Background Motivation

Factors Affecting Efficiency
Tradeoffs
Time
Complexity
Searching
Empirical Analysis

Theoretical Analysis Binary Search

COMP2521 24 T2 Analysis of Algorithms

Sim Mautner
cs2521@cse.unsw.edu.au

Slides adapted from those by Kevin Luxa $252124 T 1$

Background
Motivation
Factors Affecting Efficiency

- Each line of code we execute, takes time.
- Each variable we create, takes up space.
- In order for an application to be useful, it must:
- Run "fast enough"
- Not take up too much space

Factors Affecting Efficiency

As software engineers, there are many factors influencing how usable our application will be.

- Factors outside of our control:
- Factors within our control:

Factors Affecting Efficiency

As software engineers, there are many factors influencing how usable our application will be.

- Factors outside of our control:
- The machine our code will be running on, including:
- How much memory the computer has
- How fast the computer can execute each line of code
- How much data the application will need to handle
- Factors within our control:

Factors Affecting Efficiency

As software engineers, there are many factors influencing how usable our application will be.

- Factors outside of our control:
- The machine our code will be running on, including:
- How much memory the computer has
- How fast the computer can execute each line of code
- How much data the application will need to handle
- Factors within our control:
- Which data structure(s) we use \rightarrow how much space is needed to store and manipulate the provided data
- Which algorithm(s) we use \rightarrow how much time (and space) it takes to process the provided data

Tradeoffs

Background Motivation

Factors

Scenario:
You're going camping. You have 1 car, and you're going for 4 nights. You will be camping near your car and there's a river nearby.

You're trying to decide what mattresses to sleep on. There are 2 main contenders.

Tradeoffs

Background
Motivation
Factors Affecting Efficiency

Tradeoffs

Time

Complexity

Exercise Mat

$80 \mathrm{~cm} \times 30 \mathrm{~cm} \times 30 \mathrm{~cm}$

15 seconds

Self-Inflating Mattress

Dimensions (per mattress)

$20 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}$

Time to pack up (per mattress)

Background Motivation

Factors Affecting Efficiency
Tradeoffs

How do you decide?

- Case 1: You go with 3 friends
- Case 2: You go with 2 young children

Background Motivation

Factors
Affecting Efficiency
Tradeoffs

Searching

Empirical Analysis

How do you decide?

- Case 1: You go with 3 friends
- Space is limited
- Case 2: You go with 2 young children

How do you decide?

- Case 1: You go with 3 friends
- Space is limited
- Time is freely available
- Case 2: You go with 2 young children

How do you decide?

- Case 1: You go with 3 friends
- Space is limited
- Time is freely available

- Case 2: You go with 2 young children

How do you decide?

- Case 1: You go with 3 friends
- Space is limited
- Time is freely available

- Case 2: You go with 2 young children
- There's plenty of space

How do you decide?

- Case 1: You go with 3 friends
- Space is limited
- Time is freely available

- Case 2: You go with 2 young children
- There's plenty of space
- Time is limited

How do you decide?

- Case 1: You go with 3 friends
- Space is limited
- Time is freely available

- Case 2: You go with 2 young children
- There's plenty of space
- Time is limited
-

Tradeoffs

Background Motivation

In computer science:

- Sometimes you will make a tradeoff:
- sacrifice space for speed
- sacrifice speed for space
- And sometimes you will find beautiful data structures and algorithms which take up less space and less time than the one you were using until now

Tradeoffs

Background Motivation

Factors Affecting Efficiency

Throughout this term we will be looking at different data structures and algorithms which although they accomplish the same goal, some will do so more efficiently.

Tradeoffs

Background Motivation

Throughout this term we will be looking at different data structures and algorithms which although they accomplish the same goal, some will do so more efficiently.

In some cases, different data structures and algorithms will be more efficient in accomplishing the same goal, because details of the data it is being applied to is different.

