Motivation

Priority Queues

Heaps

PQ Summary

COMP2521 23T3 Priority Queues and Heaps

Kevin Luxa cs2521@cse.unsw.edu.au

> priority queues binary heaps

Motivation

Priority Queues

Heaps

PQ Summary

We have learned about types of collections where items are inserted and then deleted based on insertion order

> stack last in, first out

> queue first in, first out

Motivation

Priority Queues

Heaps

PQ Summary

There are applications where we want to process items based on priority

Examples:

Huffman coding Dijkstra's algorithm Prim's algorithm

Priority Queues

Motivation

COMP2521 23T3

Priority Queues

mplementations

Heaps

PQ Summary

A priority queue is an abstract data type where each item has an associated priority.

It supports the following operations:

insert insert an item with an associated priority

delete

delete (and return) the item with the highest priority

peek

get the item with the highest priority, without deleting it

is empty check if the priority queue is empty

Priority Queues Priority

Motivation

Priority Queues

Implementations

Heaps

PQ Summary

Priority is often given by an integer value.

Depending on the application, either a large priority value or small priority value could be taken to mean "high priority".

Here we'll take a larger priority value to mean higher priority.

```
COMP2521
23T3
```

Priority Queues

Interface

Motivation

```
Priority
Queues
```

Implementatio

Heaps

PQ Summary

typedef struct pq *Pq;

```
/** Creates a new, empty pq */
Pq PqNew(void);
```

```
/** Frees memory allocated to a pq */
void PqFree(Pq pq);
```

```
/** Adds an item with priority to a pq */
void PqInsert(Pq pq, Item item, int priority);
```

/** Deletes and returns the item with the highest priority */
Item PqDelete(Pq pq);

```
/** Returns the item with the highest priority */
Item PqPeek(Pq pq);
```

```
/** Returns true if the pq is empty, false otherwise */
bool PqIsEmpty(Pq pq);
```

Priority Queues

```
Example Usage
```

```
Motivation
```

```
Priority
Queues
```

.....

Pq pq = PqNew();

```
PqInsert(pq, "alice", 4);
PqInsert(pq, "bob", 3);
PqInsert(pq, "andrew", 30);
PqInsert(pq, "jas", 35);
```

```
printf("%s\n", PqDelete(pq)); // jas
printf("%s\n", PqDelete(pq)); // andrew
```

```
PqInsert(pq, "jake", 23);
PqInsert(pq, "sasha", 25);
```

```
printf("%s\n", PqPeek(pq)); // sasha
printf("%s\n", PqDelete(pq)); // sasha
printf("%s\n", PqDelete(pq)); // jake
printf("%s\n", PqDelete(pq)); // alice
printf("%s\n", PqDelete(pq)); // bob
```

```
if (PqIsEmpty(pq)) {
    printf("the queue is empty\n");
}
```

```
PqFree(pq);
```

Priority Queues

Implementations

Heaps

PQ Summary

Priority Queues

How to implement a priority queue?

unordered array

ordered array

linked list (unordered/ordered)

Priority Queue

Unordered array implementation

Motivation

COMP2521 23T3

Priority Queues

Implementations

Heaps

PQ Summary

unordered array

[0]	[1]	[2]	[3]	[4]	[5]
alice	bob	andrew	jas	jake	sasha
4	3	30	35	23	25

Performance? Insert: O(1)Delete: O(n)Peek: O(n)Is empty: O(1)

Priority Queue Ordered array implementation

Motivation

COMP2521 23T3

Priority Queues

Implementations

Heaps

PQ Summary

ordered array

[0]	[1]	[2]	[3]	[4]	[5]
bob	alice	jake	sasha	andrew	jas
3	4	23	25	30	35

Performance? Insert: O(n)Delete: O(1)Peek: O(1)Is empty: O(1)

