COMP2521 24T1
 Graphs (IV)
 Directed and Weighted Graphs

Kevin Luxa
cs2521@cse.unsw.edu.au

directed graphs
weighted graphs

Generalising Graphs

In graphs representing real-world scenarios, edges are often directional and have a sense of cost

Thus, we need to consider directed and weighted graphs

Directed Graphs

Some applications require us to consider directional edges: $v \rightarrow w \neq w \rightarrow v$ e.g., 'follow' on Twitter, one-way streets, etc.

In a directed graph or digraph: edges have direction.

Each edge (v, w) has a source v and a destination w.

Directed Graphs

Example

Directed

 Graphs Graphs

Directed Graphs

domain	vertex is...	edge is...
WWW	web page	hyperlink
chess	board state	legal move
scheduling	task	precedence
program	function	function call
journals	article	citation
make	target	dependency

Digraph Terminology

$$
\begin{gathered}
\text { in-degree } \\
\operatorname{deg}^{-}(v) \text { or in }(v)
\end{gathered}
$$

the number of incoming edges to a vertex

out-degree

 $\operatorname{deg}^{+}(v)$ or out (v)the number of outgoing edges from a vertex

$$
\begin{array}{ll}
\operatorname{in}(0)=1 & \operatorname{out}(0)=1 \\
\operatorname{in}(1)=2 & \operatorname{out}(1)=0 \\
\operatorname{in}(2)=1 & \operatorname{out}(2)=3 \\
\operatorname{in}(3)=2 & \operatorname{out}(3)=2
\end{array}
$$

Digraph Terminology

A directed path is

a sequence of vertices where each vertex has an outgoing edge to the next vertex in the sequence

If there is a directed path from v to w, then we say that w is reachable from v

> A directed cycle is
 a directed path where the first and last vertices are the same
e.g., 0-2-3-1-0, 1-2-3-1

Digraph Terminology

A digraph is strongly connected if there is a directed path from every vertex to every other vertex

strongly connected

not strongly connected

Digraph Terminology

> A strongly-connected component is a maximally strongly-connected subgraph.

A digraph that is not strongly connected has two or more strongly-connected components.

Directed Graphs

Representations

Same representations as for undirected graphs:

- Adjacency matrix
- Adjacency list
- Array of edges

$$
\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

undirected, unweighted

$$
\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

directed, unweighted Terminology
Representations Graphs

Digraph Complexity

	Adjacency Matrix	Adjacency List	Array of Edges
Space usage	$O\left(V^{2}\right)$	$O(V+E)$	$O(E)$
Insert edge	$O(1)$	$O(\operatorname{deg}(v))$	$O(E)$
Remove edge	$O(1)$	$O(\operatorname{deg}(v))$	$O(E)$
Contains edge	$O(1)$	$O(\operatorname{deg}(v))$	$O(\log (E))$

Real digraphs tend to be sparse (large V, small average $\operatorname{deg}(v)$), so we use $\operatorname{deg}(v)$ to denote the degree of the source vertex v.

Weighted Graphs

Weighted Graphs

Some applications require us to consider a cost or weight assigned to a relation between two nodes.

In a weighted graph, each edge (s, t, w) has a weight w.

Weighted Graph

Directed Weighted Graph

Example: Major airline routes in Australia

Adjacency matrix:

- store weight in each cell, not just true/false
- need some "no edge exists" value

Adjacency list:

- add weight to each list node

Array of edges:

- add weight to each edge

$$
\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

undirected, unweighted

undirected, weighted

Weighted Graph

Representations: Array of Edges

Graphs

https://forms.office.com/r/5c0fb4tvMb

