COMP2521 23T3
Minimum Spanning Trees

Kevin Luxa
cs2521@cse.unsw.edu.au

minimum spanning trees
kruskal’s algorithm
prim’s algorithm
Minimum Spanning Trees

A spanning tree of an undirected graph G is a subgraph of G that contains all vertices of G, that is connected and contains no cycles.

A minimum spanning tree of an undirected weighted graph G is a spanning tree of G that has minimum total edge weight among all spanning trees of G.

Applications:
- Electrical grids, networks
- Any situation where we want to connect nodes as cheaply as possible
Minimum Spanning Trees

Example

Original graph

Spanning tree

Minimum spanning tree
Basic minimum spanning tree algorithms:

- Kruskal’s algorithm
- Prim’s algorithm
Kruskal’s Algorithm

Algorithm:
1. Start with an empty graph
 - With same vertices as original graph
2. Consider edges in increasing weight order
 - Add edge if it does not form a cycle in the MST
3. Repeat until \(V - 1 \) edges have been added

Critical operations:
- Iterating over edges in weight order
- Checking if adding an edge would form a cycle
Run Kruskal’s algorithm on this graph:
Kruskal’s Algorithm

Example

Add 0-1

Don’t add 0-4

Add 3-4

Don’t add 1-4

Add 0-3

Add 2-3
Kruskal’s Algorithm

Example

Minimum Spanning Trees

Kruskal’s Algorithm

Example

Pseudocode

Analysis

Prim’s Algorithm

Comparison

Other Algorithms

Appendix

MST:

0 --- 1
 | |
2 --- 3

0 -- 3
 | |
4 --- 5

2 --- 7

3 --- 6

2
Kruskal’s Algorithm
Pseudocode (Version 1)

kruskalMst(G):

Inputs: graph G with V vertices
Output: minimum spanning tree of G

mst = empty graph with V vertices

sortedEdges = sort edges of G by weight

for each edge e in sortedEdges:
 add e to mst
 if mst has a cycle:
 remove e from mst

if mst has V−1 edges:
 return mst
Kruskal’s Algorithm
Pseudocode (Version 2)

kruskalMst(G):

Inputs: graph \(G \) with \(V \) vertices

Output: minimum spanning tree of \(G \)

\[
\text{mst} = \text{empty graph with } V \text{ vertices}
\]

\[
\text{sortedEdges} = \text{sort edges of } G \text{ by weight}
\]

for each edge \((v, w, \text{weight})\) in sortedEdges:

- **if** there is no path between \(v \) and \(w \) in mst:
 - add edge \((v, w, \text{weight})\) to mst

- **if** mst has \(V - 1 \) edges:
 - **return** mst
Proof by exchange argument.

Idea:

- Suppose there exists another algorithm A which makes a different set of choices
 - In this case, chooses a different set of edges for the MST
- Identify one choice made by A which is not made by our algorithm
- Show that by exchanging that choice with one of the choices made by our algorithm, the solution does not become worse or less optimal
 - In this case, the “solution” is the MST produced
 - In this case, an “optimal” solution is a MST that costs as little as possible
Sort the edges of G in increasing order.

Let K be the set of edges selected by Kruskal’s algorithm. Let A be the set of edges selected by a different algorithm.

edges of G \hspace{1em} e_1 \hspace{1em} e_2 \hspace{1em} e_3 \hspace{1em} e_4 \hspace{1em} e_5 \hspace{1em} e_6 \hspace{1em} e_7 \hspace{1em} e_8 \hspace{1em} e_9 \hspace{1em} \cdots

edges of K \hspace{1em} e_1 \hspace{1em} e_2 \hspace{1em} e_4 \hspace{1em} e_5 \hspace{1em} e_7 \hspace{1em} e_9 \hspace{1em} \cdots

edges of A \hspace{1em} e_1 \hspace{1em} e_2 \hspace{1em} e_4 \hspace{1em} e_7 \hspace{1em} e_8 \hspace{1em} e_9 \hspace{1em} \cdots
Kruskal’s Algorithm

Analysis - Correctness

Sort the edges of G in increasing order.

Let K be the set of edges selected by Kruskal’s algorithm. Let A be the set of edges selected by a different algorithm.

Consider the first edge that is chosen by K but not by A.
Sort the edges of G in increasing order.

Let K be the set of edges selected by Kruskal’s algorithm.
Let A be the set of edges selected by a different algorithm.

edges of G
e_1 e_2 e_3 e_4 e_5 e_6 e_7 e_8 e_9 ...

edges of K
e_1 e_2 e_4 e_5 e_7 e_9 ...

edges of A
e_1 e_2 e_4 e_7 e_8 e_9 ...

edges of A'
e_1 e_2 e_4 e_5 e_7 e_8 e_9 ...

Consider the first edge that is chosen by K but not by A.
Add this edge to a copy of A (call it A').
Sort the edges of G in increasing order.

