COMP2521 24T1
 Binary Search Trees

Kevin Luxa
cs2521@cse.unsw.edu.au

trees
binary search trees
binary search tree operations

Trees

Trees

Examples Binary Trees

A tree is a hierarchical data structure consisting of a set of connected nodes where:

Each node may have multiple other nodes as children (depending on the type of tree)

Each node is connected to one parent except the root node

Trees

Examples Binary Trees

```
BSTs
```

Insertion
Search
Traversal
Join
Deletion
Exercises

Source: https://www.openbookproject.net/tutorials/getdown/unix/lesson2.html

Trees

Trees

Examples Binary Trees

Trees

Examples Binary Trees

BSTs

Insertion

Search

Traversal

Deletion Exercises

Trees

Examples Binary Trees

BSTs

Insertion
Search
Traversal
Join
Deletion Exercises

Source: "Data Structures and Algorithms in Java" (6th ed) by Goodrich et al. Binary Trees

BSTs

Insertion
Search
Traversal

Trees

A binary tree is a tree where each node can have up to two child nodes, referred to as the left child and the right child.

A binary search tree is an ordered binary tree, where for each node:

- All values in the left subtree are less than the value in the node
- All values in the right subtree are greater than the value in the node

Trees

A binary search tree is either:

- empty; or
- consists of a node with two subtrees
- left and right subtrees are also BSTs (recursive)

Binary Search Trees

Why use binary search trees?
Search is an extremely common operation in computing:

- selecting records in databases
- searching for pages on the web

Typically, there is a very large amount of data (very many items)
We need a more efficient way to search and maintain large amounts of data.

Binary Search Trees

We've explored multiple approaches for searching:

- Ordered array
- Searching/finding insertion point is $O(\log n)$ due to binary search
- Inserting is $O(n)$ due to the need to shift items to preserve sortedness
- Ordered linked list
- Searching/finding insertion point is $O(n)$ due to the nature of linked lists
- Inserting once we have found the insertion point is $O(1)$ as there is no need to shift

Binary Search Trees

Binary search trees are efficient to search and maintain:

- Searching in a binary search tree is similar to how binary search works
- A binary search tree is a linked data structure (like a linked list), so there is no need to shift elements when inserting/deleting

2	5	10	12	14	17	20	24	29	30	31	32

Binary Search Trees

The root node is the node with no parent node.
A leaf node is a node that has no child nodes.
An internal node is a node that has at least one child node.

Binary Search Trees

Height of a tree: Maximum path length from the root node to a leaf

- The height of an empty tree is considered to be -1
- The height of the following tree is 3

Binary Search Trees

Trees

For a tree with n nodes:
The maximum possible height is $n-1$

Binary Search Trees

For a tree with n nodes:
The minimum possible height is $\left\lfloor\log _{2} n\right\rfloor$

n	minimum height $=\left\lfloor\log _{2} n\right\rfloor$	tree
1	0	
$2-3$	1	
$4-7$	2	\ldots
\ldots	\ldots	

Binary Search Trees

For a given number of nodes, a tree is said to be balanced if it has (close to) minimal height, and degenerate if it has (close to) maximal height.

Concrete Representation

Binary trees are typically represented by node structures

- Where each node contains a value and pointers to child nodes

```
struct node {
    int item;
    struct node *left;
    struct node *right;
};
```


Trees

BSTs

Motivation

Operations

BSTs

Key operations on binary search trees:

- Insert
- Search
- Traversal
- Join
- Delete

The height h of a binary search tree determines the efficiency of many operations, so we will use both n and h in our analyses.

Insertion

bstInsert(t, v)
Given a BST t and a value v, insert v into the BST and return the root of the updated BST

Insertion is straightforward:

- Start at the root
- Compare value to be inserted with value in the node
- If value being inserted is less, descend to left child
- If value being inserted is greater, descend to right child
- Repeat until...
you have to go left/right but current node has no left/right child
- Create new node and attach to current node

Recursive method:

- t is empty
\Rightarrow make a new node with v as the root of the new tree
- $v<t$->item
\Rightarrow insert v into t 's left subtree
- $v>t$->item
\Rightarrow insert v into t 's right subtree
- $v=t->i t e m$
\Rightarrow tree unchanged (assuming no duplicates)
EXERCISE Try writing an iterative version.