Priority Queue

Unordered linked list implementation

Motivation

COMP2521 23T3

Priority Queues

Implementations

Heaps

PO Summarv

unordered linked list

$$\begin{array}{c} \text{alice} \\ 4 \end{array} \xrightarrow{bob} \\ 3 \end{array} \xrightarrow{andrew} \\ 30 \end{array} \xrightarrow{jas} \\ 35 \end{array} \xrightarrow{jake} \\ 23 \end{array} \xrightarrow{sasha} \\ 25 \end{array} \xrightarrow{\text{NULL}}$$

Performance? Insert: O(1)Delete: O(n)Peek: O(n)Is empty: O(1)

Priority Queue Ordered linked list implementation

ordered linked list

COMP2521 23T3

Implementations

Performance? Insert: O(n)Delete: O(1)Peek: O(1)Is empty: O(1)

Motivation

Priority Queues

Implementations

Heaps

PQ Summary

Data Structure	Insert	Delete	Peek	Is Empty
Unordered array	O(1)	O(n)	O(n)	O(1)
Ordered array	O(n)	O(1)	O(1)	O(1)
Unordered linked list	O(1)	O(n)	O(n)	O(1)
Ordered linked list	O(n)	O(1)	<i>O</i> (1)	<i>O</i> (1)

Heaps

COMP2521 23T3

Motivatior

Priority Queues

Heaps

Insertion Deletion PQ implementat

PQ Summary

A heap is a tree-based data structure which satisfies the heap property.

The heap property specifies how values in the heap should be ordered, and depends on the kind of heap:

In a max heap, the value in each node must be greater than or equal to the values in its children.

In a min heap, the value in each node must be less than or equal to the values in its children.

8

3

In this lecture we will focus on max heaps (min heaps can be implemented very similarly)

Motivation

Priority Queues

Heaps

Insertion Deletion PO implementa

PQ Summary

There are many variants of heaps, for example:

binary heap, binomial heap, Fibonacci heap, leftist heap, pairing heap, soft heap,

We will consider just the binary heap.

...

Priority Queues

Heaps

Insertion Deletion PQ implementat

PQ Summary

A binary heap is a heap that takes the form of a binary tree, and satisfies the following properties:

heap property

as defined above

completeness property

all levels of the tree (except possibly the last) must be fully filled and the last level must be filled from left to right

Motivatior

Priority Queues

Heaps

Insertion Deletion PQ implementation

PQ Summary

satisfies heap property satisfies completeness \Rightarrow is a binary heap

Binary Heaps

satisfies heap property does not satisfy completeness \Rightarrow is not a binary heap

Motivation

Priority Queues

Heaps

Insertion Deletion PO implementat

PQ Summary

A result of the completeness property is that binary heaps always contain $\lfloor \log_2 n \rfloor + 1$ levels where n is the number of nodes.

Binary Heaps

This will be relevant for analysis.

n	number of levels	heap
1	1	0
2-3	2	00
4-7	3	0000

Motivation

Priority Queues

Heaps

Insertion Deletion PQ implementatio

PQ Summary

Heaps are usually implemented with an array.

For a binary heap, index 1 of the array contains the root item, the next two indices contain the root's children, the next four indices contain the children of the root's children, and so on.

[0]	[1]	[2]	[3]	[4]	[5]	[6]	
	20	17	11	13	1	8	[

Binary Heaps

...as arrays

Binary Heaps

...as arrays

Motivation

COMP2521 23T3

Priority Queues

Heaps

Insertion Deletion PQ implementation

PQ Summary

This arrangement gives rise to a useful property:

- For an item at index *i*:
 - Its left child is located at index 2i
 - Its right child is located at index 2i + 1
 - Its parent is located at index $\lfloor i/2 \rfloor$

This makes it efficient to move "up" and "down" the tree.

