COMP2521 24T1
Graphs (III)
Graph Problems

Kevin Luxa
cs2521@cse.unsw.edu.au

cycle checking
connected components
hamiltonian paths/circuits
eulerian paths/circuits
Basic graph problems:

- Is there a cycle in the graph?
- How many connected components are there in the graph?
- Is there a path that passes through all vertices?
- Is there a path that passes through all edges?
A **cycle** is a path of length > 2 where the start vertex = end vertex and no edge is used more than once.

This graph has three distinct cycles: 1-2-5-1, 2-5-6-2, 1-2-6-5-1

(two cycles are distinct if they have different sets of edges)
How to check if a graph has a cycle?

Idea:

- Perform a DFS, starting from any vertex
- During the DFS, if the current vertex has an edge to an already-visited vertex, then there is a cycle
hasCycle(G):

Input: graph G

Output: true if G has a cycle, false otherwise

pick any vertex v in G
create visited array, initialised to false
return dfsHasCycle(G, v, visited)

dfsHasCycle(G, v, visited):
visited[v] = true

for each neighbour w of v in G:
 if visited[w] = true:
 return true
 else if dfsHasCycle(G, w, visited):
 return true

return false
Problem:

- The algorithm does not check whether the neighbour w is the vertex that it just came from.
- Therefore, it considers moving back and forth along a single edge to be a cycle (e.g., 0-1-0).

```
tests/cycle2.txt
```
Improved idea:

- Perform a DFS, starting from any vertex
- **Keep track of previous vertex during DFS**
- During the DFS, if the current vertex has an edge to an already-visited vertex **which is not the previous vertex**, then there is a cycle
hasCycle(G):

Input: graph G

Output: true if G has a cycle, false otherwise

pick any vertex v in G
create visited array, initialised to false
return dfsHasCycle(G, v, v, visited)

dfsHasCycle(G, v, $prev$, visited):
visited[v] = true

for each neighbour w of v in G:
 if $w = prev$:
 continue
 if visited[w] = true:
 return true
 else if dfsHasCycle(G, w, v, visited):
 return true

return false
Problem:

- The algorithm only checks one connected component
 - The connected component that the initially chosen vertex belongs to

![Graph Diagram](tests/cycle3.txt)
Working idea:

- Perform a DFS, starting from any vertex
- Keep track of previous vertex during DFS
- During the DFS, if the current vertex has an edge to an already-visited vertex which is not the previous vertex, then there is a cycle
- After the DFS, if any vertex has not yet been visited, perform another DFS, this time starting from that vertex
- Repeat until all vertices have been visited
hasCycle(G):

Input: graph G

Output: true if G has a cycle, false otherwise

create visited array, initialised to false

for each vertex v in G:
 if visited[v] = false:
 if dfsHasCycle(G, v, v, visited):
 return true

return false

dfsHasCycle(G, v, $prev$, visited):

visited[v] = true

for each neighbour w of v in G:
 if $w = prev$:
 continue
 if visited[w] = true:
 return true
 else if dfsHasCycle(G, w, v, visited):
 return true

return false
Analysis for adjacency list representation:

- Algorithm is a slight modification of DFS
- A full DFS traversal is $O(V + E)$
- Thus, worst-case time complexity of cycle checking is $O(V + E)$
A connected component is a maximally connected subgraph.

For example, this graph has three connected components:
Definitions:

subgraph
a subset of vertices and edges of original graph

connected subgraph
there is a path between every pair of vertices in the subgraph

maximally connected subgraph
no way to include more edges/vertices from original graph into the subgraph such that subgraph is still connected
Problems:

How many connected components are there?

