COMP2521 24T1
 Graphs (VI)
 Dijkstra's Algorithm

Kevin Luxa
cs2521@cse.unsw.edu.au

shortest path
dijkstra's algorithm

In a weighted graph...
A path is a sequence of edges connected end-to-end

$$
\left(v_{0}, v_{1}, w_{1}\right),\left(v_{1}, v_{2}, w_{2}\right), \ldots,\left(v_{m-1}, v_{m}, w_{m}\right)
$$

The cost of a path is the sum of edge weights along the path

The shortest path between two vertices s and t is the path from s to t with minimum cost

Variations on shortest path problem:

- Source-target shortest path
- Shortest path from source vertex s to target vertex t
- Single-source shortest path
- Shortest path from source vertex s to all other vertices
- All-pairs shortest path
- Shortest path between all pairs of source and target vertices

In a weighted graph, a path with more edges may be "shorter" than a path with fewer edges

Dijkstra's Algorithm

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Invented by Dutch computer scientist Edsger W. Dijkstra in 1956

Dijkstra's algorithm
is used to find the shortest path in a weighted graph with non-negative weights

Data structures used in Dijkstra's algorithm:

- Distance array (dist)
- To keep track of shortest currently known distance to each vertex
- Predecessor array (pred)
- Same purpose as in BFS/DFS
- To keep track of the predecessor of each vertex on the shortest currently known path to that vertex
- Used to construct the shortest path
- Set of vertices
- Stores unexplored vertices
(1) Create and initialise data structures
- Create distance array, initialised to infinity
- In C, can use INT_MAX (from <limits. $\mathrm{h}>$)
- Create predecessor array, initialised to -1
- Initialise set of vertices to contain all vertices
(2) Set distance of source vertex (s) to 0
(3) While set of vertices is not empty:
(1) Remove vertex from vertex set with smallest distance in distance array
- Let this vertex be v
(2) Explore v - that is, for each edge $v-w$:
- Check if using this edge gives a shorter path to w
- If so, update w 's distance and predecessor - this is called edge relaxation

Edge Relaxation

During Dijkstra's algorithm, the dist and pred arrays:

- contain data about the shortest path discovered so far
- need to be updated if a shorter path to some vertex is found
- this is done via edge relaxation

Edge Relaxation

Suppose we are considering edge (v, w, weight).

Edge Relaxation

Suppose we are considering edge (v, w, weight).
We have the following data:

- dist $[v]$ - length of shortest known path from s to v
- dist $[w]$ - length of shortest known path from s to w (which may be ∞)

Edge Relaxation

Suppose we are considering edge (v, w, weight).
We have the following data:

- dist $[v]$ - length of shortest known path from s to v
- dist $[w]$ - length of shortest known path from s to w (which may be ∞)

In edge relaxation, we take the shortest known path from s to v and extend it using edge $(v, w$, weight) to create a new path from s to w.

Edge Relaxation

Now we have two paths from s to w :

- Shortest known path
- New path via v

If the new path is shorter, then we update dist $[w]$ and $\operatorname{pred}[w]$.

$$
\begin{aligned}
\text { if } \operatorname{dist}[v] & + \text { weight < dist }[w]: \\
\operatorname{dist}[w] & =\operatorname{dist}[v]+\text { weight } \\
\operatorname{pred}[w] & =\mathrm{v}
\end{aligned}
$$

Edge Relaxation

Example 1

Algorithm Edge relaxation Pseudocode Example Path Finding
Vertex Set
Analysis
Other Algorithms Appendix

Before relaxation along ($u, w, 7$)

Edge Relaxation

Algorithm Edge relaxation Pseudocode Example Path Finding Vertex Set Analysis

Before relaxation along ($u, w, 7$)

After relaxation along ($u, w, 7$)

Edge Relaxation

Algorithm Edge relaxation Pseudocode Example Path Finding Vertex Set Analysis

Before relaxation along ($v, w, 3$)

Edge Relaxation

Algorithm Edge relaxation Pseudocode Example Path Finding Vertex Set Analysis Other Algorithms Appendix

Before relaxation along ($v, w, 3$)

