COMP2521 24T1
Priority Queues and Heaps

Kevin Luxa
cs2521@cse.unsw.edu.au

priority queues
binary heaps
heap sort
We have learned about types of collections where items are inserted and then deleted based on insertion order.

- **stack**: last in, first out
- **queue**: first in, first out
Motivation

Priority Queues

Heaps

Heap Sort

There are applications where we want to process items based on priority

Examples:
 Huffman coding
 Dijkstra’s algorithm
 Prim’s algorithm
A **priority queue** is an abstract data type where each item has an associated **priority**.

It supports the following operations:

- **insert**
 - insert an item with an associated priority

- **delete**
 - delete (and return) the item with the highest priority

- **peek**
 - get the item with the highest priority, without deleting it

- **is empty**
 - check if the priority queue is empty
Priority is often given by an integer value.

Depending on the application, either a large priority value or small priority value could be taken to mean “high priority”.

Here we’ll take a larger priority value to mean higher priority.
typedef struct pq *Pq;

/** Creates a new, empty pq */
Pq PqNew(void);

/** Frees memory allocated to a pq */
void PqFree(Pq pq);

/** Adds an item with priority to a pq */
void PqInsert(Pq pq, Item item, int priority);

/** Deletes and returns the item with the highest priority */
Item PqDelete(Pq pq);

/** Returns the item with the highest priority */
Item PqPeek(Pq pq);

/** Returns true if the pq is empty, false otherwise */
bool PqIsEmpty(Pq pq);
Pq pq = PqNew();

PqInsert(pq, "alice", 4);
PqInsert(pq, "bob", 3);
PqInsert(pq, "andrew", 30);
PqInsert(pq, "jas", 35);

printf("%s\n", PqDelete(pq)); // jas
printf("%s\n", PqDelete(pq)); // andrew

PqInsert(pq, "jake", 23);
PqInsert(pq, "sasha", 25);

printf("%s\n", PqPeek(pq)); // sasha
printf("%s\n", PqDelete(pq)); // sasha
printf("%s\n", PqDelete(pq)); // jake
printf("%s\n", PqDelete(pq)); // alice
printf("%s\n", PqDelete(pq)); // bob

if (PqIsEmpty(pq)) {
 printf("the queue is empty\n");
}

PqFree(pq);
How to implement a priority queue?

unordered array

ordered array

linked list (unordered/ordered)
Priority Queue

Unordered array implementation

Motivation

Priority

Queues

Implementations

Heaps

Heap Sort

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td>[1]</td>
<td>[2]</td>
<td>[3]</td>
<td>[4]</td>
<td>[5]</td>
</tr>
<tr>
<td>alice 4</td>
<td>bob 3</td>
<td>andrew 30</td>
<td>jas 35</td>
<td>jake 23</td>
<td>sasha 25</td>
</tr>
</tbody>
</table>

Performance?

- Insert: $O(1)$
- Delete: $O(n)$
- Peek: $O(n)$
- Is empty: $O(1)$
Priority Queue

Ordered array implementation

ordered array

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>bob</td>
<td>alice</td>
<td>jake</td>
<td>sasha</td>
<td>andrew</td>
<td>jas</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>23</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

Performance?
- Insert: $O(n)$
- Delete: $O(1)$
- Peek: $O(1)$
- Is empty: $O(1)$
Priority Queue

Unordered linked list implementation

Motivation

- Priority Queues
- Implementations

Unordered linked list

 Nodes: alice (4), bob (3), andrew (30), jas (35), jake (23), sasha (25), NULL

Performance

- **Insert**: $O(1)$
- **Delete**: $O(n)$
- **Peek**: $O(n)$
- **Is empty**: $O(1)$
Priority Queue

Ordered linked list implementation

- **Motivation**
- **Priority Queues**
- **Implementations**
- **Heaps**
- **Heap Sort**

Performance?
- Insert: $O(n)$
- Delete: $O(1)$
- Peek: $O(1)$
- Is empty: $O(1)$

ordered linked list

jas 35 → andrew 30 → sasha 25 → jake 23 → alice 4 → bob 3 → NULL
Summary (so far)

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Insert</th>
<th>Delete</th>
<th>Peek</th>
<th>Is Empty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unordered array</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Ordered array</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Unordered linked list</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Ordered linked list</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
A heap is a tree-based data structure which satisfies the **heap property**.