Insert the following values into an empty tree:

$$
\begin{array}{lllllll}
4 & 2 & 6 & 5 & 1 & 7 & 3
\end{array}
$$

Insert the following values into an empty tree:

$$
\begin{array}{lllllll}
4 & 2 & 6 & 5 & 1 & 7 & 3
\end{array}
$$

Insert the following values into an empty tree:

$$
\begin{array}{lllllll}
5 & 6 & 2 & 3 & 4 & 7 & 1
\end{array}
$$

Insert the following values into an empty tree:

Insert the following values into an empty tree:

$$
\begin{array}{lllllll}
1 & 2 & 3 & 4 & 6
\end{array}
$$

Insert the following values into an empty tree:

$$
\begin{array}{lllllll}
1 & 2 & 3 & 4 & 6
\end{array}
$$


```
bstInsert(t, v):
    Input: tree t, value v
    Output: t with v inserted
    if t is empty:
        return new node containing v
    else if v < t->item:
        t->left = bstInsert(t->left, v)
        else if v > t->item:
        t->right = bstInsert(t->right, v)
    return t
```

Analysis:

- At most one node is examined on each level
- Number of operations performed per node is constant
- Therefore, the worst-case time complexity of insertion is $O(h)$ where h is the height of the BST

Trees

Search
$\operatorname{bstSearch}(t, v)$
Given a BST t and a value v, return true if v is in the BST and false otherwise

Recursive method:

- t is empty:
\Rightarrow return false
- $v<t$->item
\Rightarrow search for v in t 's left subtree
- $v>t$->item
\Rightarrow search for v in t 's right subtree
- $v=t$->item
\Rightarrow return true

EXERCISE Try writing an iterative version.

bstSearch (t, v) :
Input: tree t, value v
Output: true if v is in t false otherwise
if t is empty: return false
else if $v<t$->item: return bstSearch $(t->$ left, $v)$
else if $v>t$->item: return bstSearch(t->right, v)
else:
return true

Analysis:

- At most one node is examined on each level
- Number of operations performed per node is constant
- Therefore, the worst-case time complexity of search is $O(h)$ where h is the height of the BST

Traversal
Given a BST, visit every node of the tree

There are 4 common ways to traverse a binary tree:
(1) Pre-order (NLR):
visit root, then traverse left subtree, then traverse right subtree
(2) In-order (LNR):
traverse left subtree, then visit root, then traverse right subtree
3 Post-order (LRN):
traverse left subtree, then traverse right subtree, then visit root
(4) Level-order:
visit root, then its children, then their children, and so on

Pseudocode:

```
preorder(t):
```

preorder(t):

```
preorder(t):
        Input: tree t
        Input: tree t
        Input: tree t
        if t is empty:
        if t is empty:
        if t is empty:
        return
        return
        return
        visit(t)
        visit(t)
        visit(t)
        visit(t)
        visit(t)
        visit(t)
        visit(t)
        visit(t)
        visit(t)
        return
        return
        return
preorder(t)
preorder(t)
preorder(t)
    Input: tree t
```

 Input: tree t
    ```
    Input: tree t
```

inorder (t):
Input: tree t
if t is empty:
return
inorder ($t->$ left)
visit(t)
inorder(t->right)