After relaxation along ($v, w, 3$)

dijkstraSSSP(G, src):
Input: graph G, source vertex src
create dist array, initialised to ∞
create pred array, initialised to -1 create vSet containing all vertices of G
dist[src] $=0$
while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal remove v from vSet
for each edge (v, w, weight) in G :
relax along ($v, \quad w$ weight)

Algorithm Pseudocode

Example

 Path Finding Vertex Set AnalysisDijkstra's algorithm starting at 0

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Initialisation

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	∞	∞	∞	∞	∞
pred	-1	-1	-1	-1	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

After first iteration ($v=0$)

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	7	∞	∞
pred	-1	0	0	0	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

After second iteration ($v=3$)

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	7	∞	22
pred	-1	0	0	0	-1	3

After third iteration ($v=2$)

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	∞	12
pred	-1	2	0	0	-1	2

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

After fourth iteration ($v=5$)

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	20	12
pred	-1	2	0	0	5	2

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

After fifth iteration ($v=1$)

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	18	12
pred	-1	2	0	0	1	2

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

After sixth iteration ($v=4$)

while vSet is not empty:
find vertex v in vSet such that dist $[v]$ is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	18	12
pred	-1	2	0	0	1	2

Algorithm
Pseudocode
Example Path Finding Vertex Set

Analysis

Done

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	18	12
pred	-1	2	0	0	1	2

Path Finding

Algorithm Pseudocode Example

The shortest path from the source vertex to any other vertex can be constructed by tracing backwards through the predecessor array (like for BFS)

Algorithm
Pseudocode
Example
Path Finding
Example
Vertex Set
Analysis
Other
Algorithms
Appendix

Example: Shortest path from 0 to 4

	[0]	[1]	[2]	[3]	[4]	[5]
pred	-1	2	0	0	1	2

Algorithm
Pseudocode Example Path Finding Example Vertex Set Analysis

Example: Shortest path from 0 to 4

	[0]	[1]	[2]	[3]	[4]]
pred	-1	2	0	0	1	2

Algorithm
Pseudocode Example Path Finding Example Vertex Set Analysis

Example: Shortest path from 0 to 4

Algorithm
Pseudocode Example Path Finding Example Vertex Set Analysis

Example: Shortest path from 0 to 4

Algorithm
Pseudocode Example Path Finding Example Vertex Set Analysis

Example: Shortest path from 0 to 4

$$
0 \quad 2 \longrightarrow 1 \longrightarrow 4
$$

	[0]	[1]	[2]	[3]	[4]	[5]
pred	-1	2	0	0	1	2

Algorithm
Pseudocode Example
Path Finding Example Vertex Set Analysis

Example: Shortest path from 0 to 4

$$
0 \quad 2 \longrightarrow 1 \longrightarrow 4
$$

	[0]	[1]	[2]	[3]	[4]	[5]
pred	-1	2	0	0	1	2

Algorithm
Pseudocode Example Path Finding Example Vertex Set Analysis

Example: Shortest path from 0 to 4

$$
0 \longrightarrow 2 \longrightarrow 1 \longrightarrow 4
$$

	[0]	[1]	[2]	[3]	[4]	[5]
pred	-1	2	0	0	1	2

How to find shortest path between two other vertices (neither of which are the source vertex)?

Generally, you will need to rerun Dijkstra's algorithm from one of these vertices.

Algorithm Pseudocode Example Path Finding

The vSet can be implemented in different ways:
(1) Visited array
(2) Explicit array/list of vertices
(3) Priority queue

Algorithm Pseudocode

Visited array implementation:

- Similar to visited array in BFS/DFS
- Array of V booleans, initialised to false
- After exploring vertex v, set visited[v] to true
- At the start of each iteration, find vertex v such that visited[v] is false and $\operatorname{dist}[v]$ is minimal $\Rightarrow O(V)$

Algorithm Pseudocode

Array/list of vertices implementation:

- Store all vertices in an array/linked list
- After exploring vertex v, remove v from array/linked list
- At the start of each iteration, find vertex in array/list such that dist[v] is minimal $\Rightarrow O(V)$

Priority queue implementation:

- A priority queue is an ADT...
- where each item has a priority
- with two main operations:
- Insert: insert item with priority
- Delete: remove item with highest priority
- Use priority queue to store vertices, use distance to vertex as priority (smaller distance = higher priority)
- A good priority queue implementation has $O(\log n)$ insert and delete

Priority queues will be discussed in Week 9.

