COMP2521
23T3

COMP2521 23T3

Minimum Spanning Trees

Kevin Luxa

cs2521@cse.unsw.edu.au

minimum spanning trees
kruskal's algorithm

prim’s algorithm

COMP2521
23T3

Minimum
Spanning
Trees

Minimum Spanning Trees

A of an undirected graph G
is a subgraph of G that contains all vertices of G,
that is connected and contains no cycles

A of an undirected weighted graph G
is a spanning tree of G that has
minimum total edge weight among all spanning trees of G

Applications:
Electrical grids, networks
Any situation where we want to connect nodes as cheaply as possible

i Minimum Spanning Trees
Example

Minimum
Spanning
Trees

Original graph Spanning tree Minimum spanning tree

COMP2521
23T3

Minimum
Spanning
Trees

Minimum Spanning Tree Algorithms

Basic minimum spanning tree algorithms:
e Kruskal's algorithm
® Prim’s algorithm

COMP2521
23T3

Kruskal's

Algorithm Algorithm:
© Start with an empty graph
* With same vertices as original graph
@ Consider edges in increasing weight order
* Add edge if it does not form a cycle in the MST

© Repeat until V — 1 edges have been added

Critical operations:
e Iterating over edges in weight order
® Checking if adding an edge would form a cycle

Kruskal's Algorithm

O Kruskal's Algorithm

Example

Example

Run Kruskal's algorithm on this graph:

wot
K

o Kruskal's Algorithm

Example

= N S S O
A gl

Add 0-1 Add 3-4 Add 0-3

LA G R G
Ha S Fou i

Don’t add 0-4 Don't add 1-4 Add 2-3

COMP2521
23T3

Minimum
Spanning
Trees

Kruskal's
Algorithm
Example
Pseudocode
Analysis
Prim’s
Algorithm

Comparison

Other
Algorithms

Appendix

MST:

Kruskal's Algorithm

Example

COMP2521
23T3

kruskalMst(G) :
Inputs: graph G with V vertices
Output: minimum spanning tree of G

Pseudocode

mst = empty graph with V vertices

sortedEdges = sort edges of G by weight
for each edge e in sortedEdges:
add e to mst
if mst has a cycle:
remove e from mst

if mst has V —1 edges:
return mst

Kruskal's Algorithm

Pseudocode (Version 1)

O Kruskal's Algorithm

Pseudocode (Version 2)

D kruskalMst(G):
Inputs: graph G with V vertices
Output: minimum spanning tree of G

mst = empty graph with V vertices

sortedEdges = sort edges of G by weight
for each edge (v, w, weight) in sortedEdges:
if there is no path between v and w in mst:
add edge (v, w, weight) to mst

if mst has V —1 edges:
return mst

Corre

COMP2521
23T3

ectness

Kruskal's Algorithm

Analysis - Correctness

Proof by exchange argument.

Idea:

® Suppose there exists another algorithm A which makes a different set of
choices

* In this case, chooses a different set of edges for the MST

* |dentify one choice made by A which is not made by our algorithm
* Show that by exchanging that choice with one of the choices made by
our algorithm, the solution does not become worse or less optimal

* In this case, the “solution” is the MST produced
* In this case, an “optimal” solution is a MST that costs as little as possible

O Kruskal's Algorithm

Analysis - Correctness

Sort the edges of G in increasing order.

Let K be the set of edges selected by Kruskal's algorithm.
Let A be the set of edges selected by a different algorithm.

edgesof G e1 e e e es e e € €
edgesof K e € €4 6 er €9

edgesof A e e €4 er e €9

O Kruskal's Algorithm

Analysis - Correctness

Sort the edges of G in increasing order.

Let K be the set of edges selected by Kruskal's algorithm.
Let A be the set of edges selected by a different algorithm.

edgesof G e1 e e es | es | e e € €
edgesof K e € €4 | € er €9

edgesof A e e €4 er e €9

Consider the first edge that is chosen by K but not by A.

COMP2521
23T3

Kruskal's Algorithm

Analysis - Correctness

Sort the edges of G in increasing order.

Let K be the set of edges selected by Kruskal's algorithm.
Let A be the set of edges selected by a different algorithm.

edges of G
edges of K
edges of A
edges of A’

el) es e4 es €6 er es €9

€1 €2 €4 €5 er €9
€1 €2 €4 er €8 €9
€1 €2 €4 er €8 €9

Consider the first edge that is chosen by K but not by A.

Add this edge to a copy of A4 (call it 4’).

COMP2521
23T3

Kruskal's Algorithm

Analysis - Correctness

Sort the edges of G in increasing order.

Let K be the set of edges selected by Kruskal's algorithm.
Let A be the set of edges selected by a different algorithm.

edges of G
edges of K
edges of A
edges of A’

el) es e4 es €6 er es €9

€1 €2 €4 €5 er €9
€1 €2 €4 er €8 €9
€1 €2 €4 er €8 €9

Consider the first edge that is chosen by K but not by A.