Let K be the set of edges selected by Kruskal’s algorithm. Let A be the set of edges selected by a different algorithm.

edges of G \hspace{1cm} e_1 \hspace{0.5cm} e_2 \hspace{0.5cm} e_3 \hspace{0.5cm} e_4 \hspace{0.5cm} e_5 \hspace{0.5cm} e_6 \hspace{0.5cm} e_7 \hspace{0.5cm} e_8 \hspace{0.5cm} e_9 \hspace{0.5cm} \cdots \\
edges of K \hspace{1cm} e_1 \hspace{0.5cm} e_2 \hspace{0.5cm} e_4 \hspace{0.5cm} e_5 \hspace{0.5cm} e_7 \hspace{0.5cm} e_9 \hspace{0.5cm} \cdots \\
edges of A \hspace{1cm} e_1 \hspace{0.5cm} e_2 \hspace{0.5cm} e_4 \hspace{0.5cm} e_7 \hspace{0.5cm} e_8 \hspace{0.5cm} e_9 \hspace{0.5cm} \cdots \\
edges of A' \hspace{1cm} e_1 \hspace{0.5cm} e_2 \hspace{0.5cm} e_4 \hspace{0.5cm} e_5 \hspace{0.5cm} e_7 \hspace{0.5cm} e_8 \hspace{0.5cm} e_9 \hspace{0.5cm} \cdots \\

Consider the first edge that is chosen by K but not by A.
Add this edge to a copy of A (call it A').
The edges in A' form a cycle (because A forms a spanning tree).
Kruskal’s Algorithm
Analysis - Correctness

Now find the highest-weight edge in this cycle and remove it from A'.

Kruskal’s Algorithm
Analysis - Correctness

<table>
<thead>
<tr>
<th>edges of G</th>
<th>e_1</th>
<th>e_2</th>
<th>e_3</th>
<th>e_4</th>
<th>e_5</th>
<th>e_6</th>
<th>e_7</th>
<th>e_8</th>
<th>e_9</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>edges of K</td>
<td>e_1</td>
<td>e_2</td>
<td>e_4</td>
<td>e_5</td>
<td></td>
<td>e_7</td>
<td>e_9</td>
<td></td>
<td></td>
<td>\cdots</td>
</tr>
<tr>
<td>edges of A</td>
<td>e_1</td>
<td>e_2</td>
<td>e_4</td>
<td></td>
<td></td>
<td>e_7</td>
<td>e_8</td>
<td>e_9</td>
<td></td>
<td>\cdots</td>
</tr>
<tr>
<td>edges of A'</td>
<td>e_1</td>
<td>e_2</td>
<td>e_4</td>
<td>e_5</td>
<td></td>
<td>e_7</td>
<td>e_8</td>
<td>e_9</td>
<td></td>
<td>\cdots</td>
</tr>
</tbody>
</table>

Now find the highest-weight edge in this cycle and remove it from A'. Now A' is once again a spanning tree, but it is more similar to K than A and it costs no more than A.
Kruskal’s Algorithm
Analysis - Correctness

Now find the highest-weight edge in this cycle and remove it from A'. Now A' is once again a spanning tree, but it is more similar to K than A and it costs no more than A.

Repeat until A' is identical to K. Each time we perform an exchange, the spanning tree does not increase in cost.

Therefore, K is an optimal spanning tree (MST).
Kruskal’s Algorithm
Analysis - Time complexity

Analysis:

- Sorting edges is $O(E \cdot \log E)$
- Main loop has at most E iterations
- Checking if adding an edge would form a cycle
 - Different ways to implement:
 - Cycle/path checking is $O(V)$ in the worst case (adjacency list)
 \Rightarrow overall cost $= O(E \cdot \log E + E \cdot V) = O(E \cdot V)$
 - Using union-find data structure is close to $O(1)$ in the worst case
 \Rightarrow overall cost $= O(E \cdot \log E + E) = O(E \cdot \log E) = O(E \cdot \log V)$
Prim’s Algorithm

Algorithm:
1. Start with an empty graph
2. Start from any vertex, add it to the MST
3. Choose cheapest edge \(s-t \) such that:
 - \(s \) has been added to the MST, and
 - \(t \) has not been added to the MST
 and add this edge and the vertex \(t \) to the MST
4. Repeat previous step until \(V - 1 \) edges have been added
 - Or until all vertices have been added

Critical operations:
- Finding the cheapest edge \(s-t \) such that
 - \(s \) has been added to the MST and \(t \) has not been added to the MST
Run Prim’s algorithm on this graph (starting at 0):
Prim’s Algorithm

Example

Start of step 1

End of step 1

Start of step 2

End of step 2

Start of step 3

End of step 3

Start of step 4

End of step 4
Prim’s Algorithm
Example

Minimum Spanning Trees

Kruskal’s Algorithm

Prim's Algorithm

Example

Pseudocode

Analysis

Comparison

Other Algorithms

Appendix

MST:

0 ——— 1

1 ——— 3

3 ——— 4

4 ——— 0

4 ——— 2

2 ——— 3

6 ——— 4

8 ——— 4

5 ——— 1

7 ——— 2

8 ——— 6
Prim's Algorithm

Pseudocode

primeMst(G):

