COMP2521
23T3

COMP2521 23T3

Graph Traversal

Kevin Luxa

cs2521@cse.unsw.edu.au

graph traversal
bfs and dfs
path checking

path finding

O Problems on Graphs

Common problems on graphs:
e Is there a path between two vertices?

What is the shortest path between two vertices?

Is the graph connected?

If we remove an edge, is the graph still connected?
Which vertices are reachable from a particular vertex?
Is there a cycle that passes through all vertices?

cowrzs Graph Traversal

Graph
Traversal

All of the above problems can be solved by
a of a graph via its

This systematic exploration is called or

cowrzs Graph Traversal

Graph
Traversal

Does a path exist between vertices src and dest?

Possible approach:
examine vertices adjacent to src
if any of them is dest, we're done!
otherwise, check vertices two edges away from src
repeat looking further and further away from src

The above summarises one form of graph traversal.

cowrzs Graph Traversal

BFS and DFS

Two primary methods for graph traversal/search:

 Prioritises visiting all neighbours over path-following
* “Go wide”

* Implemented iteratively (using a queue)

* Prioritises path-following over visiting all neighbours
* “Go deep”

* Implemented recursively or iteratively (using a stack)

cowrzs Graph Traversal
BFS vs. DFS

BFS and DFS

In what order would BFS and DFS visit the vertices of this graph?

s

cog/\;z:;sm G raph Traversal
BFS vs. DFS

Breadth-first search Depth-first search

. Breadth-First Search

BFS

Breadth-first search visits vertices
in order of distance from the starting vertex.

It visits the starting vertex,
then the neighbours of the starting vertex,
then the neighbours of those neighbours,
etc.

BFS is implemented iteratively using a queue.

COMP2521
23T3

BFS

Breadth-First Search

Data structures

Data structures used in BFS:
* Visited array
* To keep track of which vertices have been visited
* Predecessor array

* To keep track of the predecessor of each vertex
® The predecessor of v is the vertex from which we reached v

® i.e., the vertex before v on the path to v
® Queue

® First-in-first-out data structure
e Stores unvisited vertices in the order that they should be visited

. Breadth-First Search

BFS
Algorithm:

© Create/initialise data structures:

e [nitialise visited array to false

e Initialise predecessor array to -1

® Create empty queue
@ Mark starting vertex as visited and enqueue it
© While the queue is not empty:

@ Dequeue a vertex
® Let this vertex be v

@ Explore v - that is, for each of v's unvisited neighbours:

@ Mark it as visited
® Set its predecessor to v
©® Enqueueit

Algorithm

. Breadth-First Search

Example

BFS starting at 0

Example

visited

pred

queue

. Breadth-First Search

Example

Example

visited | 1 1 1 1 1 1 1 1 1 1

predl 10| O0]| 2505|547

queue 0 1 2 5 3 4 6 7 8 9

COMP2521

e Breadth-First Search

Pseudocode

bfs(G, src):
Pseudocode Inputs: graph G, starting vertex src

create visited array, predecessor array and queue @

for each vertex v in G:
visited[v] = false
predecessor[v] = -1

visited[src] = true
enqueue src into @

while @ is not empty:
v = dequeue from @Q
for each neighbour w of v where visited[w] = false:
visited[w] = true
predecessor[w] = v
enqueue w into @

. Breadth-First Search

Simplification

When using a predecessor array in BFS,
the predecessor array can double as a visited array

predecessor[v] = —1 means v is not visited

COMP2521
23T3

Breadth-First Search

Simplification

Pesoans bfs(G, src):
Inputs: graph G, starting vertex src

create predecessor array and queue @

for each vertex v in G:
predecessor[v] = -1

predecessor[src] = src // <- mark src as visited
enqueue src into @
while @ is not empty:
v = dequeue from @Q
for each neighbour w of v where predecessor[w] = -1:
predecessor[w] = v
enqueue w into @

COMP2521
23T3

Breadth-First Search

Analysis

BFS is O(V + E) when using the adjacency list representation:
* Typical queue implementation has O(1) enqueue and dequeue
* Each vertex is visited at most once = O(V)
* For each vertex, all of its edges are considered once = O(E)

COMP2521
23T3

Path Finding

Path-Finding with BFS

A BFS finds the shortest path between the starting vertex and all other
vertices.

® Shortest path in terms of the number of edges

The shortest path between src and dest can be found by tracing backwards
through the predecessor array (from dest to src).