Add this edge to a copy of A4 (call it 4’).

The edges in A’ form a cycle (because A forms a spanning tree).

O Kruskal's Algorithm

Analysis - Correctness

edgesof G e1 e e e e e er e €

edgesof K e e e4 6 er €9
Correcti

edgesof A e € €4 er e €9

edgesof A e e €4 er €9

Now find the highest-weight edge in this cycle and remove it from A'.

O Kruskal's Algorithm

Analysis - Correctness

edgesof G e1 e e e e e er e €

edgesof K e e e4 6 er €9
Correctne:

edgesof A e € €4 er e €9

edgesof A e e €4 er €9

Now find the highest-weight edge in this cycle and remove it from A’'.
Now A’ is once again a spanning tree, but it is more similar to K than 4 and it
costs no more than A.

O Kruskal's Algorithm

Analysis - Correctness

edgesof G e1 e e e e e er e €

edgesof K e e e4 6 er €9
Correctne:

edgesof A e € €4 er e €9

edgesof A e e €4 er €9

Now find the highest-weight edge in this cycle and remove it from A’'.
Now A’ is once again a spanning tree, but it is more similar to K than 4 and it
costs no more than A.

Repeat until A" is identical to K. Each time we perform an exchange, the
spanning tree does not increase in cost.

Therefore, K is an optimal spanning tree (MST).

O Kruskal's Algorithm

Analysis - Time complexity

Analysis:
Tine compleity * Sorting edges is O(E - log E)
® Main loop has at most E iterations
® Checking if adding an edge would form a cycle

e Different ways to implement:

e Cycle/path checking is O(V) in the worst case (adjacency list)
= overallcost= O(E-logE+ E- V)= O(E-V)

® Using union-find data structure is close to O(1) in the worst case
= overall cost = O(E -log E+ E) = O(E -logE) = O(E -log V)

copp Prim’s Algorithm

Algorithm:
© Start with an empty graph
Algorithm @ Start from any vertex, add it to the MST

© Choose cheapest edge s—t such that:

® shas been added to the MST, and
* ¢t has not been added to the MST

and add this edge and the vertex ¢ to the MST

O Repeat previous step until V' — 1 edges have been added
® Or until all vertices have been added

Critical operations:

* Finding the cheapest edge s-t such that
s has been added to the MST and ¢ has not been added to the MST

coppas Prim’s Algorithm

Example

Run Prim’s algorithm on this graph (starting at 0):

wot
K

Example

COMP2521
23T3

Minimum
Spanning
Trees

Kruskal's
Algorithm
Prim’s
Algorithm
Exampte

Pseudocode

Analysis
Comparison

Other
Algorithms

Appendix

Prim’s Algorithm

Example

®P PP B G
Liod L B g

Start of step 1

End of step 1

Start of step 2

End of step 2

P PP o O

3

3

1o ou I om g

Start of step 3

End of step 3

Start of step 4

End of step 4

COMP2521
23T3

Minimum
Spanning
Trees

Kruskal's
Algorithm
Prim’s
Algorithm
Example
Pseudocode

Analysis
Comparison

Other
Algorithms

Appendix

MST:

Prim’s Algorithm

Example

COMP2521

s Prim’s Algorithm

Pseudocode

primMst(G):
Inputs: graph G with V vertices
Output: minimum spanning tree of G
Pseudocode

mst = empty graph with V vertices

usedV = {0}

unusedE = edges of G

while |usedV| < n:

find cheapest edge e (s, t, weight) in unusedE such that

s€ usedV and t ¢ usedV

add e to mst
add ¢t to usedV

remove e¢ from unusedE

return mst

COMP2521
23T3

Prim’s Algorithm

Analysis

Analysis:
* Algorithm considers at most E edges = O(FE)

® Loop has V iterations
* In each iteration, finding the minimum-weighted edge:
* With set of edges is O(FE)
= overallcost= O(E+ V-E)=0(V-E)
* With Fibonacci heap is O(log F) = O(log V)
= overall cost= O(E+ V -log V)

conpase Comparison
Kruskal's algorithm vs Prim’s algorithm

Kruskal's algorithm...
* is O(E-logV)
e uses array-based data structures
e performs better on sparse graphs

Comparison

Prim’s algorithm...
*iISO(E+ V- logV)
e uses complex linked data structures
* in its most efficient implementation (Fibonacci heap)

e performs better on dense graphs

O Other MST Algorithms

e Boruvka’s algorithm
® Oldest MST algorithm
® Start with V separate components
,ﬁ’fg"jrﬁthms ® Join components using min cost links
e Continue until only a single component
* Worst-case time complexity: O(E - log V)
e Karger, Klein and Tarjan