```
postorder(t):
    Input: tree t
    if t is empty:
        return
    postorder(t-> left)
    postorder(t->right)
    visit(t)
```

Note:
Level-order traversal is difficult to implement recursively. It is typically implemented using a queue.

Trees

| Pre-order | 20 | 10 | 5 | 2 | 14 | 12 | 17 | 30 | 24 | 29 | 32 | 31 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| In-order | 2 | 5 | 10 | 12 | 14 | 17 | 20 | 24 | 29 | 30 | 31 | 32 |
| Post-order | 2 | 5 | 12 | 17 | 14 | 10 | 29 | 24 | 31 | 32 | 30 | 20 |
| Level-order | 20 | 10 | 30 | 5 | 14 | 24 | 32 | 2 | 12 | 17 | 29 | 31 |

Expression tree for 1 * $3+(5 * 7-9)$

$$
\begin{array}{ll}
\text { Pre-order } & +* 13-* 579 \\
\text { In-order } & 1 * 3+5 * 7-9 \\
\text { Post-order } & 13 * 57 * 9-+
\end{array}
$$

Pre-order traversal:

- Useful for reconstructing a tree

In-order traversal:

- Useful for traversing a BST in ascending order

Post-order traversal:

- Useful for evaluating an expression tree
- Useful for freeing a tree

Level-order traversal:

- Useful for printing a tree

Tree Traversal

Analysis:

- Each node is visited once
- Hence, time complexity of tree traversal is $O(n)$, where n is the number of nodes

$$
\begin{gathered}
\text { Join } \\
\text { bstJoin }\left(t_{1}, t_{2}\right) \\
\text { Given two BSTs } t_{1} \text { and } t_{2} \\
\text { where max }\left(t_{1}\right)<\min \left(t_{2}\right) \\
\text { return a BST containing all items from } t_{1} \text { and } t_{2}
\end{gathered}
$$

Method:

(1) Find the minimum node \min in t_{2}
2. Replace min by its right subtree (if it exists)
(3) Elevate \min to be the new root of t_{1} and t_{2}


```
bstJoin(t1, th):
    Input: trees tr , t 
    Output: t1 and t2 joined together
    if tr is empty:
        return t2
    else if t i is empty:
        return th
    else:
        curr = t 
        parent = NULL
        while curr->left }=\mathrm{ NULL:
            parent = curr
            curr = curr->left
        if parent }==\mathrm{ NULL:
            parent->left = curr->right
            curr->right = t 
        curr->left = tr
        return curr
```


Analysis:

- The join algorithm simply finds the minimum node in t_{2}
- Thus, at most one node is visited per level of t_{2}
- Therefore, the worst-case time complexity of join is $O\left(h_{2}\right)$ where h_{2} is the height of t_{2}

Deletion

bstDelete(t, v)
Given a BST t and a value v delete v from the BST and return the root of the updated BST

Recursive method:

- t is empty: \Rightarrow result is empty
- $v<t$->item
\Rightarrow delete v from t 's left subtree
- $v>t$->item
\Rightarrow delete v from t 's right subtree
- $v=t->i t e m$
\Rightarrow three sub-cases:
- t is a leaf
\Rightarrow result is empty tree
- t has one subtree \Rightarrow replace with subtree
- t has two subtrees \Rightarrow join the two subtrees

Node to be deleted has one subtree

Node to be deleted has two subtrees


```
bstDelete(t, v):
    Input: tree t, value v
    Output: t with v deleted
    if t is empty:
        return empty tree
    else if v<t->item:
        t->left = bstDelete(t->left, v)
    else if v>t->item:
        t->right = bstDelete(t->right, v)
    else:
        if t->left is empty:
            new = t->right
        else if t->right is empty:
            new = t->left
        else:
            new = bstJoin(t->left, t->right)
        free(t)
        t = new
```

 return \(t\)
 Analysis:

- The deletion algorithm traverses down just one branch
- First, the item being deleted is found
- If the item exists and has two subtrees, its successor is found
- Thus, at most one node is visited per level
- Therefore, the worst-case time complexity of deletion is $O(h)$ where h is the height of the BST
- bstFree free a tree
- bstSize return the size of a tree
- bstHeight return the height of a tree
- bstPrune given values $l o$ and $h i$, remove all values outside the range $[l o, h i]$
https://forms.office.com/r/5c0fb4tvMb