Proof by induction.
Aim is to prove that before and after each iteration:
(1) For all explored nodes s, $\operatorname{dist}[s]$ is shortest distance from source to s
(2) For all unexplored nodes $t, \operatorname{dist}[t]$ is shortest distance from source to t via explored nodes only

Ultimately, all nodes are explored, so by 1 :

- For all nodes $v, \operatorname{dist}[v]$ is the shortest distance from source to v

Algorithm Pseudocode Example Path Finding Vertex Set

Analysis Correctness Time complexity

Base case:

- Start of first iteration
- 1 holds, as there are no explored nodes
- 2 holds, because
- dist[source] = 0
- For all other nodes $t, \operatorname{dist}[t]=\infty$

Algorithm Pseudocode Example Path Finding Vertex Set Analysis Correctness Time complexity

Induction step：
－Assume that 1 and 2 hold at the start of an iteration

－explored
－unexplored

- explored
- unexplored

- explored
- unexplored

- explored
- unexplored

Induction step:

- Assume that 1 and 2 hold at the start of an iteration
- Let s be an unexplored node with minimum distance
- We claim that dist[s] is the shortest distance from source to s
- If there is a shorter path to s via explored nodes only, then dist[s] would have been updated when exploring the predecessor of s on that path
- If there is a shorter path to s via an unexplored node u, then $\operatorname{dist}[u]$ < $\operatorname{dist}[s]$, which is a contradiction, since s has minimum distance out of all unexplored nodes

- explored
- unexplored

Algorithm Pseudocode Example Path Finding Vertex Set Analysis Correctness Time complexity

Induction step (continued):

- $\operatorname{dist}[s]$ is the shortest distance from source to s

explored
unexplored

- explored
- unexplored
- dist[s] is the shortest distance from source to s
- After exploring s :

- explored
- unexplored

- explored
- unexplored

Induction step (continued):

- dist[s] is the shortest distance from source to s
- After exploring s :
- (1) still holds for s, since $\operatorname{dist}[s]$ is not updated while exploring s
- Same for all other explored nodes
- 2) still holds for all unexplored nodes t, since:
- If there is a shorter path to t via s then we would have updated dist $[t]$ while exploring s

- explored
- unexplored

Induction step (continued):

- $\operatorname{dist}[s]$ is the shortest distance from source to s
- After exploring s :
- 1 still holds for s, since $\operatorname{dist}[s]$ is not updated while exploring s
- Same for all other explored nodes
- 2 still holds for all unexplored nodes t, since:
- If there is a shorter path to t via s then we would have updated $\operatorname{dist}[t]$ while exploring s
- Otherwise, we would not have updated $\operatorname{dist}[t]$ and it would remain as it is

- explored
- unexplored

Analysis:

- Each edge is considered once $\Rightarrow O(E)$
- Undirected edges are considered once in each direction
- Outer loop has V iterations
- Every iteration, algorithm must find vertex v in vSet with minimum distance - time complexity depends on vSet implementation
- Boolean array $\Rightarrow O(V)$ per iteration
\Rightarrow overall cost $=O\left(E+V^{2}\right)=O\left(V^{2}\right)$
- Array/list of vertices $\Rightarrow O(V)$ per iteration
\Rightarrow overall cost $=O\left(E+V^{2}\right)=O\left(V^{2}\right)$
- Priority queue $\Rightarrow O(\log V)$ per iteration
\Rightarrow overall cost $=O(E+V \log V)$
- Floyd-Warshall Algorithm
- All-pairs shortest path
- Works for graphs with negative weights
- Bellman-Ford Algorithm
- Single-source shortest path
- Works for graphs with negative weights
- Can detect negative cycles
https://forms.office.com/r/5c0fb4tvMb

COMP2521

$24 T 1$

Algorithm

Pseudocode
Example
Path Finding
Vertex Set
Analysis
Other Algorithms

Appendix

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Initialisation

> while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	∞	∞	∞	∞	∞
pred	-1	-1	-1	-1	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Remove 0 from vSet

