Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithn

Comparison

Other Algorithm

Appendix

COMP2521 23T3 Minimum Spanning Trees

Kevin Luxa cs2521@cse.unsw.edu.au

minimum spanning trees kruskal's algorithm prim's algorithm

Minimum Spanning Trees

Minimum Spanning Trees

COMP2521 23T3

Kruskal's Algorithm

Prim's Algorithm

Comparison

Other Algorithms

Appendix

A spanning tree of an undirected graph *G* is a subgraph of *G* that contains all vertices of *G*, that is connected and contains no cycles

A minimum spanning tree of an undirected weighted graph G is a spanning tree of G that has minimum total edge weight among all spanning trees of G

Applications: Electrical grids, networks Any situation where we want to connect nodes as cheaply as possible

Minimum Spanning Trees

Example

Minimum Spanning Trees

COMP2521 23T3

Kruskal's Algorithm

Prim's Algorithm

Comparison

Other Algorithm:

Minimum Spanning Tree Algorithms

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Comparison

Other Algorithms

Appendix

Basic minimum spanning tree algorithms:

- Kruskal's algorithm
- Prim's algorithm

COMP2521 23T3

Minimum Spanning Trees

Kruskal's Algorithm

Example Pseudocode Analysis

Prim's Algorithm

Comparison

Other Algorithm

Appendix

Algorithm:

- Start with an empty graph
 - With same vertices as original graph
- 2 Consider edges in increasing weight order
 - Add edge if it does not form a cycle in the MST
- \blacksquare Repeat until V 1 edges have been added

Critical operations:

- Iterating over edges in weight order
- Checking if adding an edge would form a cycle

Minimum Spanning Trees

Kruskal's Algorithm

Example

Pseudoco Analysis

Prim's Algorithn

Comparison

Other Algorithm

Appendix

Kruskal's Algorithm

Example

Run Kruskal's algorithm on this graph:

Example

Add 0-1

Don't add 1-4

Kruskal's Algorithm

Example

Minimum Spanning Trees

Kruskal's Algorithm

Example

Pseudoco Analysis

Prim's Algorithn

Compariso

Other Algorithm

Appendix

Kruskal's Algorithm

Example

MST:

Minimum Spanning Trees

Kruskal's Algorithm Example Pseudocode

Analysis

Prim's Algorithm

Comparison

Other Algorithm

Appendix

kruskalMst(G): Inputs: graph G with V vertices Output: minimum spanning tree of G mst = empty graph with V vertices sortedEdges = sort edges of G by weight for each edge e in sortedEdges: add e to mst if mst has a cycle:

remove e from mst

```
if mst has V-1 edges: return mst
```

Kruskal's Algorithm Pseudocode (Version 1)

Minimum Spanning Trees

Kruskal's Algorithm ^{Example} Pseudocode

Prim's

Algorithm

Comparisor

Other Algorithm

Appendix

kruskalMst(G): Inputs: graph G with V vertices Output: minimum spanning tree of G

mst = empty graph with V vertices

```
sortedEdges = sort edges of G by weight
for each edge (v, w, weight) in sortedEdges:
if there is no path between v and w in mst:
add edge (v, w, weight) to mst
```

```
if mst has V-1 edges:
return mst
```

Kruskal's Algorithm Pseudocode (Version 2)

Analysis - Correctness

Proof by exchange argument.

Idea:

Correctness

COMP2521 23T3

- Suppose there exists another algorithm A which makes a different set of choices
 - In this case, chooses a different set of edges for the MST
- Identify one choice made by A which is not made by our algorithm
- Show that by exchanging that choice with one of the choices made by our algorithm, the solution does not become worse or less optimal
 - In this case, the "solution" is the MST produced ۰
 - In this case, an "optimal" solution is a MST that costs as little as possible

Minimum Spanning Trees

Kruskal's Algorithm Example Pseudocode Analysis Correctness

Prim's

Other Algorithn

Appendix

Kruskal's Algorithm Analysis - Correctness

Sort the edges of G in increasing order.

