COMP2521
23T3

COMP2521 23T3
Digraph Algorithms

Kevin Luxa

cs2521@cse.unsw.edu.au

digraph traversal
cycle checking

warshall’s algorithm

S Directed Graphs (Digraphs)

Reminder: are graphs where...
e Each edge (v, w) has a vanda w
¢ Unlike undirected graphs, v — w # w — v

COMP2521
23T3

Digraph Applications

domain | vertexis.. | edgeis...
WWw web page hyperlink
chess board state | legal move
scheduling task precedence
program function | function call
journals article citation
make target dependency

COMP2521
23T3

Traversal

Same as for undirected graphs:

bfs(G, src):
initialise visited array
mark src as visited
enqueue src into Q
while @ is not empty:

v = dequeue from Q
for each edge (v,w) in G:

if visited[w] = false:

mark w as visited
enqueue w into @

Digraph Traversal

dfs(G, src):
initialise visited array
dfsRec (G, src, visited)

dfsRec(G, v, visited):
mark v as visited
for each edge (v,w) in G:
if w has not been visited:
dfsRec(G, w, visited)

copp Digraph Traversal
Application - Web Crawling

Application

Visit a subset of the web...
..to index
..to cache locally

Which traversal method? BFS or DFS?

Note: we can’t use a visited array, as we don’t know how many webpages
there are. Instead, use a visited

copp Digraph Traversal
Application - Web Crawling

Application

Web crawling algorithm:

webCrawl(startingUrl, maxPagesToVisit):
create visited set
add startingUrl to visited set
enqueue startingUrl 1into @

numPagesVisited = 0
while @ 1is not empty and numPagesVisited < maxPagesToVisit:
currPage = dequeue from @

visit currPage
numPagesVisited = numPagesVisited + 1

for each hyperlink on currPage:
if hyperlink not in visited set:
add hyperlink to visited set
enqueue hyperlink into Q

copp Digraph Traversal
Application - Web Crawling

Application

Given two Wikipedia articles,
navigate from the first article to the second
in as few clicks as possible.

O Cycle Checking

Cycle
Checking

In directed graphs,
a is a directed path
where the start vertex = end vertex

This graph has three distinct cycles:
0-4-0, 2-5-6-2, 3-3

COMP2521
23T3

Cycle

Checking hasCycle(G):

initialise visited array to false
for each vertex v in G:
if visited[v] = false:
if dfsHasCycle(G, v, v, visited):
return true

return false

dfsHasCycle(G, v, prev, visited):
visited[v] = true

for each edge (v,w) in G:
if w= prev:
continue
if visited[w] = true:
return true

else if dfsHasCycle(G, w, v, visited):

return true

return false

Cycle checking for undirected graphs:

Cycle Checking

Does this work for
directed graphs?

COMP2521
23T3

Cycle

Checking hasCycle(G):

initialise visited array to false
for each vertex v in G:
if visited[v] = false:
if dfsHasCycle(G, v, v, visited):
return true

return false

dfsHasCycle(G, v, prev, visited):
visited[v] = true

for each edge (v,w) in G:
if w= prev:
continue
if visited[w] = true:
return true

else if dfsHasCycle(G, w, v, visited):

return true

return false

Cycle checking for undirected graphs:

Cycle Checking

Does this work for
directed graphs?

copp Cycle Checking

Cycle
Checking

Algorithm ignores edge to previous vertex
and therefore does not detect the following cycle:

Simple fix: Don’t ignore edge to previous vertex

copp Cycle Checking

Cycle
Checking
hasCycle(G):
initialise visited array to false
for each vertex v in G:
if visited[v] = false:
if dfsHasCycle(G, v, visited):
return true

return false Does this work for

H ?
dfsHasCycle(G, v, visited): directed graphs.
visited[v] = true

for each edge (v,w) in G:
if visited[w] = true:
return true
else if dfsHasCycle(G, w, visited):
return true

return false

copp Cycle Checking

Cycle
Checking
hasCycle(G):
initialise visited array to false
for each vertex v in G:
if visited[v] = false:
if dfsHasCycle(G, v, visited):
return true

return false Does this work for

H ?
dfsHasCycle(G, v, visited): directed graphs.
visited[v] = true

for each edge (v,w) in G:
if visited[w] = true:
return true
else if dfsHasCycle(G, w, visited):
return true

return false

copp Cycle Checking

Cycle
Checking

Algorithm can detect cycles when there is none,
for example:

Algorithm starts at 0, recurses into 1and 2,
backtracks to 0, sees that 2 has been visited,
and concludes there is a cycle

o Cycle Checking

Cycle
Checking

Consider a cycle check on this graph (starting at 0):

