COMP2521 $24 T 1$
 Graphs (I)
 Introduction to Graphs

Kevin Luxa
cs2521@cse.unsw.edu.au
graph fundamentals
graph adt
graph representations

Graph Fundamentals

Up to this point, we've seen a few collection types...
lists: a linear sequence of items each node is connected to its next node
trees: a branched hierarchy of items each node is connected to its child node(s)
what if we want something more general? each node is connected to arbitrarily many nodes

Many applications need to model relationships between items.
... on a map: cities, connected by roads
... on the Web: pages, connected by hyperlinks
... in a game: states, connected by legal moves
... in a social network: people, connected by friendships
... in scheduling: tasks, connected by constraints
... in circuits: components, connected by traces
... in networking: computers, connected by cables
... in programs: functions, connected by calls
... etc. etc. etc.

Graphs

A graph is a data structure consisting of:

- A set of vertices V
- Also called nodes
- A set of edges E between pairs of vertices

$$
\begin{aligned}
V= & \left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
E= & \left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right),\left(v_{1}, v_{4}\right)\right. \\
& \left.\left(v_{2}, v_{3}\right),\left(v_{3}, v_{4}\right)\right\}
\end{aligned}
$$

Vertices are distinguished by a unique identifier.

- In this course, usually an integer between 0 and $|V|-1$

Edges may be (optionally) directed, weighted and/or labelled.

Example: Australian cities and roads

Graphs

Questions we could answer with a graph:

- Is there a way to get from A to B ?
- What is the best way to get from A to B ?
- In general, what vertices can we reach from A ?
- Is there a path that lets me visit all vertices?
- Can we form a tree linking all vertices?
- Are two graphs "equivalent"?

Graph problems are generally more complex to solve than linked list problems:

- Items are not ordered
- Graphs may contain cycles
- Concrete representation is more complex

Graphs can be a combination of these types:

undirected or directed
unweighted or weighted
without loops or with loops
non-multigraph or multigraph
... and others ...

Undirected Graphs

In an undirected graph, edges do not have direction.

Directed Graphs

In a directed graph or digraph, each edge has a direction.

undirected graph

directed graph

Weighted Graphs

In a weighted graph, each edge has an associated weight. For example, road maps, networks.

unweighted graph

weighted graph

Graphs

A loop is an edge from a vertex to itself.
Depending on the context, a graph may or may not be allowed to have loops.

In a multigraph, multiple edges are allowed between two vertices. For example, call graphs, maps.

Multigraphs will not be considered in this course.

A simple graph is an undirected graph with no loops and no multiple edges.

For now, we will only consider simple graphs.

Simple Graphs

Question:
For a simple graph with V vertices, what is the maximum possible number of edges?

Question:

For a simple graph with V vertices, what is the maximum possible number of edges?

Note on notation:
The number of vertices $|V|$ and the number of edges $|E|$ are normally written as V and E for simplicity.

Graph Terminology

Two vertices v and w are adjacent if an edge $e:=(v, w)$ connects them; we say e is incident on v and w.

The degree of a vertex $v(\operatorname{deg}(v))$ is the number of edges incident on v.

$$
\begin{aligned}
\operatorname{deg}(0) & =2 \\
\operatorname{deg}(1) & =3 \\
\operatorname{deg}(2) & =2 \\
\operatorname{deg}(3) & =1 \\
\operatorname{deg}(4) & =4
\end{aligned}
$$

Graphs

The ratio E : V can vary considerably.
If E is closer to V^{2}, the graph is dense. If E is closer to V, the graph is sparse.

Knowing whether a graph is dense or sparse will affect our choice of representation and algorithms.

Graph Terminology

A path is
a sequence of vertices where each vertex has a edge to the next in the sequence

A path is simple
if it has no repeating vertices

A cycle is a path where only the first and last vertices are the same

$$
0-1-2-0,1-2-3-1,0-1-3-2-0
$$

A complete graph is a graph where every vertex is connected to every other vertex via an edge.

In a complete graph, $E=\frac{1}{2} V(V-1)$.

K_{3}

K_{5}

K_{6}

A connected graph is a graph where there is a path from every vertex to every other vertex.

Connected graph

Disconnected graph

Graph Terminology

A tree is a connected graph with no cycles.
A tree has exactly one path between each pair of vertices.

Tree

Not a tree

Graph Terminology

A subgraph of a graph G is a graph that contains a subset of the vertices of G and a subset of the edges between these vertices.

A connected component is a maximally connected subgraph.
A connected graph has one connected component - the graph itself.
A disconnected graph has two or more connected components.

A spanning tree of a graph G

is a subgraph that contains all the vertices of G and is a single tree.

Spanning trees only exist for connected graphs.

A spanning forest of a graph G is a subgraph that contains all the vertices of G and contains one tree for each connected component.

