
COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods COMP2521 24T1

Balancing Binary Search Trees

Kevin Luxa
cs2521@cse.unsw.edu.au

balancing operations
balancing methods

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods

Binary Search Trees

The structure, height, and hence
performance

of a binary search tree
depends on the order of insertion.

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods

Binary Search Trees
The Best Case

Best case

Items are inserted evenly on the left and right throughout the tree
Height of tree will be O(log n)

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods

Binary Search Trees
The Worst Case

Worst case

Items are inserted in ascending or descending order
such that tree consists of a single branch

Height of tree will be O(n)

…

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods

Binary Search Trees

A binary tree of n nodes is said to be
balanced if it has (close to) minimal height (O(log n)), and
degenerate if it has (close to) maximal height (O(n)).

COMP2521
24T1

Balance
Examples

Balancing
Operations

Balancing
Methods

Types of Balance

size-balanced
a size-balanced tree has,

for every node,
|size (l)− size (r)| ≤ 1

height-balanced
a height-balanced tree has,

for every node,
|height (l)− height (r)| ≤ 1

COMP2521
24T1

Balance
Examples

Balancing
Operations

Balancing
Methods

Types of Balance
Example

4

2

3

5

6

5

2 2

1 1

2

1 1

0 0

Size-balanced?

Yes

For every node,
|size (l)− size (r)| ≤ 1

Height-balanced?

Yes

For every node,
|height (l)− height (r)| ≤ 1

COMP2521
24T1

Balance
Examples

Balancing
Operations

Balancing
Methods

Types of Balance
Example

4

2

3

5

6

5

2 2

1 1

2

1 1

0 0

Size-balanced?
Yes

For every node,
|size (l)− size (r)| ≤ 1

Height-balanced?

Yes

For every node,
|height (l)− height (r)| ≤ 1

COMP2521
24T1

Balance
Examples

Balancing
Operations

Balancing
Methods

Types of Balance
Example

4

2

3

5

6

5

2 2

1 1

2

1 1

0 0

Size-balanced?
Yes

For every node,
|size (l)− size (r)| ≤ 1

Height-balanced?
Yes

For every node,
|height (l)− height (r)| ≤ 1

COMP2521
24T1

Balance
Examples

Balancing
Operations

Balancing
Methods

Types of Balance
Example

4

2

1 3

5

5

3 1

1 1

2

1 0

0 0

Size-balanced?

No

At node 4,
|size (l)− size (r)|
= |3− 1| = 2 > 1

||

Height-balanced?

Yes

For every node,
|height (l)− height (r)| ≤ 1

||
||

COMP2521
24T1

Balance
Examples

Balancing
Operations

Balancing
Methods

Types of Balance
Example

4

2

1 3

5

5

3 1

1 1

2

1 0

0 0

Size-balanced?
No

At node 4,
|size (l)− size (r)|
= |3− 1| = 2 > 1

||

Height-balanced?

Yes

For every node,
|height (l)− height (r)| ≤ 1

||
||

COMP2521
24T1

Balance
Examples

Balancing
Operations

Balancing
Methods

Types of Balance
Example

4

2

1 3

5

5

3 1

1 1

2

1 0

0 0

Size-balanced?
No

At node 4,
|size (l)− size (r)|
= |3− 1| = 2 > 1

||

Height-balanced?
Yes

For every node,
|height (l)− height (r)| ≤ 1

||
||

COMP2521
24T1

Balance
Examples

Balancing
Operations

Balancing
Methods

Types of Balance
Example

4

3

2

1

5

6

6

3 2

2 1

1

3

2 1

1 0

0

Size-balanced?

No

At node 3,
|size (l)− size (r)|
= |2− 0| = 2 > 1

Height-balanced?

No

At node 3,
|height (l)− height (r)|

= |1− (−1)| = 2 > 1

COMP2521
24T1

Balance
Examples

Balancing
Operations

Balancing
Methods

Types of Balance
Example

4

3

2

1

5

6

6

3 2

2 1

1

3

2 1

1 0

0

Size-balanced?
No

At node 3,
|size (l)− size (r)|
= |2− 0| = 2 > 1

Height-balanced?

No

At node 3,
|height (l)− height (r)|

= |1− (−1)| = 2 > 1

COMP2521
24T1

Balance
Examples

Balancing
Operations

Balancing
Methods

Types of Balance
Example

4

3

2

1

5

6

6

3 2

2 1

1

3

2 1

1 0

0

Size-balanced?
No

At node 3,
|size (l)− size (r)|
= |2− 0| = 2 > 1

Height-balanced?
No

At node 3,
|height (l)− height (r)|

= |1− (−1)| = 2 > 1

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Partition

Balancing
Methods

Balancing Operations

Rotation
• Left rotation
• Right rotation

Partition
• Rearrange tree around a specified node by rotating it up to the root

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations

left rotation and right rotation:
a pair of operations

that change the balance of a tree

n1

n2

t1 t2

t3

Right rotation

Left rotation

n2

t1
n1

t2 t3

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations

Rotations maintain the order of a search tree:

n1

n2

t1 t2

t3

Right rotation

Left rotation

n2

t1
n1

t2 t3

(all values in t1) < n2 < (all values in t2) < n1 < (all values in t3)