The heap property specifies how values in the heap should be ordered, and depends on the kind of heap:

In a **max heap**, the value in each node must be greater than or equal to the values in its children.

In a **min heap**, the value in each node must be less than or equal to the values in its children.
In this lecture we will focus on *max heaps* (min heaps can be implemented very similarly).
There are many variants of heaps, for example:

binary heap, binomial heap, Fibonacci heap, leftist heap, pairing heap, soft heap, ...

We will consider just the binary heap.
A binary heap is a heap that takes the form of a binary tree, and satisfies the following properties:

heap property
as defined above

completeness property
all levels of the tree (except possibly the last) must be fully filled and the last level must be filled from left to right
Motive

Priority

Queues

Heaps

Insertion
Deletion
PQ implementation

Heap Sort

Binary Heaps

satisfies heap property
satisfies completeness
⇒ is a binary heap

satisfies heap property
does not satisfy completeness
⇒ is not a binary heap
A result of the completeness property is that binary heaps always contain \(\lceil \log_2 n \rceil + 1 \) levels where \(n \) is the number of nodes.

This will be relevant for analysis.

<table>
<thead>
<tr>
<th>(n)</th>
<th>number of levels</th>
<th>heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>⬜</td>
</tr>
<tr>
<td>2-3</td>
<td>2</td>
<td>⬜ ⬜</td>
</tr>
<tr>
<td>4-7</td>
<td>3</td>
<td>⬜ ⬜ ⬜</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Heaps are usually implemented with an array.

For a binary heap, index 1 of the array contains the root item, the next two indices contain the root’s children, the next four indices contain the children of the root’s children, and so on.

Binary Heaps

...as arrays

```plaintext
[0]  [1]  [2]  [3]  [4]  [5]  [6]
  20  17  11  13  1  8
```
This arrangement gives rise to a useful property:

- For an item at index i:
 - Its left child is located at index $2i$
 - Its right child is located at index $2i + 1$
 - Its parent is located at index $\lfloor i/2 \rfloor$

This makes it efficient to move “up” and “down” the tree.
Consider this max heap:

```
    28
   /  \
  23   15
 /   / \
21  11 13
|   |   |
3   8  10
|   |   |
18 12  6
```
The heap as an array:

```
28
23 15
21 11 13 6
3 18 8 10 12
```

```
28 23 15 21 11 13 6 3 18 8 10 12
```
Assuming integer items:

```c
struct heap {
    int *items;
    int numItems;
    int capacity;
};
```
struct heap *heapNew(void) {
 struct heap *heap = malloc(sizeof(struct heap));
 heap->numItems = 0;
 heap->capacity = INITIAL_CAPACITY;
 heap->items = malloc((heap->capacity + 1) * sizeof(int));

 return heap;
}
Insertion is a two-step process:

1. Add new item at next available position on bottom level i.e., after the last item
 - New item may violate the heap property

2. **Fix up**: While new item is greater than its parent (and not at the root), swap with its parent
 - This re-organises items along the path to the root and restores the heap property
Example: Insert 26

Binary Heap Insertion

Initial heap:

```
  20
 / \
17  11
 /   /
13   1
```

Insert 26 after the last item (8):

```
  26
 / \
20  26
 /   /\n17  11 26
 /   /   /
13   1   20
```

Fix up:
- 26 is greater than its parent (11)
 - Swap
- 26 is greater than its parent (20)
 - Swap

Done:

```
  26
 / \
20  26
 /   /\n17  11 26
 /   /   /
13   1   20
```
Example: Insert 26

Insert 26 after the last item (8)

![Binary Heap Insertion Diagram]

1. Insert 26 after the last item (8).
2. Fix up the heap.
3. Swap 26 with its parent if necessary.
4. Repeat until the heap property is satisfied.