Algorithm Efficiency

- The running time of an algorithm tends to be a function of input size

Background Motivation

Factors Affecting Efficiency

Tradeoffs

Algorithm Efficiency

Background Motivation

Factors Affecting Efficiency

Tradeoffs

- The running time of an algorithm tends to be a function of input size
- Typically: larger input \Rightarrow longer running time

Algorithm Efficiency

Background Motivation

Factors

- The running time of an algorithm tends to be a function of input size
- Typically: larger input \Rightarrow longer running time
- Small inputs: fast running time, regardless of algorithm

Algorithm Efficiency

Background Motivation

Factors Affecting Efficiency
Tradeoffs

- The running time of an algorithm tends to be a function of input size
- Typically: larger input \Rightarrow longer running time
- Small inputs: fast running time, regardless of algorithm
- Larger inputs: slower, but how much slower?

Algorithm Efficiency

Background Motivation

- The running time of an algorithm tends to be a function of input size
- Typically: larger input \Rightarrow longer running time
- Small inputs: fast running time, regardless of algorithm
- Larger inputs: slower, but how much slower?

Background Motivation

Factors Affecting Efficiency
Tradeoffs

- Best-case performance
- Average-case performance
- Worst-case performance
- Best-case performance
- Not very useful
- Usually only occurs for specific types of input
- Average-case performance
- Worst-case performance
- Best-case performance
- Not very useful
- Usually only occurs for specific types of input
- Average-case performance
- Difficult; need to know how the program is used
- Worst-case performance
- Best-case performance
- Not very useful
- Usually only occurs for specific types of input
- Average-case performance
- Difficult; need to know how the program is used
- Worst-case performance
- Most important; determines how long the program could possibly run

Time complexity is the amount of time it takes to run an algorithm, as a function of the input size

Background Motivation

Factors Affecting Efficiency

Tradeoffs

Time

 Complexity SearchingEmpirical Analysis Theoretical Analysis Binary Search

Multiple Variables Appendix

Example functions:

Analysing Time Complexity

Background Motivation

Factors Affecting Efficiency Tradeoffs

The time complexity of an algorithm can be analysed in two ways:

- Empirically: Measuring the time that a program implementing the algorithm takes to run

Analysing Time Complexity

Background Motivation

The time complexity of an algorithm can be analysed in two ways:

- Empirically: Measuring the time that a program implementing the algorithm takes to run
- Theoretically: Counting the number of operations or "steps" performed by the algorithm as a function of input size

The search problem:
Given an array of size n and a value, return the index containing the value if it exists, otherwise return -1.

Empirical Analysis

(1) Write a program that implements the algorithm
(2) Run the program with inputs of varying size and composition
(3) Measure the running time of the algorithm
(4) Plot the results

Timing Execution

We can measure the running time of an algorithm using clock(3).

- The clock() function determines the amount of processor time used since the start of the process.

```
#include <time.h>
clock_t start = clock();
// algorithm code here...
clock_t end = clock();
double seconds = (double)(end - start) / CLOCKS_PER_SEC;
```

Absolute times will differ
between machines, between languages ...so we're not interested in absolute time.

We are interested in the relative change as the input size increases

Empirical Analysis

Background Motivation

Let's empirically analyse the following search algorithm:

```
// Returns the index of the given value in the array if it exist
// or -1 otherwise
int linearSearch(int arr[], int size, int val) {
        for (int i = 0; i < size; i++) {
        if (arr[i] == val) {
                        return i;
            }
        }
        return -1;
    }
```


Empirical Analysis

Background Motivation

Sample results:

Input Size	Running Time
$1,000,000$	0.002
$10,000,000$	0.023
$100,000,000$	0.240
$200,000,000$	0.471
$300,000,000$	0.702
$400,000,000$	0.942
$500,000,000$	1.196
$1,000,000,000$	2.384

The worst-case running time of linear search grows linearly as the input size increases.