\ cycle(0, prev=0) \

call stack

[o] [[2]
visited oo

o Cycle Checking

Cycle
Checking

Consider a cycle check on this graph (starting at 0):

\ cycle(0, prev=0) \

call stack

visited] 11 0| O

copp Cycle Checking

Cycle
Checking

Consider a cycle check on this graph (starting at 0):

\ cycle(1, prev=0) \
a cycle(0, prev=0)

e call stack

visited | 1 0

copp Cycle Checking

Cycle
Checking

Consider a cycle check on this graph (starting at 0):

\ cycle(1, prev=0) \
cycle(0, prev=0)

call stack

visited] 11 1] 0

Cycle Checking

COMP2521
23T3

Cycle
Checking

Consider a cycle check on this graph (starting at 0):

° \ cycle(2, prev=1) \
cycle(1, prev=0)

0 cycle(0, prev=0)

call stack

visited| 1 | 1

Cycle Checking

COMP2521
23T3

Cycle
Checking

Consider a cycle check on this graph (starting at 0):

° \ cycle(2, prev=1) \
cycle(1, prev=0)

0 cycle(0, prev=0)

call stack

visited| 1| 1] 1

copp Cycle Checking

Cycle
Checking

To properly detect a cycle,
check if neighbour is already on the call stack

When the graph is undirected,
this can be done by checking the visited array,
but this doesn’t work for directed graphs!

Need to use separate array to
keep track of when a vertex is on the call stack

o Cycle Checking

Pseudocode
hasCycle(G):
create visited array, initialised to false
Eseudocods] create onStack array, initialised to false

for each vertex v in G:
if visited[v] = false:
if dfsHasCycle(G, v, visited, onStack):
return true

return false

dfsHasCycle(G, v, visited, onStack):
visited[v] = true
onStack[v] = true

for each edge (v,w) in G:
if onStack[w] = true:
return true
else if visited[w] = false:
if dfsHasCycle(G, w, visited, onStack):
return true

onStack[v] = false
return false

copp Cycle Checking

Example

Example

Check if a cycle exists in this graph:

e Transitive Closure

Transitive
Closure

Problem: computing

Given a digraph G it is potentially useful to know:
* |svertext from vertex s?

e Transitive Closure

Transitive
Closure

One way to implement a reachability check:
® Use BFS or DFS starting at s

® Thisis O(V + F) in the worst case
® Only feasible if reachability is an infrequent operation

What about applications that frequently need to check reachability?

e Transitive Closure

Transitive
Closure

Constructa V x V matrix
that tells us whether there is a (not edge)
fromstot, fors,te V

This matrix is called the (tc) matrix
(or reachability matrix)

tc[s] [t] is true if there is a path from s to ¢, false otherwise

comp2sz1 Transitive Closure

23T3

Transitive
Closure ’

o] 1 [21 [3] [4] [5] [6] o] 1 [21 (3] [4] [5] [6]
[cJjofOo|O|OfO|O]1 eI{1{1]11{0[0]|0]1
nf1j]0]1170|10]010 nf1(1]1{0(0]0]1
pRIfojoj1|({0|j0]j0O]|O pRIfojof1(0j0j0]|o0
Blfojoj1|({0|1]0]O BIf1{1[{1[1]1]0]1
(41101010 |1]0[0|1 11111111 110(1
[51|0]J0|0[0]|]0O]O]|n1 B1l1]1[110]0]0][1
[elfo|1]1(0|0|0]|O0 elf1(1{1{0[0]|]0]1

adjacency matrix reachability matrix

e Transitive Closure

Transitive
Closure

One way to compute reachability matrix:
e Perform BFS/DFS from every vertex

Another way = Warshall’s algorithm:
e Simple algorithm that does not require a graph traversal

O Warshall’s Algorithm

Main idea:
e There is a path from s to ¢ if:
® There is an edge from sto ¢, or

Warshall’s algorithm

el l=ll=ll=]
(=} [=]] Ex
o|o|=|O

o|o|=|o

O Warshall’s Algorithm

Main idea:
e There is a path from s to ¢ if:

® There is an edge from sto ¢, or
Warshaltsalgorithm ® There is a path from s to ¢ via vertex 0, or

00—

(jzz

0[o0j|1]0 o[of1]0
1]10]0]1 110]1]1
o(ojoj|o o[ofoj|o
of1{0jo of[1{ojo

O Warshall’s Algorithm

Main idea:
e There is a path from s to ¢ if:

® There is an edge from sto ¢, or
Warshaltsalgorithm ® There is a path from s to ¢ via vertex 0, or
® There is a path from s to ¢ via vertex 0 and/or 1, or

©

0—Q@ 0—0 @

0

0[o0j|1]0 o[of1]0 o[of1]0
1]10]0]1 110]1]1 110]1]1
o(ojoj|o o[ofoj|o 0fojo]|o0
0f1]0]0 0f1]0]0 1{1]1]1

O Warshall’s Algorithm

Main idea:
e There is a path from s to ¢ if:
There is an edge from sto ¢, or
There is a path from s to ¢ via vertex 0, or

[]

[]

® There is a path from s to ¢ via vertex 0 and/or 1, or

® There is a path from s to ¢ via vertex 0, 1and/or 2, or

Warshall’s algorithm

©
©

@

A

0—Q@ 0—0 @

Lo NI

O—=0)
0[o0j|1]0 o[of1]0 0fo|1]0 o[of1{o
1]10]0]1 110[1[1 110(1]1 110111
o(ojoj|o 0]0]0]0 0fo|0]|0 o[ofofo
0f1]0]0 0o[1{ojo 1{1]1]1 111111

compas21 Warshall’s Algorithm

23T3

Main idea:
e There is a path from s to ¢ if:
There is an edge from sto ¢, or
There is a path from s to ¢ via vertex 0, or
There is a path from s to ¢ via vertex 0 and/or 1, or
There is a path from s to ¢ via vertex 0, 1and/or 2, or

Warshall’s algorithm

There is a path from s to ¢ via any of the other vertices

o0o—02 O—0 ©O—©@ O©O—Q@
X XX

[T,

0[o0j|1]0 o[of1]0 o[of1]0 0f0|1]0 o[of1]0
1]10]0]1 110]1]1 110(1]1 110111 11111
o(ojoj|o 0]0]0]0 0fo|0]|0 o[ofofo 0fojo]|o
0f1]0]0 0f1]0]0 1(1[1([1 111111 1111111

O Warshall’s Algorithm

On the k-th iteration, the algorithm determines if a path exists between two
vertices s and ¢ using just 0, ..., k as intermediate vertices

@ On the k-th iteration
o 4

@ : If we have:
R (1) a path from s to k
: (2) a path from & to ¢
(using only vertices 0 to k — 1)

Warshall’s algorithm

O Warshall’s Algorithm

On the k-th iteration, the algorithm determines if a path exists between two
vertices s and ¢ using just 0, ..., k as intermediate vertices

@ On the k-th iteration
o 4

Warshall’s algorithm

@ 3 If we have:
. : (1) a path from s to k
N (2) a path from k& to ¢
KR (using only vertices 0 to k — 1)
‘65 Then we have a path from sto ¢
using vertices from 0 to k

if tc[s][k] and tc[k][¢]:
tc[s][t] = true

o Warshall’s Algorithm

Pseudocode

warshall(A):
Inputs: n x n adjacency matrix A
Pseudocode Output: n x n reachability matrix

create tc matrix, initialised to false

for each vertex s in G:
for each vertex t in G:
if A[s][t]:
tc[s][t] = true

for each vertex k in G: // from ® to n - 1
for each vertex s in G:
for each vertex t in G:
if tc[s][k] and tc[k][t]:
tc[s][t] = true

return tc

COMP2521

s Warshall’s Algorithm

Example

Find transitive closure of this graph

O @ o] [[2] [3]

plf 001110
if 11070 (1
RIfOJ O[O0 O
BlIfO0O] 1(0]O0

COMP2521

s Warshall’s Algorithm

Example

Initialise tc with edges of original graph

O @ o] [[2] [3]

plf 001110
if 11070 (1
RIfOJ O[O0 O
BlIfO0O] 1(0]O0

COMP2521
23T3

First iteration: £k =0

@ [o]

[1]
[2]
3]

Warshall's Algorithm

Example
[o] [l [2] [3]
oOofo|1(O
1T10([0]1
O(0]|]O0fO
Of(1(0]O0

COMP2521
23T3

First iteration: £k =0

Warshall's Algorithm

Thereisapath1 — 0andapath0 — 2

-

O

[o]
[1]
[2]
3]

Example

[o] [l [2] [3]
OO 0
0O[0]1
O(0]|]O0fO
Of(1(0]O0

O Warshall’s Algorithm

Example
First iteration: k =0
Thereisapath1 — 0andapath0 — 2
o So thereisapath1l — 2

@ [o] [[2] 3]