Result: The heap after inserting 26.
Example: Insert 26

Fix up

Insert 26 after the last item (8)

26 is greater than its parent (11) ⇒ swap

26 is greater than its parent (20) ⇒ swap

Done
Example: Insert 26

Fix up
26 is greater than its parent (11) ⇒ swap
Example: Insert 26

Fix up
26 is greater than its parent (11) ⇒ swap

```
Example: Insert 26

Fix up
26 is greater than its parent (11) ⇒ swap
```

```
20

17
13
1

26
8
11
```
Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

20

17
13

26

1
8

11
Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap

Binary Heap Insertion

Example: Insert 26

Fix up

26 is greater than its parent (20) ⇒ swap
Example: Insert 26

Done
Insert the following items into an initially empty max heap:

17 25 8 6 30 13
Insert the following items into an initially empty max heap:

17 25 8 6 30 13
Insert the following items into an initially empty max heap:

17 25 8 6 30 13
Insert the following items into an initially empty max heap:

17 25 8 6 30 13

Add 17 to the heap

[0] [1] [2] [3] [4] [5] [6]

17
Insert the following items into an initially empty max heap:

17 25 8 6 30 13

17 is at the root - done
Insert the following items into an initially empty max heap:

17 25 8 6 30 13
Insert the following items into an initially empty max heap:

17 25 8 6 30 13

Add 25 after the last item
Insert the following items into an initially empty max heap:

17 25 8 6 30 13

25 is greater than its parent (17) - swap
Insert the following items into an initially empty max heap:

17 25 8 6 30 13

25 is greater than its parent (17) - swap
Insert the following items into an initially empty max heap:

17 25 8 6 30 13

25 is at the root - done
Insert the following items into an initially empty max heap:

17 25 8 6 30 13
Insert the following items into an initially empty max heap:

17 25 8 6 30 13

Add 8 after the last item
Insert the following items into an initially empty max heap:

17 25 8 6 30 13

8 is not greater than its parent (25) - done
Insert the following items into an initially empty max heap:

17 25 8 6 30 13
Insert the following items into an initially empty max heap:

17 25 8 6 30 13

Add 6 after the last item
Insert the following items into an initially empty max heap:

17 25 8 6 30 13

6 is not greater than its parent (17) - done
Insert the following items into an initially empty max heap:

17 25 8 6 30 13
Insert the following items into an initially empty max heap:

17 25 8 6 30 13

Add 30 after the last item
Insert the following items into an initially empty max heap:

17 25 8 6 30 13

30 is greater than its parent (17) - swap
Insert the following items into an initially empty max heap:

17 25 8 6 30 13

30 is greater than its parent (17) - swap
Insert the following items into an initially empty max heap:

17 25 8 6 30 13

30 is greater than its parent (25) - swap
Insert the following items into an initially empty max heap:

17 25 8 6 30 13

30 is greater than its parent (25) - swap
Insert the following items into an initially empty max heap:

17 25 8 6 30 13

30 is at the root - done
Insert the following items into an initially empty max heap:

17 25 8 6 30 13
Insert the following items into an initially empty max heap:

17 25 8 6 30 13

Add 13 after the last item
Insert the following items into an initially empty max heap:

17 25 8 6 30 13

13 is greater than its parent (8) - swap
Insert the following items into an initially empty max heap:

17 25 8 6 30 13

13 is greater than its parent (8) - swap
Insert the following items into an initially empty max heap:

17 25 8 6 30 13

13 is not greater than its parent (30) - done
Insert the following items into an initially empty max heap:

17 25 8 6 30 13
void heapInsert(struct heap *heap, Item it) {
 if (heap->numItems == heap->capacity) {
 // resize
 }
 heap->numItems++;
 heap->items[heap->numItems] = it;
 fixUp(heap->items, heap->numItems);
}

void fixUp(Item items[], int i) {
 // while index i is not the root and
 // item at index i is greater than its parent
 while (i > 1 && items[i] > items[i / 2]) {
 swap(items, i, i / 2);
 i = i / 2;
 }
}
Cost of insertion:

