COMP2521 24 T1
 Graphs (III) Graph Problems

Kevin Luxa

cs2521@cse.unsw.edu.au
cycle checking
connected components hamiltonian paths/circuits eulerian paths/circuits

Basic graph problems:

- Is there a cycle in the graph?
- How many connected components are there in the graph?
- Is there a path that passes through all vertices?
- Is there a path that passes through all edges?

A cycle is a path of length >2 where the start vertex = end vertex and no edge is used more than once

This graph has three distinct cycles: 1-2-5-1, 2-5-6-2, 1-2-6-5-1
(two cycles are distinct if they have different sets of edges)

How to check if a graph has a cycle?

Idea:

- Perform a DFS, starting from any vertex
- During the DFS, if the current vertex has an edge to an already-visited vertex, then there is a cycle


```
hasCycle(G):
    Input: graph G
    Output: true if G has a cycle, false otherwise
    pick any vertex v in G
    create visited array, initialised to false
    return dfsHasCycle(G, v, visited)
dfsHasCycle(G, v, visited):
    visited[v] = true
    for each neighbour w of vin G:
        if visited[w] = true:
        return true
    else if dfsHasCycle(G, w, visited):
        return true
    return false
```


Problem:

- The algorithm does not check whether the neighbour w is the vertex that it just came from
- Therefore, it considers moving back and forth along a single edge to be a cycle (e.g., 0-1-0)

Improved idea:

- Perform a DFS, starting from any vertex
- Keep track of previous vertex during DFS
- During the DFS, if the current vertex has an edge to an already-visited vertex which is not the previous vertex, then there is a cycle

```
hasCycle(G):
    Input: graph G
    Output: true if G has a cycle, false otherwise
    pick any vertex v in G
    create visited array, initialised to false
    return dfsHasCycle(G, v, v, visited)
dfsHasCycle(G, v, prev, visited):
    visited[v] = true
    for each neighbour w of v in G:
        if w= prev:
            continue
    if visited[w] = true:
            return true
        else if dfsHasCycle(G, w, v, visited):
            return true
    return false
```


Cycle Checking

Problem:

- The algorithm only checks one connected component
- The connected component that the initially chosen vertex belongs to

Cycle Checking

Working idea:

- Perform a DFS, starting from any vertex
- Keep track of previous vertex during DFS
- During the DFS, if the current vertex has an edge to an already-visited vertex which is not the previous vertex, then there is a cycle
- After the DFS, if any vertex has not yet been visited, perform another DFS, this time starting from that vertex
- Repeat until all vertices have been visited

```
hasCycle(G):
    Input: graph G
    Output: true if G has a cycle, false otherwise
    create visited array, initialised to false
    for each vertex v in G:
        if visited[v] = false:
            if dfsHasCycle(G, v, v, visited):
            return true
    return false
dfsHasCycle(G, v, prev, visited):
    visited[v] = true
    for each neighbour w of v in G:
        if w=prev:
            continue
        if visited[w] = true:
            return true
        else if dfsHasCycle(G, w, v, visited):
            return true
```

 return false
 Analysis for adjacency list representation:

- Algorithm is a slight modification of DFS
- A full DFS traversal is $O(V+E)$
- Thus, worst-case time complexity of cycle checking is $O(V+E)$

Connected Components

A connected component

 is a maximally connected subgraphFor example, this graph has three connected components:

Connected Components

Definitions:
subgraph
a subset of vertices and edges of original graph

connected subgraph

there is a path between every pair of vertices in the subgraph
maximally connected subgraph
no way to include more edges/vertices from original graph into the subgraph such that subgraph is still connected

Connected Components

Problems:

How many connected components are there?

Are two vertices in the same connected component?