> while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

dist	[0]	[1]	[2]	[3]	[4]	[5]
	0	∞	∞	∞	∞	∞
pred	-1	-1	-1	-1	-1	-1

Algorithm
Pseudocode
Example
Path Finding Vertex Set Analysis

Explore 0

while vSet is not empty:
find vertex v in vSet such that dist $[v]$ is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	∞	∞	∞	∞	∞
pred	-1	-1	-1	-1	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Relax along (0, 1, 14)

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

dist	[0]	[1]	[2]	[3]	[4]	[5]
	0	∞	∞	∞	∞	∞
pred	-1	-1	-1	-1	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Relax along ($0,1,14$) $\operatorname{dist}[0]+14$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

dist	[0]	[1]	[2]	[3]	[4]	[5]
	0	∞	∞	∞	∞	∞
pred	-1	-1	-1	-1	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Relax along ($0,1,14$) $\operatorname{dist}[0]+14=14$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

dist	[0]	[1]	[2]	[3]	[4]	[5]
	0	∞	∞	∞	∞	∞
pred	-1	-1	-1	-1	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

> Relax along $(0,1,14)$ $\operatorname{dist}[0]+14=14$ < $\operatorname{dist}[1]$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	∞	∞	∞	∞	∞
pred	-1	-1	-1	-1	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

> Relax along $(0,1,14)$ $\operatorname{dist}[0]+14=14$ < $\operatorname{dist}[1]$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	∞	∞	∞	∞
pred	-1	0	-1	-1	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Relax along (0, 2, 9)

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	∞	∞	∞	∞
pred	-1	0	-1	-1	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Relax along (0, 2, 9) $\operatorname{dist}[0]+9$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	∞	∞	∞	∞
pred	-1	0	-1	-1	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

$$
\begin{aligned}
& \text { Relax along }(0,2,9) \\
& \operatorname{dist}[0]+9=9
\end{aligned}
$$

> while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	∞	∞	∞	∞
pred	-1	0	-1	-1	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

$$
\begin{gathered}
\text { Relax along }(0,2,9) \\
\operatorname{dist}[0]+9=9<\operatorname{dist}[2]
\end{gathered}
$$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	∞	∞	∞	∞
pred	-1	0	-1	-1	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

$$
\begin{gathered}
\text { Relax along }(0,2,9) \\
\operatorname{dist}[0]+9=9<\operatorname{dist}[2]
\end{gathered}
$$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	∞	∞	∞
pred	-1	0	0	-1	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Relax along (0, 3, 7)

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	∞	∞	∞
pred	-1	0	0	-1	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Relax along (0, 3, 7) dist[0] + 7

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	∞	∞	∞
pred	-1	0	0	-1	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Relax along ($0,3,7$) $\operatorname{dist}[0]+7=7$

> while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

[0] [1] [2] [3] [4] [5]						
dist	0	14	9	∞	∞	∞
pred	-1	0	0	-1	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Relax along ($0,3,7$) $\operatorname{dist}[0]+7=7<\operatorname{dist}[3]$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

[0] [1] [2] [3] [4] [5]						
dist	0	14	9	∞	∞	∞
pred	-1	0	0	-1	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Relax along ($0,3,7$) $\operatorname{dist}[0]+7=7<\operatorname{dist}[3]$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

[0] [1] [2] [3] [4] [5]						
dist	0	14	9	7	∞	∞
pred	-1	0	0	0	-1	-1

Done with exploring 0

while vSet is not empty:
find vertex v in vSet such that dist $[v]$ is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	7	∞	∞
pred	-1	0	0	0	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

[0] [1] [2] [3] [4] [5]						
dist	0	14	9	7	∞	∞
pred	-1	0	0	0	-1	-1

Algorithm
Pseudocode
Example
Path Finding Vertex Set Analysis

Explore 3

while vSet is not empty:
find vertex v in vSet such that dist $[v]$ is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	7	∞	∞
pred	-1	0	0	0	-1	-1

Dijkstra's Algorithm
Example

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

No need to consider $(3,0,7)$
(0 has already been explored)

while vSet is not empty:
find vertex v in vSet such that dist $[v]$ is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	7	∞	∞
pred	-1	0	0	0	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

> while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	7	∞	∞
pred	-1	0	0	0	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

> Relax along $(3,2,10)$ $\operatorname{dist}[3]+10$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	7	∞	∞
pred	-1	0	0	0	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

> Relax along $(3,2,10)$ $\operatorname{dist}[3]+10=17$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

