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Binary Search Trees

The structure, height, and hence
performance

of a binary search tree
depends on the order of insertion.
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Binary Search Trees
The Best Case

Best case

Items are inserted evenly on the left and right throughout the tree
Height of tree will be O(log n)
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Binary Search Trees
The Worst Case

Worst case

Items are inserted in ascending or descending order
such that tree consists of a single branch

Height of tree will be O(n)

…
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Binary Search Trees

A binary tree of n nodes is said to be
balanced if it has (close to) minimal height (O(log n)), and
degenerate if it has (close to) maximal height (O(n)).
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Types of Balance

size-balanced
a size-balanced tree has,

for every node,
|size (l)− size (r)| ≤ 1

height-balanced
a height-balanced tree has,

for every node,
|height (l)− height (r)| ≤ 1
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1 1
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1 1

0 0

Size-balanced?

Yes

For every node,
|size (l)− size (r)| ≤ 1

Height-balanced?

Yes

For every node,
|height (l)− height (r)| ≤ 1
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Yes

For every node,
|size (l)− size (r)| ≤ 1

Height-balanced?

Yes

For every node,
|height (l)− height (r)| ≤ 1
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4

2

1 3

5

5

3 1

1 1

2

1 0

0 0

Size-balanced?

No

At node 4,
|size (l)− size (r)|
= |3− 1| = 2 > 1

||

Height-balanced?

Yes

For every node,
|height (l)− height (r)| ≤ 1

||
||
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Size-balanced?
No
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Yes

For every node,
|height (l)− height (r)| ≤ 1

||
||



COMP2521
24T1

Balance
Examples

Balancing
Operations

Balancing
Methods

Types of Balance
Example

4

3

2

1

5

6

6

3 2

2 1

1

3

2 1

1 0

0

Size-balanced?

No

At node 3,
|size (l)− size (r)|
= |2− 0| = 2 > 1

Height-balanced?

No

At node 3,
|height (l)− height (r)|

= |1− (−1)| = 2 > 1
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1 0

0

Size-balanced?
No

At node 3,
|size (l)− size (r)|
= |2− 0| = 2 > 1

Height-balanced?

No

At node 3,
|height (l)− height (r)|

= |1− (−1)| = 2 > 1
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1 0

0

Size-balanced?
No

At node 3,
|size (l)− size (r)|
= |2− 0| = 2 > 1

Height-balanced?
No

At node 3,
|height (l)− height (r)|

= |1− (−1)| = 2 > 1
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Balancing Operations

Rotation
• Left rotation
• Right rotation

Partition
• Rearrange tree around a specified node by rotating it up to the root
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Rotations

left rotation and right rotation:
a pair of operations

that change the balance of a tree

n1

n2

t1 t2

t3

Right rotation

Left rotation

n2

t1
n1

t2 t3
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Rotations

Rotations maintain the order of a search tree:

n1

n2

t1 t2

t3

Right rotation

Left rotation

n2

t1
n1

t2 t3

(all values in t1) < n2 < (all values in t2) < n1 < (all values in t3)
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Rotations
Example

Rotate right at 5

5

3

2 4

6

3

2 5

4 6
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Example

Rotate right at 5

5

3

2 4

6

3

2 5

4 6
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Rotations
Example

Rotate left at 3

3

2 5

4 6

5

3

2 4

6



COMP2521
24T1

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Example

Rotate left at 3

3

2 5

4 6

5

3

2 4

6
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Rotations
Example

Rotate right at 23

23

7

3 16

11

10

20

30

28 35

7

3 23

16

11

10

20

30

28 35
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Rotate right at 23

23

7
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11
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20

30

28 35

7
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Rotations
Implementation

struct node *rotateRight(struct node *root) {
if (root == NULL || root->left == NULL) return root;
struct node *newRoot = root->left;
root->left = newRoot->right;
newRoot->right = root;
return newRoot;

}

struct node *rotateLeft(struct node *root) {
if (root == NULL || root->right == NULL) return root;
struct node *newRoot = root->right;
root->right = newRoot->left;
newRoot->left = root;
return newRoot;