- Add new item after last item ⇒ $O(1)$
- Fix up considers one item on each level in the worst case
- Heap is a complete tree ⇒ $O(\log n)$ levels
- Therefore, worst-case time complexity is $O(\log n)$
Binary Heap Deletion

Deletion is a three-step process:

1. Replace root item with last item
 - Last item = bottom-most, rightmost item
 - Let this item be i

2. Remove last item

3. Fix down: While i is less than its greater child, swap it with its greater child
 - This restores the heap property
Example: Delete from this max heap

```
   20
  /  
17   11
/    /  
13   1   8
```

Example: Delete 20, replace with 8

```
j|Delete 20, replace with 8 j|
j|Fix down j|

j|8 is less than its greater child (17) ⇒ swap j|
j|8 is less than its greater child (13) ⇒ swap j|
j|Done j|
```
Example: Delete from this max heap

Delete 20, replace with 8
Example: Delete from this max heap

Delete 20, replace with 8
Example: Delete from this max heap

Fix down

![Max heap diagram]

1. Delete 20, replace with 8
2. Fix down
 - 8 is less than its greater child (17)
 - Swap
3. 8 is less than its greater child (13)
 - Swap
4. Done

Heap Sort

Binary Heap Deletion
Example: Delete from this max heap

Fix down

8 is less than its greater child (17) \Rightarrow swap
Example: Delete from this max heap

Fix down
8 is less than its greater child (17) ⇒ swap
Example: Delete from this max heap

Fix down
8 is less than its greater child (13) ⇒ swap
Example: Delete from this max heap

Fix down

8 is less than its greater child (13) \(\Rightarrow\) swap
Example: Delete from this max heap

Done

Binary Heap Deletion

Example: Delete from this max heap

Done

Example: Delete from this max heap

Done

Example: Delete from this max heap

Done
Delete from the following max heap until it is empty:
Delete from the following max heap until it is empty:

30

Deleting 30
Delete from the following max heap until it is empty:

30

Replace 30 with last item (8)
Delete from the following max heap until it is empty:

30

8 is less than its greater child (25) - swap
Delete from the following max heap until it is empty:

30

8 is less than its greater child (25) - swap
Delete from the following max heap until it is empty:

30

8 is less than its greater child (17) - swap

```
  8
 / \
25 13
|   |
6  17
```

```
[0] 25 8 13 6 17
```

[Diagram of binary heap with nodes and links, including arrows for swaps.]
Delete from the following max heap until it is empty:

30

8 is less than its greater child (17) - swap
Delete from the following max heap until it is empty:

30

8 is at a leaf - done
Delete from the following max heap until it is empty:

30 25

Deleting 25
Delete from the following max heap until it is empty:

30 25

Replace 25 with last item (8)
Delete from the following max heap until it is empty:

30 25

8 is less than its greater child (17) - swap

[0] [1] [2] [3] [4] [5] [6]
Delete from the following max heap until it is empty:

30 25

8 is less than its greater child (17) - swap
Delete from the following max heap until it is empty:

30 25

8 is not less than its greater child (6) - done
Delete from the following max heap until it is empty:

30 25 17

Deleting 17
Delete from the following max heap until it is empty:

30 25 17

Replace 17 with last item (6)
Delete from the following max heap until it is empty:

30 25 17

6 is less than its greater child (13) - swap
Delete from the following max heap until it is empty:

30 25 17

6 is less than its greater child (13) - swap
Delete from the following max heap until it is empty:

30 25 17

6 is at a leaf - done

Binary Heap Deletion
Example
Delete from the following max heap until it is empty:

30 25 17 13

Deleting 13
Delete from the following max heap until it is empty:

30 25 17 13

Replace 13 with last item (6)
Delete from the following max heap until it is empty:

30 25 17 13

6 is less than its greater child (8) - swap
Delete from the following max heap until it is empty:

30 25 17 13

6 is less than its greater child (8) - swap
Delete from the following max heap until it is empty:

30 25 17 13

6 is at a leaf - done
Delete from the following max heap until it is empty:

30 25 17 13 8

Deleting 8
Delete from the following max heap until it is empty:

30 25 17 13 8

Replace 8 with last item (6)

```
[0] [1] [2] [3] [4] [5] [6]
[ ]  6 [ ] [ ] [ ] [ ]
```

6
Delete from the following max heap until it is empty:

30 25 17 13 8

6 is at a leaf - done
Delete from the following max heap until it is empty:

30 25 17 13 8 6

Deleting 6
Delete from the following max heap until it is empty:

30 25 17 13 8 6

Delete 6

[0] [1] [2] [3] [4] [5] [6]
Delete from the following max heap until it is empty:

30 25 17 13 8 6

Heap is now empty
Item heapDelete(struct heap *heap) {
 Item item = heap->items[1];
 heap->items[1] = heap->items[heap->numItems];
 heap->numItems--;
 fixDown(heap->items, 1, heap->numItems);
 return item;
}
void fixDown(Item items[], int i, int N) {
 // while index i has at least one child
 while (2 * i <= N) {
 // let j be the index of index i's left child
 int j = 2 * i;

 // if index i's right child is greater than its left child
 if (j < N && items[j] < items[j + 1]) j++;

 // if the item at index i is greater than or equal to both children
 if (items[i] >= items[j]) break;

 swap(items, i, j);

 // move one level down the heap
 i = j;
 }
}
Cost of deletion:

- Replace root by item at end of array ⇒ $O(1)$
- Fix down considers two items on each level in the worst case
- Heap is a complete tree ⇒ $O(\log n)$ levels
- Therefore, worst-case time complexity is $O(\log n)$
struct pq {
 struct pqItem *items; // array of items
 int numItems; // number of items stored
 int capacity; // max number of items
};

struct pqItem {
 Item item;
 int priority;
};
Pq PqNew(void) {
 Pq pq = malloc(sizeof(struct pq));

 pq->numItems = 0;
 pq->capacity = INITIAL_CAPACITY;
 pq->items = malloc((pq->capacity + 1) * sizeof(struct pqItem));
 return pq;
}

```c
void PqInsert(Pq pq, Item it, int priority) {
    if (pq->numItems == pq->capacity) {
        // resize array
    }
    pq->numItems++;
    pq->items[pq->numItems] = (struct pqItem){it, priority};
    fixUp(pq->items, pq->numItems);
}

void fixUp(struct pqItem items[], int i) {
    while (i > 1 && items[i].priority > items[i / 2].priority) {
        swap(items, i, i / 2);
        i = i / 2;
    }
}
```
Item PqDelete(Pq pq) {
 Item item = pq->items[1].item;
 pq->items[1] = pq->items[pq->numItems];
 pq->numItems--;
 fixDown(pq->items, 1, pq->numItems);
 return item;
}

void fixDown(struct pqItem items[], int i, int N) {
 while (2 * i <= N) {
 int j = 2 * i;
 if (j < N && items[j].priority < items[j + 1].priority) j++;
 if (items[i].priority >= items[j].priority) break;
 swap(items, i, j);
 i = j;
 }
}
PQ Implementation

Time Complexity

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Insert</th>
<th>Delete</th>
<th>Peek</th>
<th>Is Empty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unordered array</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Ordered array</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Unordered linked list</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Ordered linked list</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Binary heap</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
Heap sort is a sorting algorithm that uses a heap!

Method:
- Build up a heap within the original array
 - This is called “heapify”
- Repeatedly delete from the heap
 - Each time an element is deleted, place it at the end of the heap
Adjusted indexing scheme:
- For an item at index i:
 - Its children are at indices $2i + 1$ and $2i + 2$
 - Its parent is located at index $\lfloor (i - 1)/2 \rfloor$
How to build up a heap within the original array?

Idea:

Use a similar idea to insertion sort!