Let *K* be the set of edges selected by Kruskal's algorithm. Let *A* be the set of edges selected by a different algorithm.

edges of G	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	
edges of K	e_1	e_2		e_4	e_5		e_7		e_9	
edges of A	e_1	e_2		e_4			e_7	e_8	e_9	

Kruskal's Algorithm Analysis - Correctness

Sort the edges of G in increasing order.

Let *K* be the set of edges selected by Kruskal's algorithm. Let *A* be the set of edges selected by a different algorithm.

edges of \boldsymbol{G}	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	
edges of K	e_1	e_2		e_4	e_5		e_7		e_9	
edges of \boldsymbol{A}	e_1	e_2		e_4			e_7	e_8	e_9	

Consider the first edge that is chosen by K but *not* by A.

COMP2521 23T3

Minimum Spanning Trees

Kruskal's Algorithm Example Pseudocode Analysis Correctness

Prim's

Algorithm

Comparison

Other Algorithm

Kruskal's Algorithm Analysis - Correctness

Sort the edges of G in increasing order.

Let K be the set of edges selected by Kruskal's algorithm. Let A be the set of edges selected by a different algorithm.

edges of G	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	
edges of K	e_1	e_2		e_4	e_5		e_7		e_9	
edges of A	e_1	e_2		e_4			e_7	e_8	e_9	
edges of A'	e_1	e_2		e_4	e_5		e_7	e_8	e_9	

Consider the first edge that is chosen by K but *not* by A. Add this edge to a copy of A (call it A').

COMP2521 23T3

Minimum Spanning Trees

Kruskal's Algorithm Example Pseudocode Analysis Correctness

Time complex

Prim's Algorithm

Comparison

Other Algorithn

Kruskal's Algorithm Analysis - Correctness

Sort the edges of G in increasing order.

Let *K* be the set of edges selected by Kruskal's algorithm. Let *A* be the set of edges selected by a different algorithm.

edges of G	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	
edges of K	e_1	e_2		e_4	e_5		e_7		e_9	
edges of A	e_1	e_2		e_4			e_7	e_8	e_9	
edges of A'	e_1	e_2		e_4	e_5		e_7	e_8	e_9	

Consider the first edge that is chosen by K but not by A. Add this edge to a copy of A (call it A'). The edges in A' form a cycle (because A forms a spanning tree).

COMP2521 23T3

Minimum Spanning Trees

Kruskal's Algorithm Example Pseudocode Analysis

Correctness

Prim's Algorithm

Comparison

Other Algorithm

Analysis - Correctness

Minimum Spanning Trees

COMP2521 23T3

Kruskal's Algorithm Example Pseudocode Analysis Correctness

Prim's Algorithn

Comparison

Other Algorithm

Appendix

edges of G	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	•••
edges of K	e_1	e_2		e_4	e_5		e_7		e_9	•••
edges of A	e_1	e_2		e_4			e_7	e_8	e_9	•••
edges of A'	e_1	e_2		e_4	e_5		e_7	e_8	e_9	

Now find the highest-weight edge in this cycle and *remove* it from A'.

COMP2521

23T3

Kruskal's
Algorithm
Example
Pseudocode
Analysis
Correctness

Prim's Algorithr

Comparison

Other Algorithn

Appendix

edges of G	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	•••
edges of K	e_1	e_2		e_4	e_5		e_7		e_9	•••
edges of A	e_1	e_2		e_4			e_7	e_8	e_9	•••
edges of A'	e_1	e_2		e_4	e_5		e_7	e_8	e_9	

Now find the highest-weight edge in this cycle and *remove* it from A'. Now A' is once again a spanning tree, *but* it is more similar to K than A and it costs no more than A.