Are two vertices in the same connected component?
Goal:
- Compute an array which indicates which connected component each vertex is in
 - Let this array be called `componentOf`
 - `componentOf[v]` contains the component number of vertex `v`

- For example:

```
<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
```
Connected Components

Idea:

• Choose a vertex and perform a DFS starting at that vertex
 • During the DFS, assign all vertices visited to component 0
• After the DFS, if any vertex has not been assigned a component, perform a DFS starting at that vertex
 • During this DFS, assign all vertices visited to component 1
• Repeat until all vertices are assigned a component, increasing the component number each time
Connected Components

components(G):

Input: graph G

Output: componentOf array

create componentOf array, initialised to -1

compNo = 0

for each vertex v in G:

if componentOf[v] = -1:

dfsComponents(G, v, componentOf, compNo)

compNo = compNo + 1

return componentOf

dfsComponents(G, v, componentOf, compNo):

componentOf[v] = compNo

for each neighbour w of v in G:

if componentOf[w] = -1:

dfsComponents(G, w, componentOf, compNo)
Analysis for adjacency list representation:

- Algorithm performs a full DFS, which is $O(V + E)$
Suppose we frequently need to answer the following questions:

- How many connected components are there?
- Are v and w in the same connected component?
- Is there a path between v and w?

Note: The last two questions are actually equivalent in an undirected graph.
Solution:

- Cache the components array in the graph struct

```c
struct graph {
    ...  
    int nC;  // number of connected components
    int *cc;  // componentOf array
};
```
This allows us to answer the questions very easily:

```cpp
// How many connected components are there?
int numComponents(Graph g) {
    return g->nC;
}

// Are v and w in the same connected component?
bool inSameComponent(Graph g, Vertex v, Vertex w) {
    return g->cc[v] == g->cc[w];
}

// Is there a path between v and w?
bool hasPath(Graph g, Vertex v, Vertex w) {
    return g->cc[v] == g->cc[w];
}
```
However, this information needs to be maintained as the graph changes:

- Inserting an edge may reduce n_C
 - If the endpoint vertices were in different components
- Removing an edge may increase n_C
 - If the endpoint vertices were in the same component and there is no other path between them
A Hamiltonian path is a path that includes each vertex exactly once.

A Hamiltonian circuit is a cycle that includes each vertex exactly once.
Named after
Irish mathematician, astronomer and physicist
Sir William Rowan Hamilton (1805-1865)
Consider the following graph:

Hamiltonian path

Hamiltonian circuit
How to check if a graph has a Hamiltonian path?

Idea:

• Brute force
• Use DFS to check all possible paths
 • Recursive DFS is perfect, as it naturally allows backtracking
• Keep track of the number of vertices left to visit
• Stop when this number reaches 0
hamiltonianPath(G):
 Input: graph G
 Output: true if G has a Hamiltonian path
 false otherwise

 create visited array, initialised to false
 for each vertex v in G:
 if dfsHamiltonianPath(G, v, visited, #vertices(G)):
 return true

 return false
dfsHamiltonianPath(G, v, visited, numVerticesLeft):
 visited[v] = true
 numVerticesLeft = numVerticesLeft - 1

 if numVerticesLeft = 0:
 return true

 for each neighbour w of v in G:
 if visited[w] = false:
 if dfsHamiltonianPath(G, w, visited, numVerticesLeft):
 return true

 visited[v] = false
 return false
Why set visited[v] to false at the end of dfsHamiltonianPath?
How to check if a graph has a Hamiltonian circuit?

- Similar approach as Hamiltonian path
- Don’t need to try all starting vertices
- After a Hamiltonian path is found, check if the final vertex is adjacent to the starting vertex
hasHamiltonianCircuit(G):

Input: graph G

Output: true if G has a Hamiltonian circuit
false otherwise

if $\#\text{vertices}(G) < 3$:
 return false

create visited array, initialised to false

return $\text{dfsHamiltonianCircuit}(G, 0, \text{visited}, \#\text{vertices}(G))$

dfsHamiltonianCircuit(G, v, visited, numVerticesLeft):

visited[v] = true
numVerticesLeft = numVerticesLeft - 1

if numVerticesLeft = 0 and adjacent(G, v, 0):
 return true

for each neighbour w of v in G:
 if visited[w] = false:
 if $\text{dfsHamiltonianCircuit}(G, w, \text{visited}, \text{numVerticesLeft})$:
 return true

visited[v] = false

return false
Hamiltonian Path and Circuit

Analysis:

- Worst-case time complexity: $O(V!)$
- There are at most $V!$ paths to check ($\approx \sqrt{2\pi} V (V/e)^V$ by Stirling’s approximation)
- There is no known polynomial time algorithm, so the Hamiltonian path problem is NP-hard
An **Eulerian path** is
a path that visits each edge exactly once

An **Eulerian circuit** is
an Eulerian path that starts and ends at the same vertex

Eulerian path: 4-2-0-1-3-0

Eulerian circuit: 4-2-0-1-3-4
Problem is named after Swiss mathematician, physicist, astronomer, logician and engineer Leonhard Euler (1707-1783)
Problem was introduced by Euler while trying to solve the Seven Bridges of Konigsberg problem in 1736.

