

Complexity

Searching This means we can ignore lower-order terms and constant factors when

e characterising the asymptotic behaviour of an algorithm.

Theorejtical

Analysis Examples:

A e If T(n) = 100n + 500, ignoring lower-order terms and constant factors

. gives n

I e If T(n) = 5n? + 2n + 3, ignoring lower-order terms and constant factors
Ltipl H 2

Variables gives n

Appendix



Asymptotic analysis

This also means that for sufficiently large inputs, the algorithm that has the
running time with the highest-order term will always take longer.

W/
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Big-Oh Notation

Big-Oh notation
is used to classify the asymptotic behaviour of an algorithm,
and this is how we usually express time complexity in this course.

For example, linear search is O(n) in the worst case.
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Time

Complexity Big-Oh notation allows us to easily compare the efficiency of algorithms
S e For example, if algorithm A has a time complexity of O(n) and algorithm

Empirical

Analysis B has a time complexity of O(n?), then we can say that for sufficiently
Theoretical large inputs, algorithm A will perform better.
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comes21 B ig-O h Notation

Background

Motivation

Factors

B Formally, big-Oh is actually a notation used to describe the asymptotic
S relationship between functions.

Time

Complexity Formally:

searching Given functions f(n) and g(n), we say that f(n) is O(g(n)) if:

iy e There are positive constants ¢ and ng such that:

Z:gfyr;tsical ® f(n) < c-g(n)forall n > ng

Pseudocode

S Informally:
st Given functions f(n) and g(n), we say that f(n) is O(g(n)) if for sufficiently
gnavsearch - |arge n, f(n) is bounded above by some multiple of g(n).

Multiple
Variables
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f(n)

f(n) = O(g(n))
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Big-Oh notation

f(n) is O(g(n))

if f(n) is asymptotically less than or equal to g(n)

f(n) is Q(g(n))

if f(n) is asymptotically greater than or equal to g(n)

f(n)is ©(g(n))
if f(n) is asymptotically equal to g(n)
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Analysing Complexity

Since time complexity is not affected by constant factors, instead of counting
primitive operations, we can simply count line executions.

linearSearch(4, value):
Input: array A of size n, value
Output: index of value in A if it exists
-1 otherwise

for ¢ from O up to n—1: n

if A[i] = value: n
return ¢

return -1 1

2n + 1 (total)

Worst-case time complexity: O(n)
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2412

Background
Motivation

Factors
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Efficiency
Tradeoffs . . . .

e To determine the worst-case time complexity of an algorithm:

complexty ¢ Determine the number of line executions performed in the worst case in
S hi . .

e terms of the input size

Emplrl_cal .

Analysis ¢ Discard lower-order terms and constant factors

Theoretical . . . .

Analysis e The worst-case time complexity is then the big-Oh of the term that
Pseudocode .

remains

Asymptotic analysis
Big-Oh notation
Analysing complexity

Binary Search
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Analysing complexity

Constant: 1

Logarithmic: logn
Linear: n

N-Log-N: nlogn
Quadratic: n2
Cubic: n?

Exponential: 2"
Factorial: n!

Commonly encountered functions in algorithm analysis:

«aO>» «F»r « =>»
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Binary Search

Linear search requires 4n + 3 primitive operations in the worst case.

Therefore, linear search is O(n) in the worst case.
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Oz Searching in a Sorted Array

Background

Motivation

Factors Is there a faster algorithm for searching an array?
Affecti
o)

Tradeoffs Yes... if the array is sorted.
(Til)n,;eptexity [0] [1] [2] [3] [4] [5] [6]

Searching

Empirical 1 2 ll- 9 11 15 16

Analysis

Theoretical

Analysis Let’s start in the middle.
Binary Search
> e If [N /2] = val, we found val; we're done!

e Otherwise, we split the array:
... if val < a[N /2], we search the left half (a[0] to a[(N/2) — 1)]
... if val > a[N /2], we search the right half (a[(N/2) + 1)] to a]

Multiple
Variables

Appendix
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Binary Search

Binary search is a more efficient search algorithm for sorted arrays:

int binarySearch(int arr[], 1int size, 1int val) {
int lo = 0;
int hi = size - 1;

while (lo <= hi) {
int mid = (lo + hi) / 2;

if (val < arr[mid]) {
hi = mid - 1;

} else if (val > arr[mid]) {
lo = mid + 1;

} else {
return mid;

}

3

return -1;
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Successful search for 6:

Binary Search

[ol [l [21 [31 [4] I[5]
2 3 5 6 8 9
lo mid hi
[ol [1 [21 [31 [4] [5]
2 3 5 6 8 9

(o] 01 [21 [3] [4] [5]
2 3 5 6 8 9
lo mid hi

Example
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Unsuccessful search for 7:

Binary Search

o] Nl [21 (381 [4] 1[5

7 lo mid hi
[0l [ [21 [38] [4] [5]
lo mid hi \
(ol 01 [21 [3] 1[4 [5]

Example



Binary Search

How many iterations of the loop?
e Best case: 1iteration

® |tem is found right away
e Worst case: log, n iterations
® [tem does not exist

® Every iteration, the size of the subarray being searched is halved
Thus, binary search is O(log, n) or simply O(log n)
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Binary Search

O(logy n) = O(logn)

Why drop the base?
According to the change of base formula

log;, n
I =
©8a ™ log; a
If  and b are constants,

log,, n and log, n differ by a constant factor

«aO>» «F»r « =>»
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For example:

~ 2.32193 logs n

8}
=]

Y= loggx

y=log

1000

(O



Multiple
Variables

What if an algorithm takes multiple arrays as input?

If there is no constraint on the relative sizes of the arrays,
their sizes would be given as two variables, usually » and m

«aO>» «F»r « =>»
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Multiple
Variables

Example time complexities with two variables
O(n+ m)
O(nm)
O(max(n, m))
O(min(n, m))
O(nlogm)

O(nlog m + mlogn)

R =

«EFr =

DA



Multiple
Variables

Problem:

Given two arrays, where each array contains no repeats,

find the number of elements in common
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Multiple Variables

Example

numCommonElements (A, B):
Input: array A of size n
array B of size m
Output: number of elements in common

numCommon = 0
for ¢ from O up to n—1:
for j from © up to m—1:
if A[i] = B[j]:
numCommon = numCommon + 1

return numCommon

Time complexity: O(nm)
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Feedback
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conezsz Predicting Time

Background
Motivation

Factors
Affecting

Efficiency If | know my algorithm is quadratic (i-e-y O(nQ))r
Tradeoffs and | know that for a dataset of 1000 items,
Time it takes 1.2 seconds to run ...

Complexity

Searching ¢ how long for 2000?
e * how long for 10,000?
Theoretical ¢ how long for 100,000?

Analysis
how long for 1,000,000?

Binary Search

Mulltiple .
Variables (answers on the next slide)
Appendix

Exercise
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Exercise

Predicting Time

If | know my algorithm is quadratic (i.e., O(n?)),
and | know that for a dataset of 1000 items,
it takes 1.2 seconds to run ...

e how long for 2000? 4.8 seconds

¢ how long for 10,000? 120 seconds (2 mins)

e how long for 100,000? 12000 seconds (3.3 hours)

e how long for 1,000,000? 1200000 seconds (13.9 days)
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