}
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Rotations
Implementation

struct node *rotateRight(struct node *root) {
if (root == NULL || root->left == NULL) return root;

struct node *newRoot = root->left;
root->left = newRoot->right;
newRoot->right = root;
return newRoot;

}

7

4 9

1 5

root

newRoot
4

1 7

5 9

newRoot
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Rotations
Implementation

struct node *rotateRight(struct node *root) {
if (root == NULL || root->left == NULL) return root;
struct node *newRoot = root->left;

root->left = newRoot->right;
newRoot->right = root;
return newRoot;

}

7

4 9

1 5

root

newRoot

4

1 7

5 9

newRoot
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Rotations
Implementation

struct node *rotateRight(struct node *root) {
if (root == NULL || root->left == NULL) return root;
struct node *newRoot = root->left;
root->left = newRoot->right;

newRoot->right = root;
return newRoot;

}

7

4 9

1 5

root

newRoot

4

1 7

5 9

newRoot
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Rotations
Implementation

struct node *rotateRight(struct node *root) {
if (root == NULL || root->left == NULL) return root;
struct node *newRoot = root->left;
root->left = newRoot->right;
newRoot->right = root;

return newRoot;

}

7

4 9

1 5

root

newRoot

4

1 7

5 9

newRoot
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Rotations
Implementation

struct node *rotateRight(struct node *root) {
if (root == NULL || root->left == NULL) return root;
struct node *newRoot = root->left;
root->left = newRoot->right;
newRoot->right = root;
return newRoot;

}

7

4 9

1 5

root

newRoot

4

1 7

5 9

newRoot
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Rotations
Analysis

Time complexity: O(1)

• Rotation requires only a few localised pointer re-arrangements
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Partition

partition(tree, i)

Rearrange the tree so that the element with index i becomes the root

13
[6]

5
[2]

3
[1]

1
[0]

8
[4]

6
[3]

10
[5]

17
[8]

16
[7]

20
[10]

19
[9]
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Partition

Method:
• Find element with index i
• Perform rotations to lift it to the root

• If it is the left child of its parent, perform right rotation at its parent
• If it is the right child of its parent, perform left rotation at its parent
• Repeat until it is at the root of the tree
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Partition
Example

Partition this tree around index 3:

10
[1]

5
[0]

14
[2]

30
[4]

29
[3]

32
[5]

3
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Partition this tree around index 3:

10
[1]

5
[0]

14
[2]

30
[4]

29
[3]

32
[5]

1

2

3
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Partition
Example

After right rotation at 30:

10

5 14

29

30

32

2

3
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Partition
Example

After left rotation at 14:

10

5 29

14 30

32

3
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After left rotation at 10:

29

10

5 14

30

32
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Partition
Pseudocode

partition(t, i):
Input: tree t, index i
Output: tree with i-th item moved to root

m = size(t->left)
if i < m:

t->left = partition(t->left, i)
t = rotateRight(t)

else if i > m:
t->right = partition(t->right, i - m - 1)
t = rotateLeft(t)

return t
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Analysis

Analysis:
• size() operation is expensive

• needs to traverse whole subtree
• can cause partition to be O(n2) in the worst case
• to improve efficiency, can change node structure so that each node
stores the size of its subtree in the node itself

• however, this will require extra work in other functions to maintain

struct node {
int item;
struct node *left;
struct node *right;
int size;

};
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Balancing Methods

• Global Rebalancing
• Root Insertion
• Randomised Insertion



COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Global Rebalancing

Idea:
Completely rebalance whole tree so it is size-balanced

Method:
Lift the median node to the root
by partitioning on size(t)/2,

then rebalance both subtrees (recursively)
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Global Rebalancing

First, partition on index n/2…

…then rebalance both subtrees
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Global Rebalancing
Pseudocode

rebalance(t):
Input: tree t
Output: rebalanced t

if size(t) < 3:
return t

t = partition(t, size(t) / 2)
t->left = rebalance(t->left)
t->right = rebalance(t->right)
return t
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Global Rebalancing
Analysis

Worst-case time complexity: O(n log n)
• Assume nodes store the size of their subtrees
• First step: partition entire tree on index n/2

• This takes at most n recursive calls, n rotations⇒ n steps
• Result is two subtrees of size ≈ n/2

• Then partition both subtrees
• Partitioning these subtrees takes n/2 steps each⇒ n steps in total
• Result is four subtrees of size ≈ n/4

• …and so on…
• About log2 n levels of partitioning in total, each requiring n steps
⇒ O(n log n)
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Global Rebalancing
Problems

What if we insert more items?
• Options:

• Rebalance on every insertion
• Not feasible

• Rebalance every k insertions; what k is good?
• Rebalance when imbalance exceeds threshold.