Is there a way to cross all the bridges exactly once on a walk through the town?
Eulerian Path and Circuit

Background

This is a graph problem:

- **vertices** represent pieces of land
- **edges** represent bridges
How to check if a graph has an Eulerian path or circuit?

Can use the following theorems:

A graph has an **Eulerian path** if and only if exactly zero or two vertices have odd degree, and all vertices with non-zero degree belong to the same connected component.

A graph has an **Eulerian circuit** if and only if every vertex has even degree, and all vertices with non-zero degree belong to the same connected component.
Which of these graphs have an Eulerian path? How about an Eulerian circuit?
Why
“all vertices with non-zero degree belong to the same connected component”?

![Diagram of a network with vertices 0, 1, 2, 3, and 4 connected in a circuit]

0 -- 1 -- 3
 | |
 2 4
hasEulerianPath(G):

\textbf{Input}: graph G

\textbf{Output}: true if G has an Eulerian path
false otherwise

numOddDegree = 0
\textbf{for each} vertex v in G:
 if degree(G, v) is odd:
 numOddDegree = numOddDegree + 1

\textbf{return} (numOddDegree = 0 \textbf{or} numOddDegree = 2) \textbf{and}
eulerConnected(G)
eulerConnected\((G)\):

Input: graph \(G\)
Output: true if all vertices in \(G\) with non-zero degree belong to the same connected component
false otherwise

create visited array, initialised to false

for each vertex \(v\) in \(G\):
 if \(\text{degree}(G, v) > 0\):
 dfsRec\((G, v, \text{visited})\)
 break

for each vertex \(v\) in \(G\):
 if \(\text{degree}(G, v) > 0\) and \(\text{visited}[v] = \text{false}\):
 return false

return true
hasEulerianCircuit(G):
 Input: graph G
 Output: true if G has an Eulerian circuit
 false otherwise

 for each vertex v in G:
 if degree(G, v) is odd:
 return false

 return eulerConnected(G)
Analysis for adjacency list representation:

- Finding degree of every vertex is $O(V + E)$
- Checking connectivity requires a DFS which is $O(V + E)$
- Therefore, worst-case time complexity is $O(V + E)$

So unlike the Hamiltonian path problem, the Eulerian path problem can be solved in polynomial time.
Many graph problems are intractable – that is, there is no known “efficient” algorithm to solve them.

In this context, “efficient” usually means polynomial time.

A tractable problem is one that is known to have a polynomial-time solution.
Other Graph Problems
Tractable and Intractable

tractable
what is the shortest path between two vertices?

intractable
how about the longest path?
Other Graph Problems
Tractable and Intractable

tractable
what is the shortest path between two vertices?
does a graph contain a clique?

intractable
how about the *longest* path?
what is the *largest* clique?
Other Graph Problems
Tractable and Intractable

tractable

what is the shortest path between two vertices?

does a graph contain a clique?

given two colors, is it possible to colour every vertex in a graph such that no two adjacent vertices are the same colour?

intractable

how about the longest path?

what is the largest clique?

what about three colours?
tractable

- what is the shortest path between two vertices?
- does a graph contain a clique?
- given two colors, is it possible to colour every vertex in a graph such that no two adjacent vertices are the same colour?
- does a graph contain an Eulerian path?

intractable

- how about the longest path?
- what is the largest clique?
- what about three colours?
- how about a Hamiltonian path?
Graph isomorphism:
Can we make two given graphs identical by renaming vertices?
https://forms.office.com/r/5c0fb4tvMb