Inputs: graph G with V vertices
Output: minimum spanning tree of G

mst = empty graph with V vertices
usedV = {0}
unusedE = edges of G
while |usedV| < n:
 find cheapest edge e (s, t, weight) in unusedE such that
 s ∈ usedV and t ∉ usedV

 add e to mst
 add t to usedV
 remove e from unusedE

return mst
Analysis:

- Algorithm considers at most E edges $\Rightarrow O(E)$
- Loop has V iterations
- In each iteration, finding the minimum-weighted edge:
 - With set of edges is $O(E)$
 \Rightarrow overall cost $= O(E + V \cdot E) = O(V \cdot E)$
 - With Fibonacci heap is $O(\log E) = O(\log V)$
 \Rightarrow overall cost $= O(E + V \cdot \log V)$
Comparison

Kruskal’s algorithm vs Prim’s algorithm

Kruskal’s algorithm...
- is $O(E \cdot \log V)$
- uses array-based data structures
- performs better on sparse graphs

Prim’s algorithm...
- is $O(E + V \cdot \log V)$
- uses complex linked data structures
 - in its most efficient implementation (Fibonacci heap)
- performs better on dense graphs
Other MST Algorithms

- **Boruvka’s algorithm**
 - Oldest MST algorithm
 - Start with V separate components
 - Join components using min cost links
 - Continue until only a single component
 - Worst-case time complexity: $O(E \cdot \log V)$

- **Karger, Klein and Tarjan**
 - Based on Boruvka’s algorithm, but non-deterministic
 - Randomly selects subset of edges to consider
 - Time complexity: $O(E)$ on average
https://forms.office.com/r/aPF09YHZ3X
Appendix
Kruskal’s Algorithm Example

Original graph

Adding 0-1 would not create a cycle
Adding 3-4 would not create a cycle
Adding 0-3 would not create a cycle
Adding 0-4 would create a cycle
Adding 1-4 would create a cycle
Adding 2-3 would not create a cycle
Done - MST has 4 edges
Adding 0-1 would not create a cycle
Adding 3-4 would not create a cycle
Kruskal’s Algorithm Example

Adding 0-3 would not create a cycle

Original graph

Adding 0-3 would not create a cycle
Adding 0-4 would create a cycle
Adding 1-4 would create a cycle
Adding 2-3 would not create a cycle
Done - MST has 4 edges
Adding 0-4 would create a cycle
Kruskal’s Algorithm Example

Adding 1-4 would create a cycle

Original graph

Adding 0-1 would not create a cycle

Adding 3-4 would not create a cycle

Adding 0-3 would not create a cycle

Adding 0-4 would create a cycle

Adding 1-4 would create a cycle

Adding 2-3 would not create a cycle

Done - MST has 4 edges
Kruskal’s Algorithm Example

Adding 2-3 would not create a cycle

Original graph

Adding 0-1 would not create a cycle
Adding 3-4 would not create a cycle
Adding 0-3 would not create a cycle
Adding 0-4 would create a cycle
Adding 1-4 would create a cycle
Adding 2-3 would not create a cycle

Done - MST has 4 edges
Kruskal’s Algorithm Example

Done - MST has 4 edges
Kruskal’s Algorithm
Example

Prim’s Algorithm
Example

Original graph
Prim's Algorithm Example

Start at vertex 0

Original graph

0

1

3

4

5

6

7

8

5

4

3

2

1

0

Start at vertex 0

Choose cheapest edge out of these (in red)
Add 0-1 to MST

Choose cheapest edge out of these (in red)
Add 0-3 to MST

Choose cheapest edge out of these (in red)
Add 3-4 to MST

Choose cheapest edge out of these (in red)
Add 3-2 to MST

Done - MST has 4 edges
Choose cheapest edge out of these (in red)
Add 0-1 to MST
Choose cheapest edge out of these (in red)
Prim’s Algorithm Example

Add 0-3 to MST
Choose cheapest edge out of these (in red)
Prim’s Algorithm Example

Add 3-4 to MST
Prim’s Algorithm Example

Choose cheapest edge out of these (in red)

Original graph
Start at vertex 0
Choose cheapest edge out of these (in red)
Add 0-1 to MST
Choose cheapest edge out of these (in red)
Add 0-3 to MST
Choose cheapest edge out of these (in red)
Add 3-4 to MST
Choose cheapest edge out of these (in red)
Add 3-2 to MST
Done - MST has 4 edges
Prim’s Algorithm Example

Add 3-2 to MST
Prim’s Algorithm Example

Done - MST has 4 edges

Original graph

Start at vertex 0

Choose cheapest edge out of these (in red)

Add 0-1 to MST

Choose cheapest edge out of these (in red)

Add 0-3 to MST

Choose cheapest edge out of these (in red)

Add 3-4 to MST

Choose cheapest edge out of these (in red)

Add 3-2 to MST

Done - MST has 4 edges