Take first element and treat as a heap of size 1

Take next element and insert into the heap, which increases the size of the heap by one

Repeat for remaining elements
Example:

```
3 5 1 6 7 2 4
```
Heap Sort

Heapify, Fix Up Method - Example

Take first element and treat as heap of size 1

[0] [1] [2] [3] [4] [5] [6]

3 5 1 6 7 2 4
Insert 5 into the heap

```
[0] [1] [2] [3] [4] [5] [6]
  3  5  1  6  7  2  4
```

```
3

5
```
Insert 5 into the heap

[0] [1] [2] [3] [4] [5] [6]

5 3 1 6 7 2 4
Insert 1 into the heap
Heap Sort

Heapify, Fix Up Method - Example

Insert 1 into the heap

```
[0] [1] [2] [3] [4] [5] [6]
5 3 1 6 7 2 4
```

```
5
/
|
3
/
|
1
```
Heap Sort

Heapify, Fix Up Method - Example

Insert 6 into the heap

[0] [1] [2] [3] [4] [5] [6]
5 3 1 6 7 2 4

5
3 1
6

Analysis
Properties
Heap Sort

Heapify, Fix Up Method - Example

Insert 6 into the heap

[0] [1] [2] [3] [4] [5] [6]

6 5 1 3 7 2 4
Heap Sort

Heapify, Fix Up Method - Example

Insert 7 into the heap

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

```
```

```
      6
   /    |
  5     1
 /   |
3   7
```

Analysis
Insert 7 into the heap

[0] [1] [2] [3] [4] [5] [6]

7 6 1 3 5 2 4
Heap Sort

Heapify, Fix Up Method - Example

Insert 2 into the heap

[0] [1] [2] [3] [4] [5] [6]
7 6 1 3 5 2 4

Heap:

```
```

```
7
/   \
6    1
/ \  / \n3 5 2 4
```

Example:
Take first element and treat as heap of size 1
Insert 5 into the heap
Insert 1 into the heap
Insert 6 into the heap
Insert 7 into the heap
Insert 2 into the heap
Insert 4 into the heap
Insert 2 into the heap

Insertion into a heap:

Heap Sort
Heapify, Fix Up Method - Example

Example
Implementation
Analysis
Heapify (Fix Up)
De-Heapify
Analysis
Properties
Heap Sort
Heapify, Fix Up Method - Example

Insert 4 into the heap

[0] [1] [2] [3] [4] [5] [6]
7 6 2 3 5 1 4

7
6
3
5
1
4
2
Insert 4 into the heap

[0] [1] [2] [3] [4] [5] [6]

void heapify(Item items[], int size) {
 for (int i = 1; i < size; i++) {
 fixUp(items, i);
 }
}

void fixUp(Item items[], int i) {
 while (i > 0 && items[i] > items[(i - 1) / 2]) {
 swap(items, i, (i - 1) / 2);
 i = (i - 1) / 2;
 }
}
Analysis:

- Inserting into a heap is $O(\log n)$
- Therefore, inserting n items into an initially empty heap is $O(\log 1 + \log 2 + \log 3 + \ldots + \log n) = O(\log n!) = O(n \log n)$
Heapify can be implemented more efficiently by performing a **fix down** on every element in the **first half** of the array in reverse (i.e., from right to left).
Heap Sort

Heapify, Fix Down Method - Example

Example:

3 5 1 6 7 2 4
Treat each element in the second half of the array as a heap of size 1

```
[0]  [1]  [2]  [3]  [4]  [5]  [6]
  3   5   1   6   7   2   4
```

```
  6   7   2   4
```
Perform fix down on 1

Heap Sort
Heapify, Fix Down Method - Example
Heap Sort

Heapify, Fix Down Method - Example

Perform fix down on 1
Perform fix down on 5

[0] [1] [2] [3] [4] [5] [6]
3 5 4 6 7 2 1

Heapify, Fix Down Method - Example

Heap Sort
Heaps
Heap Sort
Heapify (Fix Up)
Heapify (Fix Down)
Example
Implementation
Analysis
De-Heapify
Analysis
Properties
Heap Sort