Minimum Spanning Trees

Kruskal's Algorithm Example Pseudocode Analysis Correctness

Prim's Algorithn

Comparison

Other Algorithn

Appendix

edges of G	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	•••
edges of K	e_1	e_2		e_4	e_5		e_7		e_9	
edges of A	e_1	e_2		e_4			e_7	e_8	e_9	
edges of A'	e_1	e_2		e_4	e_5		e_7	e_8	e_9	

Now find the highest-weight edge in this cycle and *remove* it from A'. Now A' is once again a spanning tree, *but* it is more similar to K than A and it costs no more than A.

Repeat until A' is identical to K. Each time we perform an exchange, the spanning tree does not increase in cost.

Therefore, K is an optimal spanning tree (MST).

COMP2521 23T3

Minimum Spanning Trees

Kruskal's Algorithm Example Pseudocode Analysis Correctness Time complexity

Prim's Algorithm

Comparison

Other Algorithm

Appendix

Analysis:

- Sorting edges is $O(E \cdot \log E)$
- Main loop has at most *E* iterations
- Checking if adding an edge would form a cycle
 - Different ways to implement:
 - Cycle/path checking is O(V) in the worst case (adjacency list) \Rightarrow overall cost = $O(E \cdot \log E + E \cdot V) = O(E \cdot V)$
 - Using union-find data structure is close to O(1) in the worst case \Rightarrow overall cost = $O(E \cdot \log E + E) = O(E \cdot \log E) = O(E \cdot \log V)$

Kruskal's Algorithm

Analysis - Time complexity

Prim's Algorithm

COMP2521 23T3

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Example Pseudocode Analysis

Comparison

Other Algorithm:

Appendix

Algorithm:

- Start with an empty graph
- Start from any vertex, add it to the MST
- **③** Choose cheapest edge *s*-*t* such that:
 - s has been added to the MST, and
 - t has not been added to the MST
 - and add this edge and the vertex \boldsymbol{t} to the MST
- (a) Repeat previous step until V-1 edges have been added
 - Or until all vertices have been added

Critical operations:

 Finding the cheapest edge s-t such that s has been added to the MST and t has not been added to the MST

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorith

Example

Pseudocod Analysis

Comparison

Other Algorithm

Appendix

Run Prim's algorithm on this graph (starting at 0):

Prim's Algorithm

Example

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithr Example

Pseudocode Analysis

Comparison

Other Algorithms

Appendix

Start of step 1

End of step 1

Start of step 2

Prim's Algorithm

Example

End of step 2

0 - 1 - 1 4 - 5 3 - 4 7 - 2 3 - 6 - 2End of step 3

Start of step 4

End of step 4

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithr

Example

Pseudocode Analysis

Compariso

Other Algorithm

Appendix

Prim's Algorithm

MST:

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm Example Pseudocode Analysis

Comparisor

Other Algorithm

Appendix

```
primMst(G):
    Inputs: graph G with V vertices
    Output: minimum spanning tree of G
    mst = empty graph with V vertices
    usedV = \{0\}
    unusedE = edges of G
    while |usedV| < n:
        find cheapest edge e (s, t, weight) in unusedE such that
                s \in usedV and t \notin usedV
        add e to mst
        add t to usedV
        remove e from unusedE
```

return mst

Prim's Algorithm

Pseudocode

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm Example Pseudocode Analysis

. .

Other

Algorithm

Appendix

Analysis:

- Algorithm considers at most $E \text{ edges} \Rightarrow O(E)$
- Loop has V iterations
- In each iteration, finding the minimum-weighted edge:
 - With set of edges is O(E)
 - \Rightarrow overall cost = $O(E + V \cdot E) = O(V \cdot E)$
 - With Fibonacci heap is $O(\log E) = O(\log V)$ \Rightarrow overall cost = $O(E + V \cdot \log V)$

Prim's Algorithm

Analysis

Comparison

Kruskal's algorithm vs Prim's algorithm

Minimum Spanning Trees

COMP2521

23T3

Kruskal's Algorithm

Prim's Algorithn

Comparison

Other Algorithms

Appendix

Kruskal's algorithm...