[0] [1] [2] [3] [4] [5]						
dist	0	14	9	7	∞	∞
pred	-1	0	0	0	-1	-1

Algorithm
Pseudocode
Example
Path Finding Vertex Set Analysis

$$
\begin{gathered}
\text { Relax along }(3,2,10) \\
\operatorname{dist}[3]+10=17 \nless \operatorname{dist}[2]
\end{gathered}
$$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	7	∞	∞
pred	-1	0	0	0	-1	-1

Algorithm
Pseudocode
Example
Path Finding Vertex Set Analysis

$$
\begin{gathered}
\text { Relax along }(3,2,10) \\
\operatorname{dist}[3]+10=17 \nless \operatorname{dist}[2]
\end{gathered}
$$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	7	∞	∞
pred	-1	0	0	0	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

[1] [2] [3] [4] [5]						
dist	0	14	9	7	∞	∞
pred	-1	0	0	0	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0] [1] [2] [3] [4] [5]					
dist	0	14	9	7	∞	∞
pred	-1	0	0	0	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	7	∞	∞
pred	-1	0	0	0	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

> Relax along $(3,5,15)$ $\operatorname{dist}[3]+15=22<\operatorname{dist}[5]$

while vSet is not empty:
find vertex v in vSet such that dist $[v]$ is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	7	∞	∞
pred	-1	0	0	0	-1	-1

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	7	∞	22
pred	-1	0	0	0	-1	3

Done with exploring 3

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	7	∞	22
pred	-1	0	0	0	-1	3

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	7	∞	22
pred	-1	0	0	0	-1	3

Algorithm
Pseudocode
Example
Path Finding Vertex Set Analysis

Explore 2

while vSet is not empty:
find vertex v in vSet such that dist $[v]$ is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	7	∞	22
pred	-1	0	0	0	-1	3

Dijkstra's Algorithm
Example

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

No need to consider $(2,0,9)$
(0 has already been explored)

> while vSet is not empty:
> find vertex v in vSet such that dist $[v]$ is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Relax along (2, 1, 4)

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	7	∞	22
pred	-1	0	0	0	-1	3

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Relax along $(2,1,4)$ $\operatorname{dist}[2]+4$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	7	∞	22
pred	-1	0	0	0	-1	3

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

> Relax along $(2,1,4)$ $\operatorname{dist}[2]+4=13$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	7	∞	22
pred	-1	0	0	0	-1	3

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

> Relax along $(2,1,4)$ $\operatorname{dist}[2]+4=13<\operatorname{dist}[1]$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	14	9	7	∞	22
pred	-1	0	0	0	-1	3

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

> Relax along $(2,1,4)$ $\operatorname{dist}[2]+4=13<\operatorname{dist}[1]$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	∞	22
pred	-1	2	0	0	-1	3

Algorithm
Pseudocode
Example
Path Finding Vertex Set Analysis

No need to consider $(2,3,10)$
(3 has already been explored)

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

[1] [2] [3] [4] [5]						
dist	0	13	9	7	∞	22
pred	-1	2	0	0	-1	3

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Relax along (2, 5, 3)

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	∞	22
pred	-1	2	0	0	-1	3

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

$$
\begin{aligned}
& \text { Relax along }(2,5,3) \\
& \operatorname{dist}[2]+3
\end{aligned}
$$

> while vSet is not empty:
find vertex v in vSet such that dist $[v]$ is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	∞	22
pred	-1	2	0	0	-1	3

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

> Relax along $(2,5,3)$ $\operatorname{dist}[2]+3=12$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	∞	22
pred	-1	2	0	0	-1	3

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

$$
\begin{gathered}
\text { Relax along }(2,5,3) \\
\operatorname{dist}[2]+3=12<\operatorname{dist}[5]
\end{gathered}
$$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	∞	22
pred	-1	2	0	0	-1	3

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

$$
\begin{gathered}
\text { Relax along }(2,5,3) \\
\operatorname{dist}[2]+3=12<\operatorname{dist}[5]
\end{gathered}
$$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	∞	12
pred	-1	2	0	0	-1	2

> while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	∞	12
pred	-1	2	0	0	-1	2

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Remove 5 from vSet

> while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	∞	12
pred	-1	2	0	0	-1	2