O Path-Finding with BFS

Example: Shortest path from 0 to 8

Path Finding

pred|-1{o|o0|2|5|0]|5]|5]|4]7

O Path-Finding with BFS

Example: Shortest path from 0 to 8

Path Finding

pred|-1{0o|O0|2]|5[0]|5]|5 7

O Path-Finding with BFS

Example: Shortest path from 0 to 8
0 4 — 8

Path Finding

pred|-1{o|o0|2|5|0]|5]|5]|4]7

O Path-Finding with BFS

Example: Shortest path from 0 to 8
0 — 8

Path Finding

predf 1] 0] 0|2 015|547

COMP2521
23T3

Path Finding

Path-Finding with BFS

Example: Shortest path from 0 to 8
5—-4—-38

ﬁ

[ol] [[21 [B] 1[4 [51 [61 [71 [8] [9]
predl 1] oflof|2|5|0]|5]|5|4]|7

COMP2521
23T3

Path Finding

Path-Finding with BFS

Example: Shortest path from 0 to 8

— 4 — 8

ﬁ

[o] I [21 [31 [&] [6] [71 [8] [9]
predl 1] of0|2]5 515\ 4] 7

O Path-Finding with BFS

Example: Shortest path from 0 to 8

0 —5—+4—8

Path Finding

[ol] [[21 [B] 1[4 [51 [61 [71 [8] [9]
predl 1] oflof|2|5|0]|5]|5|4]|7

COMP2521
23T3

findPathBfs (G, src, dest):
PRI Inputs: graph G, vertices src and dest

BFS starting from src ...

if predecessor[dest] # -1:
v = dest
while v # src:
print v, "<="
v = predecessor[v]

print src

Path-Finding with BFS

o Depth-First Search

DFS

Depth-first search goes as far down one path
as possible until it reaches a dead end,
then backtracks until it finds a new path to take,
then repeats

DFS can be implemented recursively or iteratively.

o Recursive Depth-First Search

ecursive

Depth-first search is described recursively as:
@ Mark current vertex as visited
® The first time, this is the starting vertex

@ For each neighbour of the current vertex:
@ If it has not been visited:
@ Recursively traverse starting from that vertex

The recursion naturally induces backtracking.

O Recursive Depth-First Search

S dfs(G, src):
Inputs: graph G, starting vertex src
create visited array, initialised to false
dfsRec(G, src, visited)

dfsRec(G, v, visited):
Inputs: graph G, vertex v, visited array

visited[v] = true // "visit" v
for each neighbour w of wv:
if visited[w] = false:

dfsRec(G, w, visited)

Pseudocode

O Recursive Depth-First Search

Example

DFS starting at 0

Example

visited [O 0 0 0 0 0 0 0 0 0

visit order call stack

O Recursive Depth-First Search

Example

Done

Example

visited [1 1 1 1 1 1 1 1 1 1

visitorder 0 1 5 3 2 4 7 8 9 6 call stack

COMP2521
23T3

Recursive Depth-First Search

Analysis

Recursive DFS is O(V + E) when using the adjacency list representation:
* Each vertex is visited at most once = O(V)
® Function is called on each vertex at most once

* For each vertex, all of its edges are considered once = O(E)

O Path-Checking with Recursive DFS

Recursive DFS can be adapted to check if a path exists between two vertices.

Path checking

Idea:
® To check if a path exists between src and dest:

* If src = dest, then there is a path (the empty path)
® Otherwise, for each neighbour of sre, recursively check if there is a path
from that neighbour to dest

O Path-Checking with Recursive DFS

Example

Does there exist a path between 0 and 7 in this graph?

Path checking

O Path-Checking with Recursive DFS

Example

Answer: Yes

Path checking

O Path-Checking with Recursive DFS

Pseudocode

hasPath(G, src, dest):
Inputs: graph G, vertices src and dest
Output: true if there 1is a path from src to dest
false otherwise

g create visited array, initialised to false
return dfsHasPath(G, src, dest, visited)

dfsHasPath(G, v, dest, visited):
Inputs: graph G, vertices v and dest, visited array

visited[v] = true
if v = dest:
return true

for each neighbour w of wv:
if visited[w] = false:
if dfsHasPath(G, w, dest, visited):
return true

return false

O Path-Checking with Recursive DFS

Analysis

Path checking

O(V + E) when using the adjacency list representation:
e Algorithm is just a modified recursive DFS with return statements

o Path-Finding with Recursive DFS

Knowing whether a path exists can be useful.

Path finding

Knowing what the path is can be even more useful.

Idea:
e Record the predecessor of each vertex during the DFS
* Trace backwards through the path after the DFS

RS Path-Finding with Recursive DFS

Pseudocode

findPath(G, src, dest):
Inputs: graph G, vertices src and dest
Path findin;
: create predecessor array, initialised to -1
predecessor[src] = src

if dfsFindPath(G, src, dest, predecessor):
v = dest
while v # src:
print v, "<-"
v = predecessor[v]
print src

o Path-Finding with Recursive DFS

Pseudocode

dfsFindPath(G, v, dest, predecessor):
if v = dest:
Path finding return true

for each neighbour w of wv:
if predecessor[w] = —1:
predecessor[w] = v
if dfsFindPath(G, w, dest, predecessor):
return true

return false

o Path-Finding with Recursive DFS

Example

Find a path from 0 to 7

o Path-Finding with Recursive DFS

Example

Path found:

Path finding

predf o o0 |3 |5 |3 |1]|]4]-1]-

Clearly, DFS is not guaranteed to find the shortest path.

