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Minimum Spanning Trees

A of an undirected graph G
is a subgraph of G that contains all vertices of G,
that is connected and contains no cycles

A of an undirected weighted graph G
is a spanning tree of G that has
minimum total edge weight among all spanning trees of G

Applications:
Electrical grids, networks
Any situation where we want to connect nodes as cheaply as possible
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Minimum Spanning Tree Algorithms

Basic minimum spanning tree algorithms:
e Kruskal's algorithm
® Prim’s algorithm
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Kruskal's

Algorithm Algorithm:
© Start with an empty graph
* With same vertices as original graph
@ Consider edges in increasing weight order
* Add edge if it does not form a cycle in the MST

© Repeat until V — 1 edges have been added

Critical operations:
e Iterating over edges in weight order
® Checking if adding an edge would form a cycle

Kruskal's Algorithm



O Kruskal's Algorithm

Example

Example

Run Kruskal's algorithm on this graph:

wot
K
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Example
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kruskalMst(G) :
Inputs: graph G with V vertices
Output: minimum spanning tree of G

Pseudocode

mst = empty graph with V vertices

sortedEdges = sort edges of G by weight
for each edge e in sortedEdges:
add e to mst
if mst has a cycle:
remove e from mst

if mst has V —1 edges:
return mst

Kruskal's Algorithm

Pseudocode (Version 1)



O Kruskal's Algorithm

Pseudocode (Version 2)

D kruskalMst(G):
Inputs: graph G with V vertices
Output: minimum spanning tree of G

mst = empty graph with V vertices

sortedEdges = sort edges of G by weight
for each edge (v, w, weight) in sortedEdges:
if there is no path between v and w in mst:
add edge (v, w, weight) to mst

if mst has V —1 edges:
return mst
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Kruskal's Algorithm

Analysis - Correctness

Proof by exchange argument.

Idea:

® Suppose there exists another algorithm A which makes a different set of
choices

* In this case, chooses a different set of edges for the MST

* |dentify one choice made by A which is not made by our algorithm
* Show that by exchanging that choice with one of the choices made by
our algorithm, the solution does not become worse or less optimal

* In this case, the “solution” is the MST produced
* In this case, an “optimal” solution is a MST that costs as little as possible



O Kruskal's Algorithm

Analysis - Correctness

Sort the edges of G in increasing order.

Let K be the set of edges selected by Kruskal's algorithm.
Let A be the set of edges selected by a different algorithm.

edgesof G e1 e e e es e e € €
edgesof K e € €4 6 er €9

edgesof A e e €4 er e €9



O Kruskal's Algorithm

Analysis - Correctness

Sort the edges of G in increasing order.

Let K be the set of edges selected by Kruskal's algorithm.
Let A be the set of edges selected by a different algorithm.

edgesof G e1 e e es | es | e e € €
edgesof K e € €4 | € er €9

edgesof A e e €4 er e €9

Consider the first edge that is chosen by K but not by A.
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Analysis - Correctness

Sort the edges of G in increasing order.

Let K be the set of edges selected by Kruskal's algorithm.
Let A be the set of edges selected by a different algorithm.

edges of G
edges of K
edges of A
edges of A’

el ) es e4 es €6 er es €9

€1 €2 €4 €5 er €9
€1 €2 €4 er €8 €9
€1 €2 €4 er €8 €9

Consider the first edge that is chosen by K but not by A.

Add this edge to a copy of A4 (call it 4’).
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Kruskal's Algorithm

Analysis - Correctness

Sort the edges of G in increasing order.

Let K be the set of edges selected by Kruskal's algorithm.
Let A be the set of edges selected by a different algorithm.

edges of G
edges of K
edges of A
edges of A’

el ) es e4 es €6 er es €9

€1 €2 €4 €5 er €9
€1 €2 €4 er €8 €9
€1 €2 €4 er €8 €9

Consider the first edge that is chosen by K but not by A.

Add this edge to a copy of A4 (call it 4’).

The edges in A’ form a cycle (because A forms a spanning tree).
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Analysis - Correctness

edgesof G e1 e e e e e er e €

edgesof K e e e4 6 er €9
Correcti

edgesof A e € €4 er e €9

edgesof A e e €4 er €9

Now find the highest-weight edge in this cycle and remove it from A'.
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Analysis - Correctness

edgesof G e1 e e e e e er e €

edgesof K e e e4 6 er €9
Correctne:

edgesof A e € €4 er e €9

edgesof A e e €4 er €9

Now find the highest-weight edge in this cycle and remove it from A’'.
Now A’ is once again a spanning tree, but it is more similar to K than 4 and it
costs no more than A.
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Analysis - Correctness

edgesof G e1 e e e e e er e €

edgesof K e e e4 6 er €9
Correctne:

edgesof A e € €4 er e €9

edgesof A e e €4 er €9

Now find the highest-weight edge in this cycle and remove it from A’'.
Now A’ is once again a spanning tree, but it is more similar to K than 4 and it
costs no more than A.

Repeat until A" is identical to K. Each time we perform an exchange, the
spanning tree does not increase in cost.

Therefore, K is an optimal spanning tree (MST).