[o]] O [O 0

[1] 0 1

@C@ RIfO[O[O(fO
BlIlO0O]1T[0]O0

COMP2521

s Warshall’s Algorithm

Example

First iteration: £k =0
Done

[ol{ O

0
1 {0 1]1
[2I1{ O | O

Bl O (1[0 O

COMP2521
23T3

Second iteration: k=1

(O)y—
o

[o]
[1]
[2]
3]

Warshall's Algorithm

Example
[o] [l [2] [3]
oOofo|1(O
T10 (1|1
O(0]|]O0fO
Of(1(0]O0

COMP2521

s Warshall’s Algorithm

Example

Second iteration: k =1
Thereisapath3 — 1andapath1l —0

C o] [[2] [3]

lj 01010

[1] O] 111

31| 0 0o|o

O Warshall’s Algorithm

Example

Second iteration: k=1
Thereisapath3 — 1andapath1l —0
o So thereisapath3 — 0

C o] [[2] [3]

lj 01010

[1] O] 111

[3] o|o0

COMP2521
23T3

Second iteration: k=1

Warshall's Algorithm

Thereisapath3 — 1andapath1l — 2

OO

N

[o]
[1]
[2]
3]

Example

[o] [l [2] [3]
oOofo|1(O
110 1
O(0]|]O0fO
1 0O

O Warshall’s Algorithm

Example

Second iteration: k=1
Thereisapath3 — 1andapath1l — 2
o So thereisa path 3 — 2

O @ o] [[2] [3]

\ ollofO0] 1|0
M1} 110 1

[31] 1 0

O Warshall’s Algorithm

Example

Second iteration: k =1
Thereisa path3 — 1 and a path1 — 3

o] [[2] [3]
[olf O[O 1]O0

(O)y—

11 10| 1

RIf O] O0O(0]O0

[31] 1 1 0

O Warshall’s Algorithm

Example

Second iteration: k =1
Thereisa path3 — 1 and a path1 — 3
So thereisapath3 — 3

o] [[2] [3]
[olf O[O 1]O0

(O)y—

11 10| 1

RIf O] O0O(0]O0

[31] 1 1

COMP2521

s Warshall’s Algorithm

Example

Second iteration: k=1
Done

[ol{ O

0
1 {0 1]1
[2I1{ O | O

BIf1T11(1]1

COMP2521

s Warshall’s Algorithm

Example

Third iteration: £k =2

[ol{ O

0
1 {0 1]1
[2I1{ O | O

BIf1T11(1]1

O Warshall’s Algorithm

Example

Third iteration: £k =2
No pairs (s, t) such that there are paths s —+ 2 and 2 — ¢

C ; o] [[2] [3]

[ol{ O

0
1 {0 1]1
[2I1{ O | O

BIf1T11(1]1

COMP2521

s Warshall’s Algorithm

Example

Third iteration: £k =2
Done

[ol{ O

0
1 {0 1]1
[2I1{ O | O

BIf1T11(1]1

COMP2521

s Warshall’s Algorithm

Example

Fourth iteration: k. = 3

[ol{ O

0
1 {0 1]1
[2I1{ O | O

BIf1T11(1]1

O Warshall’s Algorithm

Example

Fourth iteration: £ =3
Thereisapath1l — 3andapath3 —1

o] [[2] [3]
[olf O[O 1]O0

(O)y—

11 10| 1

RIf O] O0O(0]O0

31 1 111

O Warshall’s Algorithm

Example

Fourth iteration: £ =3
Thereisapath1l — 3andapath3 —1
So thereisapathl — 1

o] [[2] [3]
[olf O[O 1]O0

(O)y—

[11] 1 1

RIf O] O0O(0]O0

31 1 111

COMP2521

s Warshall’s Algorithm

Example

Fourth iteration: k. = 3
Done

C o] [[2] [3]

lj 01010

D1 {11111

RIf O] O0O(0]O0

BIf1T11(1]1

O Warshall’s Algorithm

Example

Finished

o] [[2] [3]
[olf O[O 1]O0

D1 {11111

BIf1T11(1]1

COMP2521
23T3

Warshall's Algorithm

Analysis

Analysis:
* Time complexity: O(V?3)
* Three nested loops iterating over all vertices
* Space complexity: O(V?)
® Reachability matrixis V x V
* Benefit: checking reachability between vertices is now O(1)
* Makes up for slow setup (O(V?)) if reachability is a very frequent operation

COMP2521
23T3

https://forms.office.com/r/aPFO9YHZ3X

Feedback

https://forms.office.com/r/aPF09YHZ3X

	Traversal
	Application

	Cycle Checking
	Pseudocode
	Example

	Transitive Closure
	Warshall's algorithm