[0]	[1]	[2]	[3]	[4]	[5]	[6]	
	20	17	11	13	1	8	

Motivation

Priority Queues

Heaps

Insertion Deletion PQ implementatio

PQ Summary

Assuming integer items:

```
struct heap {
    int *items;
    int numItems;
    int capacity;
};
```

Binary Heaps

Concrete data structures

Motivation

Priority Queues

Heaps

Insertion Deletion PQ implementatio

PQ Summary

```
struct heap *heapNew(void) {
    struct heap *heap = malloc(sizeof(struct heap));
    heap->numItems = 0;
    heap->capacity = INITIAL_CAPACITY;
    heap->items = malloc((heap->capacity + 1) * sizeof(int));
```

Binary Heaps

Constructor

return heap;

}

Motivation

COMP2521 23T3

Priority Queues

Heaps

Insertion

Example Implementation Analysis Deletion PQ implementation

Q Summary

Insertion is a two-step process:

- 1 Add new item at next available position on bottom level
 - i.e., after the last item
 - New item may violate the heap property
- Fix up: While new item is greater than its parent (and not at the root), swap with its parent
 - This re-organises items along the path to the root and restores the heap property

Binary Heap Insertion COMP2521 23T3 Example: Insert 26 Example 20 17 11 13 8 1

Example: Insert 26

COMP2521 23T3

Example

Insert 26 after the last item (8)

Binary Heap Insertion COMP2521 23T3 Example: Insert 26 Example Fix up 20 17 11 26 13 1 8

