Recap

Set AD

Counter AD

Assorted Problems

COMP2521 23T3 Applications of Hash Tables

Kevin Luxa cs2521@cse.unsw.edu.au

set adt counter adt assorted problems

A hash table is a data structure that stores key-value pairs, where keys are unique

Operations:

Insert: Insert or replace key-value pair **Lookup:** Given a key, get its associated value **Delete:** Given a key, delete its key-value pair

Performance:

Average-case: O(1)Assuming good hash function and appropriate resizing

Worst-case: O(n)

If all keys hash to the same value (extremely unlikely with good hash)

COMP2521 23T3

Recap

Counter AD

Assorted Problems

COMP2521
23T3

Applications of Hash Tables

Recap

Set ADT

Counter AD

Assorted Problems

Hash tables are used everywhere due to their efficiency

кесар

Set ADT

Counter ADT

Assorted Problems

Set

A set is an unordered collection of distinct elements

Operations:

Insert: Insert an item into the set Membership: Check if an item is in the set Delete: Delete an item from the set

Recap

Set ADT

Counter ADT

Assorted Problems

```
/** Creates a new empty set */
Set SetNew(void);
```

```
/** Free memory used by set */
void SetFree(Set set);
```

```
/** Inserts an item into the set */
void SetInsert(Set set, int item);
```

```
/** Checks if an item is in the set */
bool SetContains(Set set, int item);
```

```
/** Deletes an item from the set */
void SetDelete(Set set, int item);
```

```
/** Returns the size of the set */
int SetSize(Set set);
```

```
/** Displays the set */
void SetShow(Set set);
```

Recap

Set ADT

Counter ADT

Assorted Problems

Data Structure	Insert	Membership	Delete
Unordered array	O(n)	O(n)	O(n)
Ordered array	O(n)	$O(\log n)$	O(n)
Ordered linked list	O(n)	O(n)	O(n)
AVL tree	$O(\log n)$	$O(\log n)$	$O(\log n)$
Hash table	?	?	?

Recap

Set ADT

Counter ADT

Assorted Problems How to implement the Set ADT using a hash table?

Insert

Insert item into the hash table as a key Can use anything as the value

Contains

Check if the item exists in the hash table

Delete

Delete the item from the hash table

Set ADT

Implementations

Recap

Set ADT

Counter ADT

Assorted Problems

Data Structure	Insert	Membership	Delete
Unordered array	O(n)	O(n)	O(n)
Ordered array	O(n)	$O(\log n)$	O(n)
Ordered linked list	O(n)	O(n)	O(n)
AVL tree	$O(\log n)$	$O(\log n)$	$O(\log n)$
Hash table*	O(1)	O(1)	O(1)

* average costs

кесар

Counter ADT

Assorted Problems

Counter

A counter is a collection of items where each distinct item has a count

Operations

Add: Add one to the count of an item Get: Get the count of an item Recap

Set ADT

Counter ADT

COMP2521

23T3

Assorted Problems How to implement the Counter ADT using a hash table?

Use hash table to map items to their counts

Add

Look up item's count in the hash table Then re-insert the item into the hash table with count increased by 1

Get

Look up item's count in the hash table

Set ADT

Counter ADT

Assorted Problems

Two sum Odd occurring Anagram

Assorted Problems

Hash tables are often used as sets or counters to solve problems efficiently

Examples:

Two sum Odd occurring elements Anagram

Recap

Set ADT

Counter ADT

Assorted Problems

Two sum

Odd occurrin Anagram

Problem:

Given an array of integers and a target sum S, determine whether the array contains two integers that sum to S.

Examples:

Consider the array A = [12, 6, 3, 3, 7, 8]

twoSum $(A, 13) \Rightarrow$ true twoSum $(A, 16) \Rightarrow$ false twoSum $(A, 3) \Rightarrow$ false twoSum $(A, 6) \Rightarrow$ true

Odd Occurring Elements

Problem:

COMP2521

23T3

Odd occurring

Given an array of integers, return the number of distinct integers that occur an odd number of times.

Examples:

 $\begin{aligned} \mathsf{oddOccurring}([4,3,4,8,8,4]) \Rightarrow 2\\ \mathsf{oddOccurring}([7,2,1,5,6,9]) \Rightarrow 6\\ \mathsf{oddOccurring}([1,1,3,3,7,7]) \Rightarrow 0 \end{aligned}$

Anagram

Problem:

Given two strings *s* and *t*, determine whether they are anagrams.

Two strings are anagrams if they contain the same amount of each character.

Examples:

 $\begin{array}{l} anagram("abcde", "edcba") \Rightarrow true\\ anagram("abcde", "fdcba") \Rightarrow false\\ anagram("abcde", "abcdef") \Rightarrow false\\ anagram("aaabb", "ababa") \Rightarrow true\\ anagram("aaabb", "babab") \Rightarrow false \end{array}$

Recap

Set AD

Counter AD

Assorted

Problen

TWO SUIII

Anagram

https://forms.office.com/r/aPF09YHZ3X

Feedback