Empirical Analysis

Background Motivation

Factors Affecting Efficiency Tradeoffs

Time
Complexity Searching

Empirical

 Analysis Measuring running timeDemonstration Limitations Theoretical Analysis

Binary Search
Multiple Variables

Appendix

Limitations of Empirical Analysis

- Requires implementation of algorithm
- Different choice of input data \Rightarrow different results
- Choosing good inputs is extremely important
- Timing results affected by runtime environment
- E.g., load on the machine
- In order to compare two algorithms...
- Need "comparable" implementation of each algorithm
- Must use same inputs, same hardware, same O/S, same load

Theoretical Analysis

- Uses high-level description of algorithm (pseudocode)
- Can use the code if it is implemented already
- Characterises running time as a function of input size
- Allows us to evaluate the efficiency of the algorithm
- Independent of the hardware/software environment
- Pseudocode is a plain language description of the steps in an algorithm
- Uses structural conventions of a regular programming language
- if statements, loops
- Omits language-specific details
- variable declarations
- allocating/freeing memory

Pseudocode for linear search:

```
linearSearch(A, val):
    Input: array }A\mathrm{ of size n, value val
    Output: index of val in A if it exists
        -1 otherwise
    for i from 0 up to n-1:
        if A[i] = val:
        return i
    return -1
```


Primitive Operations

Every algorithm uses a core set of basic operations.
Examples:

- Assignment
- Indexing into an array
- Calling/returning from a function
- Evaluating an expression
- Increment/decrement

We call these operations primitive operations.
Assume that primitive operations take the same constant amount of time.

Counting Primitive Operations

Example

Background Motivation

How many primitive operations are performed by this line of code?

```
for (int i = 0; i < n; i++)
```


Counting Primitive Operations

How many primitive operations are performed by this line of code?

```
for (int i = 0; i < n; i++)
```

The assignment $i=0$ occurs 1 time The comparison $\mathrm{i}<\mathrm{n}$ occurs $n+1$ times The increment $i++$ occurs n times

Total: $1+(n+1)+n$ primitive operations

Counting Primitive Operations

Background

By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm as a function of the input size.

```
linearSearch(A, val):
    Input: array }A\mathrm{ of size n, value val
    Output: index of val in A if it exists
            -1 otherwise
```

```
for i from 0 up to n-1:
```