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Example

Rotate right at 5

5

3

2 4

6

3

2 5

4 6

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Example

Rotate right at 5

5

3

2 4

6

3

2 5

4 6

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Example

Rotate left at 3

3

2 5

4 6

5

3

2 4

6

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Example

Rotate left at 3

3

2 5

4 6

5

3

2 4

6

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Example

Rotate right at 23

23

7

3 16

11

10

20

30

28 35

7

3 23

16

11

10

20

30

28 35

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Example

Rotate right at 23

23

7

3 16

11

10

20

30

28 35

7

3 23

16

11

10

20

30

28 35

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Implementation

struct node *rotateRight(struct node *root) {
if (root == NULL || root->left == NULL) return root;
struct node *newRoot = root->left;
root->left = newRoot->right;
newRoot->right = root;
return newRoot;

}

struct node *rotateLeft(struct node *root) {
if (root == NULL || root->right == NULL) return root;
struct node *newRoot = root->right;
root->right = newRoot->left;
newRoot->left = root;
return newRoot;

}

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Implementation

struct node *rotateRight(struct node *root) {
if (root == NULL || root->left == NULL) return root;

struct node *newRoot = root->left;
root->left = newRoot->right;
newRoot->right = root;
return newRoot;

}

7

4 9

1 5

root

newRoot
4

1 7

5 9

newRoot

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Implementation

struct node *rotateRight(struct node *root) {
if (root == NULL || root->left == NULL) return root;
struct node *newRoot = root->left;

root->left = newRoot->right;
newRoot->right = root;
return newRoot;

}

7

4 9

1 5

root

newRoot

4

1 7

5 9

newRoot

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Implementation

struct node *rotateRight(struct node *root) {
if (root == NULL || root->left == NULL) return root;
struct node *newRoot = root->left;
root->left = newRoot->right;

newRoot->right = root;
return newRoot;

}

7

4 9

1 5

root

newRoot

4

1 7

5 9

newRoot

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Implementation

struct node *rotateRight(struct node *root) {
if (root == NULL || root->left == NULL) return root;
struct node *newRoot = root->left;
root->left = newRoot->right;
newRoot->right = root;

return newRoot;

}

7

4 9

1 5

root

newRoot

4

1 7

5 9

newRoot

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Implementation

struct node *rotateRight(struct node *root) {
if (root == NULL || root->left == NULL) return root;
struct node *newRoot = root->left;
root->left = newRoot->right;
newRoot->right = root;
return newRoot;

}

7

4 9

1 5

root

newRoot

4

1 7

5 9

newRoot

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Examples
Implementation
Analysis
Partition

Balancing
Methods

Rotations
Analysis

Time complexity: O(1)

• Rotation requires only a few localised pointer re-arrangements

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition

partition(tree, i)

Rearrange the tree so that the element with index i becomes the root

13
[6]

5
[2]

3
[1]

1
[0]

8
[4]

6
[3]

10
[5]

17
[8]

16
[7]

20
[10]

19
[9]

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition

Method:
• Find element with index i
• Perform rotations to lift it to the root

• If it is the left child of its parent, perform right rotation at its parent
• If it is the right child of its parent, perform left rotation at its parent
• Repeat until it is at the root of the tree

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Example

Partition this tree around index 3:

10
[1]

5
[0]

14
[2]

30
[4]

29
[3]

32
[5]

3

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Example

Partition this tree around index 3:

10
[1]

5
[0]

14
[2]

30
[4]

29
[3]

32
[5]

1

2

3

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Example

After right rotation at 30:

10

5 14

29

30

32

2

3

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Example

After left rotation at 14:

10

5 29

14 30

32

3

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Example

After left rotation at 10:

29

10

5 14

30

32

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Pseudocode

partition(t, i):
Input: tree t, index i
Output: tree with i-th item moved to root

m = size(t->left)
if i < m:

t->left = partition(t->left, i)
t = rotateRight(t)

else if i > m:
t->right = partition(t->right, i - m - 1)
t = rotateLeft(t)

return t

COMP2521
24T1

Balance

Balancing
Operations
Rotations
Partition
Example
Pseudocode
Analysis

Balancing
Methods

Partition
Analysis

Analysis:
• size() operation is expensive

• needs to traverse whole subtree
• can cause partition to be O(n2) in the worst case
• to improve efficiency, can change node structure so that each node
stores the size of its subtree in the node itself

• however, this will require extra work in other functions to maintain

struct node {
int item;
struct node *left;
struct node *right;
int size;

};

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Balancing Methods

• Global Rebalancing
• Root Insertion
• Randomised Insertion

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Global Rebalancing

Idea:
Completely rebalance whole tree so it is size-balanced

Method:
Lift the median node to the root
by partitioning on size(t)/2,

then rebalance both subtrees (recursively)