COMP2521 23T3

Priority Queues

Heaps

Insertior

Example

Implementatio Analysis Deletion PO implementa

PQ Summary

Example: Insert 26 Fix up 26 is greater than its parent (11) \Rightarrow swap

COMP2521

COMP2521 23T3

Priority Queues

Heaps

Insertior

Example

Analysis Deletion

Example: Insert 26 Fix up 26 is greater than its parent (20) \Rightarrow swap

COMP2521 23T3

Motivation

Priority Queues

Heaps

Insertio

Example

Implementation Analysis Deletion PQ implementati

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

Motivation

Priority Queues

Heaps

Insertio

Example

Implementation Analysis Deletion PQ implementati

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

Motivation

Priority Queues

Heaps

Insertio

Example

Analysis Deletion PQ implementat

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

Motivation

Priority Queues

Heaps

Insertio

Example

Implementation Analysis Deletion PQ implementat

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

Add 17 to the heap

Motivation

Priority Queues

Heaps

Insertio

Example

Implementation Analysis Deletion PQ implementat

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

17 is at the root - done

Motivation

Priority Queues

Heaps

Insertio

Example

Implementation Analysis Deletion PQ implementat

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

Motivation

Priority Queues

Heaps

Insertio

Example

Implementatio Analysis Deletion PQ implementat

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

Add 25 after the last item

Motivation

Priority Queues

Heaps

Insertio

Example

Implementatio Analysis Deletion PQ implementat

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

25 is greater than its parent (17) - swap

Motivation

Priority Queues

Heaps

Insertio

Example

Implementatio Analysis Deletion PQ implementa

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

25 is greater than its parent (17) - swap

Motivation

Priority Queues

Heaps

Insertio

Example

Analysis Deletion PQ implementa

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

25 is at the root - done

Motivation

Priority Queues

Heaps

Insertio

Example

Implementatio Analysis Deletion PQ implementat

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

Motivation

Priority Queues

Heaps

Insertio

Example

Implementatio Analysis Deletion PQ implementat

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

Add 8 after the last item

Motivation

Priority Queues

Heaps

Insertio

Example

Implementatio Analysis Deletion PQ implementa

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

8 is not greater than its parent (25) - done

Motivation

Priority Queues

Heaps

Insertio

Example

Implementatio Analysis Deletion PQ implementat

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

Motivation

Priority Queues

Heaps

Insertio

Example

Implementatio Analysis Deletion PQ implementat

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

Add 6 after the last item

Motivation

Priority Queues

Heaps

Insertio

Example

Implementatio Analysis Deletion PQ implementa

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

6 is not greater than its parent (17) - done

Motivation

Priority Queues

Heaps

Insertion

Example

Implementatio Analysis Deletion PQ implementat

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

Motivation

Priority Queues

Heaps

Insertior

Example

Implementatio Analysis Deletion PQ implementat

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

Add 30 after the last item

Motivation

Priority Queues

Heaps

Insertior

Example

Implementation Analysis Deletion PQ implementa

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

30 is greater than its parent (17) - swap

Motivation

Priority Queues

Heaps

Insertio

Example

Implementatio Analysis Deletion PQ implementat

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

30 is greater than its parent (17) - swap

Motivation

Priority Queues

Heaps

Insertior

Example

Implementatio Analysis Deletion PQ implementat

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

30 is greater than its parent (25) - swap

Motivation

Priority Queues

Heaps

Insertio

Example

Implementatio Analysis Deletion PQ implementat

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap: 17 25 8 6 30 13

30 is greater than its parent (25) - swap

Motivation

Priority Queues

Heaps

Insertior

Example

Analysis Deletion PQ implementa

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

30 is at the root - done

Motivation

Priority Queues

Heaps

Insertio

Example

Implementation Analysis Deletion PQ implementat

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

Motivation

Priority Queues

Heaps

Insertio

Example

Implementatio Analysis Deletion PQ implementat

PQ Summary

Example

Binary Heap Insertion

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

Add 13 after the last item

Motivation

Priority Queues

Heaps

Insertio

Example

Implementation Analysis Deletion PQ implementa

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

13 is greater than its parent (8) - swap

Motivation

Priority Queues

Heaps

Insertio

Example

Implementation Analysis Deletion PQ implementa

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

13 is greater than its parent (8) - swap

Motivation

Priority Queues

Heaps

Insertio

Example

Implementation Analysis Deletion PQ implementa

PQ Summary

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

13 is not greater than its parent (30) - done

Motivation

Priority Queues

Heaps

Insertio

Example

Implementation Analysis Deletion PQ implementat

PQ Summary

Binary Heap Insertion

Example

Insert the following items into an initially empty max heap:

17 25 8 6 30 13

Binary Heap Insertion

Implementation

Motivation

Priority Queues

```
Heaps
Insertion
```

Implementation

Analysis Deletion PQ implementati

Q Summary

```
void heapInsert(struct heap *heap, Item it) {
    if (heap->numItems == heap->capacity) {
        // resize
    heap->numItems++;
    heap->items[heap->numItems] = it;
    fixUp(heap->items, heap->numItems);
}
void fixUp(Item items[], int i) {
    // while index i is not the root and
    // item at index i is greater than its parent
    while (i > 1 && items[i] > items[i / 2]) {
        swap(items, i, i / 2);
        i = i / 2;
    }
```

COMP2521 23T3

Motivation

Priority Queues

Heaps

Insertion

Impleme

Analysis

Deletion

Cost of insertion:

- Add new item after last item $\Rightarrow O(1)$
- Fix up considers one item on each level in the worst case

Binary Heap Insertion

Analysis

- Heap is a complete tree $\Rightarrow O(\log n)$ levels
- Therefore, worst-case time complexity is $O(\log n)$

Binary Heap Deletion

Motivation

COMP2521

23T3

Priority Queues

Heaps

Insertio

Deletion Example Implementati

PQ implementation

Q Summary

Deletion is a three-step process:

- Replace root item with last item
 - Last item = bottom-most, rightmost item
 - Let this item be *i*
- Remove last item
- 3 Fix down: While *i* is less than its greater child, swap it with its greater child
 - This restores the heap property

Motivation

Priority Queues

Heaps

Insertio

Deleti

Example

Implementation Analysis PO implementatio

PQ Summary

Binary Heap Deletion

Example: Delete from this max heap

Binary Heap Deletion

Example: Delete from this max heap

COMP2521 23T3

Example

Delete 20, replace with 8

Binary Heap Deletion

Example: Delete from this max heap

COMP2521 23T3

Example

Delete 20, replace with 8

Motivation

Priority Queues

Heaps

Insertio

Deleti

Example

Implementation Analysis PO implementatio

PQ Summary

Binary Heap Deletion

Example: Delete from this max heap

Fix down

Binary Heap Deletion

. . .