Heapify, Fix Down Method - Example

Perform fix down on 5

[0] [1] [2] [3] [4] [5] [6]

```
3 7 4 6 5 2 1
```

```
7

6 5

4

2 1
```
Perform fix down on 3

Heapify, Fix Down Method - Example
Motivation
Priority
Queues
Heaps
Heap Sort
Heapify (Fix Up)
Heapify (Fix Down)
Example
Implementation
Analysis
De-Heapify
Analysis
Properties

Heap Sort
Heapify, Fix Down Method - Example

Perform fix down on 3

1. Treat each element in the second half of the array as a heap of size 1.
2. Perform fix down on 1.
3. Perform fix down on 5.
4. Perform fix down on 3.
Heap Sort

Heapify, Fix Down Method - Implementation

```c
void heapify(Item items[], int size) {
    for (int i = size / 2 - 1; i >= 0; i--) {
        fixDown(items, i, size - 1);
    }
}

void fixDown(Item items[], int i, int N) {
    while (2 * i + 1 <= N) {
        int j = 2 * i + 1;
        if (j < N && items[j] < items[j + 1]) j++;
        if (items[i] >= items[j]) break;
        swap(items, i, j);
        i = j;
    }
}
```
This implementation of heapify is $O(n)$.

Why?

Most of the items in a heap are on the lowest levels.
After the array has been heapified, repeatedly delete from the heap, each time placing the deleted item at the end of the heap.

Example:

```
7 6 4 3 5 2 1
```
Delete 7 from the heap

[0] [1] [2] [3] [4] [5] [6]

7 6 4 3 5 2 1

7

6

3 5

4

2 1

Example
Delete 7 from the heap
Perform fix down on 1 to restore heap
Delete 7 from the heap
Perform fix down on 1 to restore heap
Delete 6 from the heap

Example

Delete 6 from the heap
Delete 6 from the heap
Perform fix down on 2 to restore heap
Delete 6 from the heap
Perform fix down on 2 to restore heap
Delete 5 from the heap

[0] [1] [2] [3] [4] [5] [6]

5 3 4 2 1 6 7
Delete 5 from the heap
Perform fix down on 1 to restore heap

[0] [1] [2] [3] [4] [5] [6]
1 3 4 2 5 6 7

Heap Sort
De-Heapify - Example
Delete 5 from the heap
Perform fix down on 1 to restore heap
Delete 4 from the heap

[Diagram showing the heap structure after deleting 4]
Delete 4 from the heap
Perform fix down on 2 to restore heap
De-Heapify - Example

Delete 4 from the heap
Perform fix down on 2 to restore heap
Delete 3 from the heap

[0] [1] [2] [3] [4] [5] [6]
3 2 1 4 5 6 7
Delete 3 from the heap
Perform fix down on 1 to restore heap

[0] [1] [2] [3] [4] [5] [6]
1 2 3 4 5 6 7

Diagram:
- Node 1
- Node 2
- Link from 1 to 2
Delete 3 from the heap
Perform fix down on 1 to restore heap
Delete 2 from the heap

2 1 3 4 5 6 7
Delete 2 from the heap
Perform fix down on 1 to restore heap
Delete 2 from the heap
Perform fix down on 1 to restore heap
Delete 1 from the heap
Delete 1 from the heap
Done

[0] [1] [2] [3] [4] [5] [6]

void deheapify(Item items[], int size) {
 while (size > 1) {
 swap(items, 0, size - 1);
 size--;
 fixDown(items, 0, size - 1);
 }
}
Analysis:

- Deleting from a heap is $O(\log n)$
- Therefore, deleting all items from a heap of size n is $O(\log n + \log(n - 1) + \log(n - 2) + \ldots + \log 1) = O(\log n!) = O(n \log n)$
Analysis of heap sort:

- Heapify is $O(n)$
- De-heapify is $O(n \log n)$
- Therefore, heap sort is $O(n \log n)$
Unstable
Due to long-range swaps

Non-adaptive
$O(n \log n)$ on average and if array is sorted

In-place
Sorting is done within original array; does not use temporary arrays
https://forms.office.com/r/5c0fb4tvMb