- is $O(E \cdot \log V)$
- uses array-based data structures
- performs better on sparse graphs

Prim's algorithm...

- is $O(E + V \cdot \log V)$
- uses complex linked data structures
 - in its most efficient implementation (Fibonacci heap)
- performs better on dense graphs

Other MST Algorithms

23T3

COMP2521

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithm

Comparison

Other Algorithms

- Boruvka's algorithm
 - Oldest MST algorithm
 - Start with V separate components
 - Join components using min cost links
 - Continue until only a single component
 - Worst-case time complexity: $O(E \cdot \log V)$
- Karger, Klein and Tarjan
 - Based on Boruvka's algorithm, but non-deterministic
 - Randomly selects subset of edges to consider
 - Time complexity: O(E) on average

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithr

Comparison

Other Algorithms

Appendix

https://forms.office.com/r/aPF09YHZ3X

Feedback

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithn

Comparison

Other Algorithms

Appendix

Kruskal's Algorithm Example Prim's Algorithm Example

Original graph

COMP2521 23T3

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithn

Comparison

Other Algorithm:

Appendix

Kruskal's Algorithm Example

Prim's Algorithr Example

Adding 0-1 would not create a cycle

COMP2521 23T3

Adding 3-4 would not create a cycle

COMP2521 23T3

Adding 0-3 would not create a cycle

COMP2521 23T3

Adding 0-4 would create a cycle

COMP2521 23T3

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithr

Comparison

Other Algorithms

Appendix

Kruskal's Algorithm Example

Prim's Algorithr Example

Kruskal's Algorithm Example

Adding 1-4 would create a cycle

Adding 2-3 would not create a cycle

COMP2521 23T3

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithn

Comparison

Other Algorithm:

Appendix

Kruskal's Algorithm Example

Prim's Algorithi Example

Kruskal's Algorithm Example

Done - MST has 4 edges

Prim's Algorithm Example

Original graph

COMP2521 23T3

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithr

Comparison

Other Algorithm

Appendix

Kruskal's Algorithm Example

Prim's Algorithm Example

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithn

Comparison

Other Algorithm

Appendix

Kruskal's Algorithm Example

Prim's Algorithm Example

Prim's Algorithm Example

Start at vertex 0

Prim's Algorithm Example

Choose cheapest edge out of these (in red)

COMP2521 23T3

Prim's Algorithm

Example

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithn

Comparison

Other Algorithm

Appendix

Kruskal's Algorithm Example

Prim's Algorithm Example

Prim's Algorithm Example

Add 0-1 to MST

Prim's Algorithm Example

Choose cheapest edge out of these (in red)

COMP2521 23T3

Prim's Algorithm

Example

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithn

Comparison

Other Algorithm

Appendix

Kruskal's Algorithm Example

Prim's Algorithm Example

Prim's Algorithm Example

Add 0-3 to MST

Prim's Algorithm Example

Choose cheapest edge out of these (in red)

COMP2521 23T3

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithn

Comparison

Other Algorithm:

Appendix

Kruskal's Algorithn Example

Prim's Algorithm Example

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithn

Comparison

Other Algorithm

Appendix

Kruskal's Algorithm Example

Prim's Algorithm Example

Prim's Algorithm Example

Add 3-4 to MST

Prim's Algorithm Example

Choose cheapest edge out of these (in red)

COMP2521 23T3

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithn

Comparison

Other Algorithm:

Appendix

Kruskal's Algorithn Example

Prim's Algorithm Example

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithn

Comparison

Other Algorithm

Appendix

Kruskal's Algorithm Example

Prim's Algorithm Example

Prim's Algorithm Example

Add 3-2 to MST

Minimum Spanning Trees

Kruskal's Algorithm

Prim's Algorithn

Comparison

Other Algorithm

Appendix

Kruskal's Algorithm Example

Prim's Algorithm Example

Prim's Algorithm Example

Done - MST has 4 edges