Graphs

A clique is a complete subgraph.
A clique is non-trivial if it has 3 or more vertices.

Graph ADT

What do we need to represent? What operations do we need to support?

> What do we need to represent?
> A set of vertices $V:=\left\{v_{1}, \cdots, v_{n}\right\}$ A set of edges $E:=\{(v, w) \mid v, w \in V\}$

What operations do we need to support? create/destroy graph add/remove edges get \#vertices, \#edges check if an edge exists

> create/destroy create a graph
> free memory allocated to graph

> query
> get number of vertices get number of edges check if an edge exists

update
add edge
remove edge

We will extend this ADT with more complex operations later.

```
typedef struct graph *Graph;
// vertices denoted by integers 0..V-1
typedef int Vertex;
/** Creates a new graph with nV vertices */
Graph GraphNew(int nV);
/** Frees all memory allocated to a graph */
void GraphFree(Graph g);
```

Graphs

```
/** Returns the number of vertices in a graph */
int GraphNumVertices(Graph g);
/** Returns the number of edges in a graph */
int GraphNumEdges(Graph g);
/** Returns true if there is an edge between the given vertices
        and false otherwise */
bool GraphIsAdjacent(Graph g, Vertex v, Vertex w);
```

```
/** Inserts an edge into a graph */
void GraphInsertEdge(Graph g, Vertex v, Vertex w);
/** Removes an edge from a graph */
void GraphRemoveEdge(Graph g, Vertex v, Vertex w);
```


Graph Representations

3 main graph representations:

Adjacency Matrix

Edges defined by presence value in $V \times V$ matrix

Adjacency List

Edges defined by entries in array of V lists

Array of Edges

Explicit representation of edges as (v, w) pairs

We'll consider these representations for unweighted, undirected graphs.

A $V \times V$ matrix; each cell represents an edge.

directed

Adjacency Matrix

 Implementation in C
Graphs

Graph ADT
Graph Reps Adjacency Matrix Adjacency List Array of Edges Summary

```
struct graph { int nV; int nE; bool **edges; \};
```


Adjacency Matrix

Advantages and Disadvantages

Advantages

Efficient

edge insertion/deletion and adjacency check $(O(1))$

Disadvantages

Huge memory usage ($O\left(V^{2}\right)$) sparse graph \Rightarrow wasted space! undirected graph \Rightarrow wasted space!

Array of V lists

$$
\begin{aligned}
& A[0]=\langle 1,3\rangle \\
& A[1]=\langle 0,3\rangle \\
& A[2]=\langle 3\rangle \\
& A[3]=\langle 0,1,2\rangle
\end{aligned}
$$

undirected

$$
\begin{aligned}
& A[0]=\langle 1,3\rangle \\
& A[1]=\langle 0,3> \\
& A[2]=<> \\
& A[3]=<2>
\end{aligned}
$$

directed

Adjacency List

Implementation in C

Graphs

 Graph ADTGraph Reps Adjacency Matrix Adjacency List Array of Edges Summary

Advantages

Space-efficient for sparse graphs
$O(V+E)$ memory usage

Disadvantages

Inefficient
edge insertion/deletion $(O(V))$ (matters less for sparse graphs)

Graphs Graph ADT
Graph Reps Adjacency Matrix Adjacency List Array of Edges Summary

Edges represented by an array of edge structs (pairs of vertices)

undirected

$$
\begin{aligned}
A= & {[} \\
& (0,1), \\
& (0,3), \\
& (1,0), \\
& (1,3), \\
& (3,2),
\end{aligned}
$$

directed

Implementation in C

Graphs

 Graph ADTGraph Reps Adjacency Matrix Adjacency List Array of Edges Summary

```
        struct graph {
        int nV;
        int nE;
        int maxE;
        struct edge *edges;
        };
    struct edge {
        Vertex v;
        Vertex w;
    };
```


Advantages

Very space-efficient for sparse graphs where $E<V$

Disadvantages

Inefficient edge insertion/deletion $(O(E))$

Summary of Graph Representations

	Adjacency Matrix	Adjacency List	Array of Edges
Space usage	$O\left(V^{2}\right)$	$O(V+E)$	$O(E)$
Create	$O\left(V^{2}\right)$	$O(V)$	$O(1)$
Destroy	$O(V)$	$O(V+E)$	$O(1)$
Insert edge	$O(1)$	$O(V)$	$O(E)$
Remove edge	$O(1)$	$O(V)$	$O(E)$
Is adjacent	$O(1)$	$O(V)$	$O(E)^{*}$
Degree	$O(V)$	$O(V)$	$O(E)^{*}$

* Can be $O(\log E)$ if the array is ordered
and both directions of each edge are stored in an undirected graph
https://forms.office.com/r/5c0fb4tvMb