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Global Rebalancing

First, partition on index n/2…

…then rebalance both subtrees

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Global Rebalancing
Pseudocode

rebalance(t):
Input: tree t
Output: rebalanced t

if size(t) < 3:
return t

t = partition(t, size(t) / 2)
t->left = rebalance(t->left)
t->right = rebalance(t->right)
return t

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Global Rebalancing
Analysis

Worst-case time complexity: O(n log n)
• Assume nodes store the size of their subtrees
• First step: partition entire tree on index n/2

• This takes at most n recursive calls, n rotations⇒ n steps
• Result is two subtrees of size ≈ n/2

• Then partition both subtrees
• Partitioning these subtrees takes n/2 steps each⇒ n steps in total
• Result is four subtrees of size ≈ n/4

• …and so on…
• About log2 n levels of partitioning in total, each requiring n steps
⇒ O(n log n)

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Global Rebalancing
Problems

What if we insert more items?
• Options:

• Rebalance on every insertion
• Not feasible

• Rebalance every k insertions; what k is good?
• Rebalance when imbalance exceeds threshold.

• It’s a tradeoff…
• We either have more costly insertions
• Or we have degraded performance for periods of time

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Periodic Rebalancing

bstInsert(t, v):
Input: tree t, value v
Output: t with v inserted

t = insertAtLeaf(t, v)

if size(t) mod k = 0:
t = rebalance(t)

return t

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Periodic Rebalancing
Remarks

• Good if tree is not modified very often
• Otherwise…

• Insertion will be slow occasionally due to rebalancing
• Performance will gradually degrade until next rebalance

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Global vs Local Rebalancing

global rebalancing
walks every node, balances its subtree;
⇒ perfectly balanced tree — at cost.

local rebalancing
do small, incremental operations

to improve the overall balance of the tree
… at the cost of imperfect balance

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Root Insertion

Idea:

Rotations change the structure of a tree

If we perform some rotations every time we insert,
that may restructure the tree randomly enough

such that it is more balanced

One systematic way to perform these rotations:
Insert new values at the root

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Root Insertion

Method:
Insert new value normally (at the leaf) …

… and then rotate the new node up to the root.

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Root Insertion
Example

Insert 24 at the root of this tree:

10

5 14

30

29 32

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Root Insertion
Example

Insert 24 at the root of this tree:

10

5 14

30

29

24

32

1

2

3

4

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Root Insertion
Example

Rotate right at 29

10

5 14

30

29

24

32

1

2

3

4

10

5 14

30

24

29

32

2

3

4

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Root Insertion
Example

Rotate right at 30

10

5 14

30

24

29

32

2

3

4

10

5 14

24

30

29 32

3

4

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Root Insertion
Example

Rotate left at 14

10

5 14

24

30

29 32

3

4

10

5 24

14 30

29 32

4

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Root Insertion
Example

Rotate left at 10

10

5 24

14 30

29 32

4

24

10

5 14

30

29 32

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Root Insertion
Pseudocode

insertAtRoot(t, v):
Input: tree t, value v
Output: t with v inserted at the root

if t is empty:
return new node containing v

else if v < t->item:
t->left = insertAtRoot(t->left, v)
t = rotateRight(t)

else if v > t->item:
t->right = insertAtRoot(t->right, v)
t = rotateLeft(t)

return t

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Root Insertion
Analysis

Analysis:
• Same time complexity as normal insertion: O(h)
• Tree is more likely to be balanced, but no guarantee
• Root insertion ensures recently inserted items are close to the root

• Useful for applications where recently added items are more likely to be
searched

• Major problem: ascending-ordered and descending-ordered data is still
a worst case for root insertion

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Randomised Insertion

BSTs don’t have control over insertion order.
Worst cases — (partially) ordered data — are common.

Idea:
Introduce some randomness into insertion algorithm:

Randomly choose whether to insert normally or insert at root

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Randomised Insertion
Pseudocode

insertRandom(t, v):
Input: tree t, value v
Output: t with v inserted

if t is empty:
return new node containing v

// p/q chance of inserting at root
if random() mod q < p:

return insertAtRoot(t, v)
else:

return insertAtLeaf(t, v)

Note: random() is a pseudo-random number generator
30% chance of root insertion⇒ choose p = 3, q = 10

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Randomised Insertion
Remarks

Randomised insertion creates similar results to
inserting items in random order.

Tree is more likely to be balanced (but no guarantee)

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Final Remarks

The balancing methods we have covered
are either inefficient (global rebalancing),

or don’t guarantee a balanced tree (root/randomised insertion)

COMP2521
24T1

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

Feedback

https://forms.office.com/r/5c0fb4tvMb

https://forms.office.com/r/5c0fb4tvMb

	Balance
	Examples

	Balancing Operations
	Rotations
	Partition

	Balancing Methods
	Global Rebalancing
	Root Insertion
	Randomised Insertion