O Kruskal's Algorithm

Analysis - Time complexity

Analysis:
Tine compleity * Sorting edges is O(E - log E)
® Main loop has at most E iterations
® Checking if adding an edge would form a cycle

e Different ways to implement:

e Cycle/path checking is O( V) in the worst case (adjacency list)
= overallcost= O(E-logE+ E- V)= O(E-V)

® Using union-find data structure is close to O(1) in the worst case
= overall cost = O(E -log E+ E) = O(E -logE) = O(E -log V)



copp Prim’s Algorithm

Algorithm:
© Start with an empty graph
Algorithm @ Start from any vertex, add it to the MST

© Choose cheapest edge s—t such that:

® shas been added to the MST, and
* ¢t has not been added to the MST

and add this edge and the vertex ¢ to the MST

O Repeat previous step until V' — 1 edges have been added
® Or until all vertices have been added

Critical operations:

* Finding the cheapest edge s-t such that
s has been added to the MST and ¢ has not been added to the MST



coppas Prim’s Algorithm

Example

Run Prim’s algorithm on this graph (starting at 0):

wot
K

Example
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Prim’s Algorithm

Example
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Liod L B g

Start of step 1

End of step 1

Start of step 2

End of step 2
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Start of step 3

End of step 3

Start of step 4

End of step 4
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MST:

Prim’s Algorithm

Example



COMP2521

s Prim’s Algorithm

Pseudocode

primMst(G):
Inputs: graph G with V vertices
Output: minimum spanning tree of G
Pseudocode

mst = empty graph with V vertices

usedV = {0}

unusedE = edges of G

while |usedV| < n:

find cheapest edge e (s, t, weight) in unusedE such that

s€ usedV and t ¢ usedV

add e to mst
add ¢t to usedV

remove e¢ from unusedE

return mst
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Prim’s Algorithm

Analysis

Analysis:
* Algorithm considers at most E edges = O(FE)

® Loop has V iterations
* In each iteration, finding the minimum-weighted edge:
* With set of edges is O(FE)
= overallcost= O(E+ V-E)=0(V-E)
* With Fibonacci heap is O(log F) = O(log V)
= overall cost= O(E+ V -log V)



conpase Comparison
Kruskal's algorithm vs Prim’s algorithm

Kruskal's algorithm...
* is O(E-logV)
e uses array-based data structures
e performs better on sparse graphs

Comparison

Prim’s algorithm...
*iISO(E+ V- logV)
e uses complex linked data structures
* in its most efficient implementation (Fibonacci heap)

e performs better on dense graphs



O Other MST Algorithms

e Boruvka’s algorithm
® Oldest MST algorithm
® Start with V separate components
,ﬁ’fg"jrﬁthms ® Join components using min cost links
e Continue until only a single component
* Worst-case time complexity: O(E - log V)
e Karger, Klein and Tarjan

* Based on Boruvka's algorithm, but non-deterministic
* Randomly selects subset of edges to consider
* Time complexity: O(F) on average
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https://forms.office.com/r/aPFO9YHZ3X

Other
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Original graph

Kruskal's Algorithm
Example



O Kruskal's Algorithm Example

Adding 0-1 would not create a cycle

Kruskal's Algorithm
Example
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Adding 3-4 would not create a cycle

Kruskal's Algorithm
Example



O Kruskal's Algorithm Example

Adding 0-3 would not create a cycle

Kruskal's Algorithm i
Example



O Kruskal's Algorithm Example

Adding 0-4 would create a cycle

Kruskal's Algorithm i
Example



O Kruskal's Algorithm Example

Adding 1-4 would create a cycle

Kruskal's Algorithm i
Example



O Kruskal's Algorithm Example

Minimum
Spanning
Trees

Kruskal's
Algorithm

N Adding 2-3 would not create a cycle

Algorithm

Comparison
Other
Algorithms
Appendix
Kruskal's Algorithm
Example

Prim’s Algorithm
Exampl



O Kruskal's Algorithm Example

Minimum
Spanning
Trees

Kruskal's
Algorithm

Done - MST has 4 edges
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O Prim’s Algorithm Example

Original graph

R
R

Prim's Algorithm
Example



Ot Prim’s Algorithm Example

Start at vertex 0

R
RN

Prim's Algorithm
Example



Ot Prim’s Algorithm Example

Choose cheapest edge out of these (in red)

o
RN

Prim's Algorithm
Example
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Kruskal's Algorithm
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Prim’s Algorithm
Example

Prim’s Algorithm Example

Add 0-1 to MST

o
RN
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Kruskal's Algorithm

Example

Prim’s Algorithm
Example

Prim’s Algorithm Example

Choose cheapest edge out of these (in red)

o
R
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Kruskal's Algorithm
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Prim’s Algorithm Example

Choose cheapest edge out of these (in red)

T
5
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Kruskal's Algorithm
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Prim’s Algorithm
Example

Prim’s Algorithm Example

Choose cheapest edge out of these (in red)

T
i
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Kruskal's Algorithm

Example

Prim’s Algorithm
Example

Prim’s Algorithm Example

Done - MST has 4 edges

I
& 0
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