* Based on Boruvka's algorithm, but non-deterministic
* Randomly selects subset of edges to consider
* Time complexity: O(F) on average

cogn3|;23521 Feedback

https://forms.office.com/r/aPFO9YHZ3X

Other
Algorithms

https://forms.office.com/r/aPF09YHZ3X

Appendix

O Kruskal's Algorithm Example

Original graph

Kruskal's Algorithm
Example

O Kruskal's Algorithm Example

Adding 0-1 would not create a cycle

Kruskal's Algorithm
Example

O Kruskal's Algorithm Example

Adding 3-4 would not create a cycle

Kruskal's Algorithm
Example

O Kruskal's Algorithm Example

Adding 0-3 would not create a cycle

Kruskal's Algorithm i
Example

O Kruskal's Algorithm Example

Adding 0-4 would create a cycle

Kruskal's Algorithm i
Example

O Kruskal's Algorithm Example

Adding 1-4 would create a cycle

Kruskal's Algorithm i
Example

O Kruskal's Algorithm Example

Minimum
Spanning
Trees

Kruskal's
Algorithm

N Adding 2-3 would not create a cycle

Algorithm

Comparison
Other
Algorithms
Appendix
Kruskal's Algorithm
Example

Prim’s Algorithm
Exampl

O Kruskal's Algorithm Example

Minimum
Spanning
Trees

Kruskal's
Algorithm

Done - MST has 4 edges

Prim’s
Algorithm

Comparison
Other
Algorithms
Appendix
Kruskal's Algorithm
Example

Prim's Algorithm
Example

O Prim’s Algorithm Example

Original graph

R
R

Prim's Algorithm
Example

Ot Prim’s Algorithm Example

Start at vertex 0

R
RN

Prim's Algorithm
Example

Ot Prim’s Algorithm Example

Choose cheapest edge out of these (in red)

o
RN

Prim's Algorithm
Example

COMP2521
23T3

Minimum
Spanning
Trees

Kruskal's
Algorithm

Prim’s
Algorithm

Comparison

Other
Algorithms

Appendix

Kruskal's Algorithm

Example

Prim’s Algorithm
Example

Prim’s Algorithm Example

Add 0-1 to MST

o
RN

COMP2521
23T3

Minimum
Spanning
Trees

Kruskal's
Algorithm

Prim’s
Algorithm

Comparison

Other
Algorithms

Appendix

Kruskal's Algorithm

Example

Prim’s Algorithm
Example

Prim’s Algorithm Example

Choose cheapest edge out of these (in red)

o
R

i Prim’s Algorithm Example

Minimum
Spanning
Trees

Kruskal's
Algorithm

Prim’s Add 0'3 tO MST

Algorithm

Comparison
Other 1
Algorithms
Appendix 4 5
Kruskal's Algorithm
Example
3 8
2 7
6

Prim’s Algorithm
Example

COMP2521
23T3

Minimum
Spanning
Trees

Kruskal's
Algorithm

Prim’s
Algorithm

Comparison

Other
Algorithms

Appendix

Kruskal's Algorithm

Example

Prim’s Algorithm
Example

Prim’s Algorithm Example

Choose cheapest edge out of these (in red)

T
5

i Prim’s Algorithm Example

Minimum
Spanning
Trees

Kruskal's
Algorithm

Prim’s Add 3'4 to MST

Algorithm

Comparison
Other 1
Algorithms
Appendix 4 5
Kruskal's Algorithm
Example
3 8
2 7
6

Prim’s Algorithm
Example

COMP2521
23T3

Minimum
Spanning
Trees

Kruskal's
Algorithm

Prim’s
Algorithm

Comparison

Other
Algorithms

Appendix

Kruskal's Algorithm

Example

Prim’s Algorithm
Example

Prim’s Algorithm Example

Choose cheapest edge out of these (in red)

T
i

i Prim’s Algorithm Example

Minimum
Spanning
Trees

Kruskal's
Algorithm

Prim’s Add 3'2 tO MST

Algorithm

Comparison
Other 1
Algorithms
Appendix 4 5
Kruskal's Algorithm
Example
3 8
2 7
6

Prim’s Algorithm
Example

COMP2521
23T3

Minimum
Spanning
Trees

Kruskal's
Algorithm

Prim’s
Algorithm

Comparison

Other
Algorithms

Appendix

Kruskal's Algorithm

Example

Prim’s Algorithm
Example

Prim’s Algorithm Example

Done - MST has 4 edges

I
& 0

	Minimum Spanning Trees
	Kruskal's Algorithm
	Example
	Pseudocode
	Analysis

	Prim's Algorithm
	Example
	Pseudocode
	Analysis

	Comparison
	Other Algorithms
	Appendix
	Kruskal's Algorithm Example
	Prim's Algorithm Example