COMP2521 23T3

Queues

Heaps

Deleti

Example

Implementation Analysis PQ implementation

PQ Summary

Example: Delete from this max heap

Fix down 8 is less than its greater child (17) \Rightarrow swap

Binary Heap Deletion

Example: Delete from this max heap

COMP2521 23T3

Example

Fix down 8 is less than its greater child (17) \Rightarrow swap

Motivation

COMP2521 23T3

Priority Queues

Heaps

Insertie

Example

Implementation Analysis

PQ Summary

Example: Delete from this max heap

Fix down 8 is less than its greater child (13) \Rightarrow swap

Motivation

COMP2521 23T3

Priority Queues

Heaps

Deletie

Example

Implementation Analysis PO implementatio

PQ Summary

Example: Delete from this max heap

Fix down 8 is less than its greater child (13) \Rightarrow swap

Motivation

Priority Queues

Heaps

Insertio

Deleti

Example

Implementation Analysis PO implementatio

PQ Summary

Binary Heap Deletion

Example: Delete from this max heap

Done

Motivation

Priority Queues

Heaps

Inserti

Deleti

Example

Implementation Analysis PQ implementation

PQ Summary

[0]	[1]	[2]	[3]	[4]	[5]	[6]	
	30	25	13	6	17	8	[

Binary Heap Deletion

Example

Motivation

Priority Queues

Heaps

Insertio

Detetic

Example

Analysis PO implementation

PQ Summary

Binary Heap Deletion

Example

Delete from the following max heap until it is empty:

30

Deleting 30

Motivation

Priority Queues

Heaps

Insertio

Deleti

Example Implementation

Binary Heap Deletion

Example

Delete from the following max heap until it is empty:

30

Replace 30 with last item (8)

Motivation

Priority Queues

Heaps

Deletie

Example

Implementation Analysis PQ implementatio

PQ Summary

Example

Delete from the following max heap until it is empty:

30

8 is less than its greater child (25) - swap

Motivation

Priority Queues

Heaps

Insertio

Example

Implementation Analysis PQ implementatio

PQ Summary

Example

Delete from the following max heap until it is empty:

30

8 is less than its greater child (25) - swap

Motivation

Priority Queues

Heaps

Deletie

Example

Implementation Analysis PQ implementatio

PQ Summary

Example

Delete from the following max heap until it is empty:

30

8 is less than its greater child (17) - swap

Motivation

Priority Queues

Heaps

Deletie

Example

Implementation Analysis PQ implementatio

PQ Summary

Example

Delete from the following max heap until it is empty:

30

8 is less than its greater child (17) - swap

Motivation

Priority Queues

Heaps

Insertio

Deleti

Example Implementation Analysis PO implementatio

PQ Summary

Binary Heap Deletion

Example

Delete from the following max heap until it is empty:

30

8 is at a leaf - done

Motivation

Priority Queues

Heaps

Insertio

Example

Implementation Analysis PO implementatio

PQ Summary

Binary Heap Deletion

Example

Delete from the following max heap until it is empty:

30 25

Deleting 25

Motivation

Priority Queues

Heaps

Insertio

Example

Implementation Analysis PQ implementatio

PQ Summary

Binary Heap Deletion

Example

Delete from the following max heap until it is empty:

30 25

Replace 25 with last item (8)

Motivation

Priority Queues

Heaps

Dolotic

Example

Implementation Analysis PQ implementatio

PQ Summary

Example

Delete from the following max heap until it is empty:

30 25

8 is less than its greater child (17) - swap

Motivation

Priority Queues

Heaps

Deletio

Example

Implementation Analysis PQ implementatio

PQ Summary

Example

Delete from the following max heap until it is empty:

30 25

8 is less than its greater child (17) - swap

Motivation

Priority Queues

Heaps

Deletic

Example

Implementation Analysis PQ implementatio

PQ Summary

Example

Delete from the following max heap until it is empty:

30 25

8 is not less than its greater child (6) - done

Motivation

Priority Queues

Heaps

Insertio

Example

Implementation Analysis PO implementatio

PQ Summary

Binary Heap Deletion

Example

Delete from the following max heap until it is empty:

30 25 17

Deleting 17

Motivation

Priority Queues

Heaps

Inserti

Example

Implementation Analysis PQ implementatio

PQ Summary

Binary Heap Deletion

Example

Delete from the following max heap until it is empty:

30 25 17

Replace 17 with last item (6)

Motivation

Priority Queues

Heaps

Deletic

Example

Implementation Analysis PQ implementatio

PQ Summary

Binary Heap Deletion

Example

Delete from the following max heap until it is empty:

30 25 17

6 is less than its greater child (13) - swap

Motivation

Priority Queues

Heaps

Deleti

Example

Implementation Analysis PQ implementatio

PQ Summary

Example

Delete from the following max heap until it is empty:

30 25 17

6 is less than its greater child (13) - swap

Motivation

Priority Queues

Heaps

Insertio

Example

Implementation Analysis PQ implementatio

PQ Summary

Binary Heap Deletion

Example

Delete from the following max heap until it is empty:

30 25 17

6 is at a leaf - done

Motivation

Priority Queues

Heaps

Insertio

Example

Implementation Analysis PQ implementatio

PQ Summary

Binary Heap Deletion

Example

Delete from the following max heap until it is empty:

30 25 17 13

Deleting 13

Motivation

Priority Queues

Heaps

Inserti

Example

Implementation Analysis PQ implementatio

PQ Summary

Binary Heap Deletion

Example

Delete from the following max heap until it is empty:

30 25 17 13

Replace 13 with last item (6)

Motivation

Priority Queues

Heaps

Doloti

Example

Implementation Analysis PQ implementatio

PQ Summary

Binary Heap Deletion

Example

Delete from the following max heap until it is empty:

30 25 17 13

6 is less than its greater child (8) - swap

Motivation

Priority Queues

Heaps

Deletic

Example

Implementation Analysis PQ implementatio

PQ Summary

Example

Delete from the following max heap until it is empty:

30 25 17 13

6 is less than its greater child (8) - swap

Motivation

Priority Queues

Heaps

Inserti

Example

Implementation Analysis PQ implementatio

PQ Summary

Binary Heap Deletion

Example

Delete from the following max heap until it is empty:

30 25 17 13

6 is at a leaf - done

Motivation

Priority Queues

Heaps

Inserti

Example

Implementation Analysis PQ implementatio

PQ Summary

Binary Heap Deletion

Example

Delete from the following max heap until it is empty:

30 25 17 13 8

Deleting 8

Motivation

Priority Queues

Heaps

Insertio

Example

Implementation Analysis PQ implementatio

PQ Summary

Binary Heap Deletion

Example

Delete from the following max heap until it is empty:

30 25 17 13 8

Replace 8 with last item (6)

Motivation

Priority Queues

Heaps

Inserti

Example

Implementation Analysis PQ implementatio

PQ Summary

Binary Heap Deletion

Example

Delete from the following max heap until it is empty:

30 25 17 13 8

6 is at a leaf - done

Example

Delete from the following max heap until it is empty:

30 25 17 13 8 6

Deleting 6

COMP2521 23T3

Example

Example

Delete from the following max heap until it is empty:

30 25 17 13 8 6

Delete 6

COMP2521 23T3

Motivation

Priority Queues

Heaps

Insertio

Example

Implementation Analysis PQ implementation

PQ Summary

Example

Delete from the following max heap until it is empty:

30 25 17 13 8 6

Heap is now empty

COMP2521 23T3

Motivation

Priority Queues

Heaps

Insertio

Deteti

Example

Implementation Analysis PO implementatio

PQ Summary

```
Implementation (I)
```

Modivation Priority Use uses Heaps Insertion Example Implementation PO Summary Item heapDelete(struct heap *heap) { Item item = heap->items[1]; heap->items[1] = heap->items[heap->numItems]; heap->numItems--; fixDown(heap->items, 1, heap->numItems); return item;

}

COMP2521

23T3

Implementation (II)

COMP2521 23T3

```
Implementation
```

}

```
void fixDown(Item items[], int i, int N) {
    // while index i has at least one child
   while (2 * i <= N) {</pre>
        // let j be the index of index i's left child
        int i = 2 * i:
        // if index i's right child is greater than its left child
        if (j < N && items[j] < items[j + 1]) j++;</pre>
        // if the item at index i is greater than or equal to both children
        if (items[i] >= items[j]) break;
        swap(items, i, j);
        // move one level down the heap
        i = j;
    }
```

Motivation

Priority Queues

Heaps Insertion Deletion

Example

Implementat

Analysis PQ implementatio

Q Summary

Cost of deletion:

- Replace root by item at end of array $\Rightarrow O(1)$
- Fix down considers two items on each level in the worst case

Binary Heap Deletion

Analysis

- Heap is a complete tree $\Rightarrow O(\log n)$ levels
- Therefore, worst-case time complexity is $O(\log n)$

COMP2521 23T3

PQ implementation

}

```
Pq PqNew(void) {
   Pq pq = malloc(sizeof(struct pq));
   pq->numItems = 0;
   pq->capacity = INITIAL_CAPACITY;
   pq->items = malloc((pq->capacity + 1) * sizeof(struct pqItem));
   return pq;
```

PQ Implementation

Constructor

PQ Implementation

Insertion

```
void PqInsert(Pq pq, Item it, int priority) {
    if (pq->numItems == pq->capacity) {
        // resize array
    }
    pq->numItems++;
    pq->items[pq->numItems] = (struct pqItem){it, priority};
    fixUp(pq->items, pq->numItems);
}
void fixUp(struct pqItem items[], int i) {
    while (i > 1 && items[i].priority > items[i / 2].priority) {
        swap(items, i, i / 2);
        i = i / 2;
    }
```

COMP2521

23T3

PQ implementation

PQ Implementation

Motivation

COMP2521

23T3

Priority Queues

Heaps Insertion Deletion PQ implementation

PQ Summary

```
Item PqDelete(Pq pq) {
    Item item = pg->items[1].item;
    pq->items[1] = pq->items[pq->numItems];
    pq->numItems--;
    fixDown(pq->items, 1, pq->numItems);
    return item;
}
void fixDown(struct pqItem items[], int i, int N) {
    while (2 * i <= N) {</pre>
        int i = 2 * i;
        if (j < N && items[j].priority < items[j + 1].priority) j++;</pre>
        if (items[i].priority >= items[j].priority) break;
        swap(items, i, j);
        i = j;
    }
```

Priority Queue ADT Summary

Motivation

COMP2521 23T3

Priority Queues

Heaps

PQ Summary

Data Structure	Insert	Delete	Peek	Is Empty
Unordered array	O(1)	O(n)	O(n)	O(1)
Ordered array	O(n)	O(1)	<i>O</i> (1)	O(1)
Unordered linked list	O(1)	O(n)	O(n)	O(1)
Ordered linked list	O(n)	O(1)	O(1)	O(1)
Binary heap	$O(\log n)$	$O(\log n)$	<i>O</i> (1)	O(1)

COMP2521 23T3

Motivation

Priority Queues

Heaps

PQ Summary

https://forms.office.com/r/aPF09YHZ3X

Feedback