• It’s a tradeoff…
• We either have more costly insertions
• Or we have degraded performance for periods of time
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Periodic Rebalancing

bstInsert(t, v):
Input: tree t, value v
Output: t with v inserted

t = insertAtLeaf(t, v)

if size(t) mod k = 0:
t = rebalance(t)

return t
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Periodic Rebalancing
Remarks

• Good if tree is not modified very often
• Otherwise…

• Insertion will be slow occasionally due to rebalancing
• Performance will gradually degrade until next rebalance
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Global vs Local Rebalancing

global rebalancing
walks every node, balances its subtree;
⇒ perfectly balanced tree — at cost.

local rebalancing
do small, incremental operations

to improve the overall balance of the tree
… at the cost of imperfect balance
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Root Insertion

Idea:

Rotations change the structure of a tree

If we perform some rotations every time we insert,
that may restructure the tree randomly enough

such that it is more balanced

One systematic way to perform these rotations:
Insert new values at the root
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Root Insertion

Method:
Insert new value normally (at the leaf) …

… and then rotate the new node up to the root.
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Root Insertion
Example

Insert 24 at the root of this tree:

10

5 14

30

29 32



COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Root Insertion
Example

Insert 24 at the root of this tree:

10

5 14

30

29

24

32

1

2

3

4
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Root Insertion
Example

Rotate right at 29

10

5 14

30

29

24

32

1

2

3

4

10

5 14

30

24

29

32

2

3

4
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Root Insertion
Example

Rotate right at 30

10

5 14

30

24

29

32

2

3

4

10

5 14

24

30

29 32

3

4
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Root Insertion
Example

Rotate left at 14

10

5 14

24

30

29 32

3

4

10

5 24

14 30

29 32

4
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Root Insertion
Example

Rotate left at 10

10

5 24

14 30

29 32

4

24

10

5 14

30

29 32
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Root Insertion
Pseudocode

insertAtRoot(t, v):
Input: tree t, value v
Output: t with v inserted at the root

if t is empty:
return new node containing v

else if v < t->item:
t->left = insertAtRoot(t->left, v)
t = rotateRight(t)

else if v > t->item:
t->right = insertAtRoot(t->right, v)
t = rotateLeft(t)

return t
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Root Insertion
Analysis

Analysis:
• Same time complexity as normal insertion: O(h)
• Tree is more likely to be balanced, but no guarantee
• Root insertion ensures recently inserted items are close to the root

• Useful for applications where recently added items are more likely to be
searched

• Major problem: ascending-ordered and descending-ordered data is still
a worst case for root insertion
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Randomised Insertion

BSTs don’t have control over insertion order.
Worst cases — (partially) ordered data — are common.

Idea:
Introduce some randomness into insertion algorithm:

Randomly choose whether to insert normally or insert at root
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Randomised Insertion
Pseudocode

insertRandom(t, v):
Input: tree t, value v
Output: t with v inserted

if t is empty:
return new node containing v

// p/q chance of inserting at root
if random() mod q < p:

return insertAtRoot(t, v)
else:

return insertAtLeaf(t, v)

Note: random() is a pseudo-random number generator
30% chance of root insertion⇒ choose p = 3, q = 10
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Randomised Insertion
Remarks

Randomised insertion creates similar results to
inserting items in random order.

Tree is more likely to be balanced (but no guarantee)
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Final Remarks

The balancing methods we have covered
are either inefficient (global rebalancing),

or don’t guarantee a balanced tree (root/randomised insertion)
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Feedback

https://forms.office.com/r/5c0fb4tvMb

https://forms.office.com/r/5c0fb4tvMb
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