Connected Components

Goal:

- Compute an array which indicates which connected component each vertex is in
- Let this array be called componentOf
- componentOf $[v]$ contains the component number of vertex v
- For example:

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
0	0	1	1	0	1	1	2	2

Idea:

- Choose a vertex and perform a DFS starting at that vertex
- During the DFS, assign all vertices visited to component 0
- After the DFS, if any vertex has not been assigned a component, perform a DFS starting at that vertex
- During this DFS, assign all vertices visited to component 1
- Repeat until all vertices are assigned a component, increasing the component number each time

Connected Components

```
components(G):
    Input: graph G
    Output: componentOf array
    create componentOf array, initialised to -1
    compNo = 0
    for each vertex v in G:
        if componentOf[v] = -1:
        dfsComponents(G, v, componentOf, compNo)
        compNo = compNo + 1
    return componentOf
dfsComponents(G, v, componentOf, compNo):
    componentOf[v] = compNo
    for each neighbour w of v in G:
        if componentOf[w] = -1:
            dfsComponents(G, w, componentOf, compNo)
```


Connected Components

Analysis for adjacency list representation:

- Algorithm performs a full DFS, which is $O(V+E)$

Connected Components

Suppose we frequently need to answer the following questions:

- How many connected components are there?
- Are v and w in the same connected component?
- Is there a path between v and w ?

Note: The last two questions are actually equivalent in an undirected graph.

Connected Components

Solution:

- Cache the components array in the graph struct

```
struct graph {
    int nC; // number of connected components
    int *cc; // componentOf array
};
```


Connected Components

This allows us to answer the questions very easily:

```
// How many connected components are there?
int numComponents(Graph g) {
    return g->nC;
}
// Are v and w in the same connected component?
bool inSameComponent(Graph g, Vertex v, Vertex w) {
    return g->cc[v] == g->cc[w];
}
// Is there a path between v and w?
bool hasPath(Graph g, Vertex v, Vertex w) {
    return g->cc[v] == g->cc[w];
}
```


Connected Components

However, this information needs to be maintained as the graph changes:

- Inserting an edge may reduce nC
- If the endpoint vertices were in different components
- Removing an edge may increase nC
- If the endpoint vertices were in the same component and there is no other path between them

A Hamiltonian path is a path that includes each vertex exactly once
A Hamiltonian circuit is a cycle that includes each vertex exactly once

Named after Irish mathematician, astronomer and physicist Sir William Rowan Hamilton (1805-1865)

Consider the following graph:

Hamiltonian path

Hamiltonian circuit

How to check if a graph has a Hamiltonian path?
Idea:

- Brute force
- Use DFS to check all possible paths
- Recursive DFS is perfect, as it naturally allows backtracking
- Keep track of the number of vertices left to visit
- Stop when this number reaches 0
hasHamiltonianPath (G) :

```
Input: graph G
Output: true if G has a Hamiltonian path
    false otherwise
create visited array, initialised to false
for each vertex v in G:
        if dfsHamiltonianPath(G, v, visited, #vertices(G)):
        return true
```

return false

Hamiltonian Path

```
dfsHamiltonianPath(G, v, visited, numVerticesLeft):
visited[v] = true
numVerticesLeft = numVerticesLeft - 1
if numVerticesLeft = 0:
    return true
for each neighbour w of v in G:
    if visited[w] = false:
        if dfsHamiltonianPath(G, w, visited, numVerticesLeft):
            return true
visited[v] = false
return false
```

Why set visited $[v]$ to false at the end of dfsHamiltonianPath?

How to check if a graph has a Hamiltonian circuit?

- Similar approach as Hamiltonian path
- Don't need to try all starting vertices
- After a Hamiltonian path is found, check if the final vertex is adjacent to the starting vertex

```
hasHamiltonianCircuit(G):
    Input: graph G
    Output: true if G has a Hamiltonian circuit
                    false otherwise
    if #vertices(G)<3:
        return false
    create visited array, initialised to false
    return dfsHamiltonianCircuit(G, 0, visited, #vertices(G))
dfsHamiltonianCircuit(G, v, visited, numVerticesLeft):
    visited[v] = true
    numVerticesLeft = numVerticesLeft - 1
    if numVerticesLeft = 0 and adjacent(G, v, 0):
        return true
for each neighbour w of v in G:
        if visited[w] = false:
            if dfsHamiltonianCircuit(G, w, visited, numVerticesLeft):
            return true
    visited[v] = false
    return false
```

Analysis:

- Worst-case time complexity: $O(V!)$
- There are at most V ! paths to check $\left(\approx \sqrt{2 \pi V}(V / e)^{V}\right.$ by Stirling's approximation)
- There is no known polynomial time algorithm, so the Hamiltonian path problem is NP-hard

An Eulerian path is

 a path that visits each edge exactly once
An Eulerian circuit is

 an Eulerian path that starts and ends at the same vertex

Eulerian path: 4-2-0-1-3-0

Eulerian circuit: 4-2-0-1-3-4

Eulerian Path and Circuit

Problem is named after
Swiss mathematician, physicist, astronomer, logician and engineer Leonhard Euler (1707-1783)

Eulerian Path and Circuit

Problem was introduced by Euler while trying to solve the Seven Bridges of Konigsberg problem in 1736.

Is there a way to cross all the bridges exactly once on a walk through the town?

Eulerian Path and Circuit

This is a graph problem: vertices represent pieces of land edges represent bridges

Bridges as schematic

Bridges as graph

How to check if a graph has an Eulerian path or circuit?
Can use the following theorems:
A graph has an Eulerian path if and only if exactly zero or two vertices have odd degree, and all vertices with non-zero degree belong to the same connected component

A graph has an Eulerian circuit if and only if every vertex has even degree, and all vertices with non-zero degree belong to the same connected component

Which of these graphs have an Eulerian path? How about an Eulerian circuit?

Eulerian Path and Circuit

 CheckingWhy
"all vertices with non-zero degree belong to the same connected component"?

Eulerian Path

Cycle

 CheckinghasEulerianPath (G) :
Input: graph G
Output: true if G has an Eulerian path false otherwise
numOddDegree $=0$
for each vertex v in G :
if degree (G, v) is odd:
numOddDegree $=$ numOddDegree +1
return (numOddDegree $=0$ or numOddDegree $=2$) and eulerConnected (G)

Eulerian Path

```
eulerConnected(G):
Input: graph G
Output: true if all vertices in G with non-zero degree
                    belong to the same connected component
                    false otherwise
create visited array, initialised to false
for each vertex v in G:
    if degree(G, v) > 0:
            dfsRec(G, v, visited)
            break
for each vertex v in G:
    if degree(G, v) > 0 and visited[v] = false:
        return false
return true
```

```
hasEulerianCircuit(G):
    Input: graph G
Output: true if G has an Eulerian circuit
                    false otherwise
for each vertex v in G:
    if degree(G,v) is odd:
        return false
    return eulerConnected(G)
```


Eulerian Path and Circuit

Analysis for adjacency list representation:

- Finding degree of every vertex is $O(V+E)$
- Checking connectivity requires a DFS which is $O(V+E)$
- Therefore, worst-case time complexity is $O(V+E)$

So unlike the Hamiltonian path problem, the Eulerian path problem can be solved in polynomial time.

Other Graph Problems

Tractable and Intractable

Many graph problems are intractable - that is, there is no known "efficient" algorithm to solve them.

In this context, "efficient" usually means polynomial time.
A tractable problem is one that is known to have a polynomial-time solution.

Other Graph Problems

Tractable and Intractable

tractable

what is the shortest path between two vertices?
intractable
how about the longest path?

Other Graph Problems

Tractable and Intractable

tractable

what is the shortest path between two vertices?
does a graph contain a clique?
intractable
how about the longest path?
what is the largest clique?

Other Graph Problems

Tractable and Intractable

tractable

what is the shortest path between two vertices?
does a graph contain a clique?
given two colors, is it possible to colour every vertex in a graph such that no two adjacent vertices are the same colour?

intractable

how about the longest path?
what is the largest clique?
what about three colours?

Other Graph Problems

Tractable and Intractable

tractable

what is the shortest path between two vertices?
does a graph contain a clique?
given two colors, is it possible to colour every vertex in a graph such that no two adjacent vertices are the same colour?
does a graph contain an Eulerian path?

intractable

how about the longest path?
what is the largest clique?
what about three colours?
how about a Hamiltonian path?

Other Graph Problems

Bonus Round!

Graph isomorphism:
Can we make two given graphs identical by renaming vertices?
https://forms.office.com/r/5c0fb4tvMb