Algorithm
Pseudocode
Example
Path Finding Vertex Set Analysis

Explore 5

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	∞	12
pred	-1	2	0	0	-1	2

Dijkstra's Algorithm
Example

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

No need to consider $(5,2,3)$
(2 has already been explored)

> while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	∞	12
pred	-1	2	0	0	-1	2

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

No need to consider $(5,3,15)$
(3 has already been explored)

> while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

Algorithm
Pseudocode Example Path Finding Vertex Set Analysis

Relax along $(5,4,8)$

while vSet is not empty:
find vertex v in vSet such that dist $[v]$ is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	∞	12
pred	-1	2	0	0	-1	2

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Relax along (5, 4, 8) $\operatorname{dist}[5]+8$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	∞	12
pred	-1	2	0	0	-1	2

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

$$
\begin{aligned}
& \text { Relax along }(5,4,8) \\
& \operatorname{dist}[5]+8=20
\end{aligned}
$$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	∞	12
pred	-1	2	0	0	-1	2

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

$$
\begin{gathered}
\text { Relax along }(5,4,8) \\
\operatorname{dist}[5]+8=20<\operatorname{dist}[4]
\end{gathered}
$$

> while vSet is not empty:
find vertex v in vSet such that dist $[v]$ is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	∞	12
pred	-1	2	0	0	-1	2

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

$$
\begin{gathered}
\text { Relax along }(5,4,8) \\
\operatorname{dist}[5]+8=20<\operatorname{dist}[4]
\end{gathered}
$$

> while vSet is not empty:
find vertex v in vSet such that dist $[v]$ is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	20	12
pred	-1	2	0	0	5	2

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Done with exploring 5

> while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	20	12
pred	-1	2	0	0	5	2

Remove 1 from vSet

> while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	20	12
pred	-1	2	0	0	5	2

Algorithm
Pseudocode
Example
Path Finding Vertex Set Analysis

Explore 1

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	20	12
pred	-1	2	0	0	5	2

Dijkstra's Algorithm
Example

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

```
Other
```

Algorithms
Appendix
Example

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	20	12
pred	-1	2	0	0	5	2

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

No need to consider $(1,2,4)$
(2 has already been explored)

> while vSet is not empty:
> find vertex v in vSet such that dist $[v]$ is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	20	12
pred	-1	2	0	0	5	2

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

> while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	20	12
pred	-1	2	0	0	5	2

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Relax along (1, 4, 5) $\operatorname{dist}[1]+5$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	20	12
pred	-1	2	0	0	5	2

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Relax along (1, 4, 5) $\operatorname{dist}[1]+5=18$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	20	12
pred	-1	2	0	0	5	2

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

$$
\begin{gathered}
\text { Relax along }(1,4,5) \\
\operatorname{dist}[1]+5=18<\operatorname{dist}[4]
\end{gathered}
$$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	20	12
pred	-1	2	0	0	5	2

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

$$
\begin{gathered}
\text { Relax along }(1,4,5) \\
\operatorname{dist}[1]+5=18<\operatorname{dist}[4]
\end{gathered}
$$

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	18	12
pred	-1	2	0	0	1	2

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Done with exploring 1

> while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	2]	[3]	[4]	[5]
dist	0	13	9	7	18	12
pred	-1	2	0	0	1	2

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Remove 4 from vSet

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	18	12
pred	-1	2	0	0	1	2

Algorithm
Pseudocode
Example
Path Finding Vertex Set Analysis

Explore 4

while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	13	9	7	18	12
pred	-1	2	0	0	1	2

Dijkstra's Algorithm
Example

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

No need to consider $(4,1,5)$
(1 has already been explored)

> while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

No need to consider $(4,5,8)$
(5 has already been explored)

> while vSet is not empty:
> find vertex v in vSet such that dist $[v]$ is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

Done with exploring 4

> while vSet is not empty:
find vertex v in vSet such that dist[v] is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

	[0]	[1]	2]	[3]	[4]	[5]
dist	0	13	9	7	18	12
pred	-1	2	0	0	1	2

Algorithm Pseudocode Example Path Finding Vertex Set Analysis

Finished

while vSet is not empty:
find vertex v in vSet such that dist $[v]$ is minimal and remove it from vSet
for each edge (v, w, weight) in G : relax along (v, w, weight)