for i from 0 up to n-1:
1 + (n + 1) + n
1 + (n + 1) + n
if }A[i]=\mathrm{ val:
if }A[i]=\mathrm{ val:
2n
2n
return i
return i
return -1
1
4n + 3 (total)

```

\section*{Counting Primitive Operations}

Background Motivation

Factors

Linear search requires \(4 n+3\) primitive operations in the worst case.
If the time taken by a primitive operation is \(c\), then the time taken by linear search in the worst case is \(c(4 n+3)\).

\section*{Asymptotic Analysis}

This is called the asymptotic behaviour of the running time.

\title{
Asymptotic Analysis
}

Lower-Order Terms

Asymptotic behaviour is not affected by lower-order terms.
- For example, suppose the running time of an algorithm is \(4 n+100\).
- As \(n\) increases, the lower-order term (i.e., 100) becomes less significant (i.e., becomes a smaller proportion of the running time)

\section*{Asymptotic Analysis}

Asymptotic behaviour is not affected by constant factors.
Example: Suppose the running time \(T(n)\) of an algorithm is \(n^{2}\).
- What happens when we double the input size?
\[
\begin{aligned}
T(2 n) & =(2 n)^{2} \\
& =4 n^{2} \\
& =4 T(n)
\end{aligned}
\]

When we double the input size, the time taken quadruples.

\section*{Asymptotic Analysis}

Example: Now suppose the running time \(T(n)\) of an algorithm is \(10 n^{2}\).
- Now what happens when we double the input size?
\[
\begin{aligned}
T(2 n) & =10 \times(2 n)^{2} \\
& =10 \times 4 n^{2} \\
& =4 \times 10 n^{2} \\
& =4 T(n)
\end{aligned}
\]

When we double the input size, the time taken also quadruples!

\section*{Asymptotic Analysis}

To summarise:
- Asymptotic behaviour is unaffected by lower-order terms
- Asymptotic behaviour is unaffected by constant factors

This means we can ignore lower-order terms and constant factors when characterising the asymptotic behaviour of an algorithm.

\section*{Examples:}
- If \(T(n)=100 n+500\), ignoring lower-order terms and constant factors gives \(n\)
- If \(T(n)=5 n^{2}+2 n+3\), ignoring lower-order terms and constant factors gives \(n^{2}\)

\section*{Asymptotic Analysis}

This also means that for sufficiently large inputs, the algorithm that has the running time with the highest-order term will always take longer.


\section*{Big-Oh notation}
is used to classify the asymptotic behaviour of an algorithm, and this is how we usually express time complexity in this course.

For example, linear search is \(O(n)\) in the worst case.

\section*{Big-Oh Notation}

Background Motivation

Big-Oh notation allows us to easily compare the efficiency of algorithms
- For example, if algorithm A has a time complexity of \(O(n)\) and algorithm B has a time complexity of \(O\left(n^{2}\right)\), then we can say that for sufficiently large inputs, algorithm A will perform better.

\section*{Big-Oh Notation}

Formally, big-Oh is actually a notation used to describe the asymptotic relationship between functions.

\section*{Formally:}

Given functions \(f(n)\) and \(g(n)\), we say that \(f(n)\) is \(O(g(n))\) if:
- There are positive constants \(c\) and \(n_{0}\) such that:
- \(f(n) \leq c \cdot g(n)\) for all \(n \geq n_{0}\)

\section*{Informally:}

Given functions \(f(n)\) and \(g(n)\), we say that \(f(n)\) is \(O(g(n))\) if for sufficiently large \(n, f(n)\) is bounded above by some multiple of \(g(n)\).

Background Motivation

Factors Affecting Efficiency Tradeoffs Time Complexity Searching Empirical Analysis

\section*{Theoretical} Analysis Pseudocode Primitive operations Asymptotic analysis Big-Oh notation Analysing complexity Binary Search Multiple Variables Appendix

\[
f(n) \text { is } O(g(n))
\]
if \(f(n)\) is asymptotically less than or equal to \(g(n)\)
\[
\text { if } f(n) \text { is asymptotically greater than or equal to } g(n)
\]
\[
\text { if } f(n) \text { is asymptotically equal to } g(n)
\]
\[
f(n) \text { is } \Omega(g(n))
\]
\[
f(n) \text { is } \Theta(g(n))
\]

\section*{Analysing Complexity}

Since time complexity is not affected by constant factors, instead of counting primitive operations, we can simply count line executions.
```

linearSearch(A, value):
Input: array }A\mathrm{ of size }n\mathrm{ , value
Output: index of value in }A\mathrm{ if it exists
-1 otherwise
for i from 0 up to n-1: n
if }A[i]=\mathrm{ value:
return i
return -11
2n + 1 (total)

```

Worst-case time complexity: \(O(n)\)

\section*{Analysing Complexity}

Background Motivation

To determine the worst-case time complexity of an algorithm:
- Determine the number of line executions performed in the worst case in terms of the input size
- Discard lower-order terms and constant factors
- The worst-case time complexity is then the big-Oh of the term that remains

Commonly encountered functions in algorithm analysis:
- Constant: 1
- Logarithmic: \(\log n\)
- Linear: \(n\)
- N-Log-N: \(n \log n\)
- Quadratic: \(n^{2}\)
- Cubic: \(n^{3}\)
- Exponential: \(2^{n}\)
- Factorial: \(n\) !

Background Motivation

Factors Affecting Efficiency Tradeoffs
\begin{tabular}{|l|l|}
\hline Horrible Bad Fair Good Excellent \\
\hline
\end{tabular}


Linear search requires \(4 n+3\) primitive operations in the worst case. Therefore, linear search is \(O(n)\) in the worst case.

\section*{Searching in a Sorted Array}

Background Motivation

Is there a faster algorithm for searching an array?
Yes... if the array is sorted.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline [0] & [1] & [2] & [3] & [4] & [5] & [6] \\
\hline 1 & 2 & 4 & 9 & 11 & 15 & 16 \\
\hline
\end{tabular}

Let's start in the middle.
- If \(a[N / 2]=\) val, we found val; we're done!
- Otherwise, we split the array:
... if \(v a l<a[N / 2]\), we search the left half \((a[0]\) to \(a[(N / 2)-1)]\) )
... if val \(>a[N / 2]\), we search the right half \((a[(N / 2)+1)]\) to \(a[N-1])\)

Background Motivation

Factors Affecting Efficiency
Tradeoffs
Time Complexity
Searching
Empirical Analysis

Theoretical Analysis Binary Search

Binary search is a more efficient search algorithm for sorted arrays:
```

int binarySearch(int arr[], int size, int val) {
int lo = 0;
int hi = size - 1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
if (val < arr[mid]) {
hi = mid - 1;
} else if (val > arr[mid]) {
lo = mid + 1;
} else {
return mid;
}
}
return -1;
}

```

Binary Search
Example

Background Motivation

Factors Affecting Efficiency
Tradeoffs
Time
Complexity
Searching
Empirical Analysis Theoretical Analysis Binary Search

Multiple Variables Appendix

Successful search for 6:


Background Motivation

Unsuccessful search for 7:


How many iterations of the loop?
- Best case: 1 iteration
- Item is found right away
- Worst case: \(\log _{2} n\) iterations
- Item does not exist
- Every iteration, the size of the subarray being searched is halved

Thus, binary search is \(O\left(\log _{2} n\right)\) or simply \(O(\log n)\)

\title{
Binary Search
}
\[
O\left(\log _{2} n\right)=O(\log n)
\]

Why drop the base?
According to the change of base formula:
\[
\log _{a} n=\frac{\log _{b} n}{\log _{b} a}
\]

If \(a\) and \(b\) are constants, \(\log _{a} n\) and \(\log _{b} n\) differ by a constant factor

Background Motivation

Factors Affecting Efficiency
Tradeoffs
Time
Complexity
Searching
Empirical Analysis Theoretical Analysis

\section*{For example:}
\[
\begin{aligned}
\log _{2} n & =\frac{\log _{5} n}{\log _{5} 2} \\
& \approx 2.32193 \log _{5} n
\end{aligned}
\]


\section*{Multiple Variables}

What if an algorithm takes multiple arrays as input?
If there is no constraint on the relative sizes of the arrays, their sizes would be given as two variables, usually \(n\) and \(m\)

Background Motivation

Factors Affecting Efficiency

\section*{Example time complexities with two variables:}
\[
\begin{gathered}
O(n+m) \\
O(n m) \\
O(\max (n, m)) \\
O(\min (n, m)) \\
O(n \log m) \\
O(n \log m+m \log n)
\end{gathered}
\]

\title{
Multiple Variables
}

\section*{Problem:}

Given two arrays, where each array contains no repeats, find the number of elements in common

\title{
Multiple Variables
}
```

numCommonElements(A, B):
Input: array }A\mathrm{ of size n
array B of size m
Output: number of elements in common
numCommon = 0
for i from 0 up to n-1:
for j from 0 up to m-1:
if }A[i]=B[j]
numCommon = numCommon + 1
return numCommon

```

Time complexity: \(O(n m)\)
https：／／forms．office．com／r／riGKCze1cQ


\title{
Appendix
}

Searching
Empirical Analysis

Theoretical Analysis

Binary Search
Multiple Variables

\section*{Appendix}

Exercise

If I know my algorithm is quadratic (i.e., \(O\left(n^{2}\right)\) ), and I know that for a dataset of 1000 items, it takes 1.2 seconds to run ...
- how long for 2000?
- how long for 10,000?
- how long for 100,000?
- how long for 1,000,000?
(answers on the next slide)

\section*{Predicting Time}

Background Motivation

If I know my algorithm is quadratic (i.e., \(O\left(n^{2}\right)\) ), and \(I\) know that for a dataset of 1000 items, it takes 1.2 seconds to run ...
- how long for 2000? 4.8 seconds
- how long for 10,000? 120 seconds (2 mins)
- how long for 100,000? 12000 seconds ( 3.3 hours)
- how long for \(1,000,000\) ? 1200000 seconds ( 13.9 days)```