O Iterative Depth-First Search

Iterative

DFS can be implemented iteratively.
e Similar to BFS, with a few crucial differences:
® DFS uses a stack instead of a queue
® BFS marks a vertex as visited when enqueuing it
* DFS marks a vertex as visited after popping it from the stack, instead of
when pushing it onto the stack

o Iterative Depth-First Search

Pseudocode

dfs(G, src):
Inputs: graph G, vertex src

created visited array, predecessor array and stack S
for each vertex v in G:

visited[v] = false

predecessor[v] = -1

Pseudocode

push src onto S

while S is not empty:
v = pop from S
if visited[v] = true:
continue // i.e., return to start of loop

visited[v] = true
for each neighbour w of v where visited[w] = false:

predecessor[w] = v
push w onto S

O Iterative Depth-First Search

seudocode Why mark a vertex as visited after popping it, instead of when pushing it?

D——0)
H—0—-C

COMP2521
23T3

Iterative Depth-First Search

Analysis

Iterative DFS is O(V + E) when using the adjacency list representation.
* Typical stack implementation has O(1) push and pop
e Each vertex visited at most once = O(V)
* For each vertex, all of its edges are considered = O(FE)

COMP2521
23T3

The edges traversed in a graph traversal form a

spanning Tees Consider the following graph:

s

Spanning Trees

o Spanning Trees

A traversal starting at vertex ‘a’ forms the following spanning trees:

Breadth-first search Depth-first search

COMP2521
23T3

Unconnected Graphs

If a graph is not connected,
a graph traversal starting from a given vertex
will not traverse the entire graph

After initial traversal is complete,
perform traversal again on an unvisited vertex,
repeat until all vertices are visited

This produces a
} $af §
‘9 (D g“e)

O Unconnected Graphs

dfs(G):
— Inputs: graph G

create predecessor array, initialised to -1
for each vertex v in G:

if predecessor[v] = —1:
dfsRec(G, v, predecessor)

COMP2521
23T3

https://forms.office.com/r/aPFO9YHZ3X

Feedback

https://forms.office.com/r/aPF09YHZ3X

Appendix

O BFS Example

BFS starting at 0

BFS Example

visited| 0 0 0 0 0 0 0 0 0 0

pred| 1 |||l Al]-1]-

queue

O BFS Example

BFS starting at 0 Mark 0 as visited

BFS Example

visited 0 0 0 0 0 0 0 0 0

pred| 1 |||l Al]-1]-

queue

O BFS Example

Dequeue 0

BFS Example

visited | 1 0 0 0 0 0 0 0 0 0

pred| 1 |||l Al]-1]-

queue

O BFS Example

Explore 0

BFS Example

visited | 1 0 0 0 0 0 0 0 0 0

pred| 1 |||l Al]-1]-

queue

O BFS Example

Explore 0

BFS Example

visited | 1 0 0 0 0 0 0 0 0 0

pred| 1 |||l Al]-1]-

queue

O BFS Example

Explore 0 Mark 1 as visited

BFS Example

visited | 1 0 0 0 0 0 0 0 0

pred| -1 A1 A1 a]A

queue

O BFS Example

Explore 0

BFS Example

visited | 1 1 0 0 0 0 0 0 0 0

predl 1o |||l Al]-1]-

queue 1

O BFS Example

Explore 0 Mark 2 as visited

BFS Example

visited | 1 1 0 0 0 0 0 0 0

pred| -1 | O S I T O Y I T I T

queue 1

O BFS Example

Explore 0

BFS Example

[ol [l [21 (381 & [s] [6] [71 [8] [9]

visited | 1 1 1 0 0 0 0 0 0 0

pred| -1 | O ol1lal1Aflala]]

queue 12

ot 20 BFS Examp le

Explore 0 Mark 5 as visited

BFS Example

[ol [l [21 (381 & [s] [6] [71 [8] [9]

visited | 1 1 1 0 0 0 0 0 0

pred| 1| 0| O]| 1| A1] A

queue 12

O BFS Example

Explore 0 Done exploring 0

BFS Example

visited | 1 1 1 0 0 1 0 0 0 0

pred| -1 | O ol1]l11ofal1]]A

queue 125

O BFS Example

Dequeue 1

BFS Example

visited | 1 1 1 0 0 1 0 0 0 0

pred| -1 | O ol1]l11ofal1]]A

queue 25

O BFS Example

Explore 1

BFS Example

visited | 1 1 1 0 0 1 0 0 0 0

pred| -1 | O ol1]l11ofal1]]A

queue 25

O BFS Example

Explore 1 0 is already visited

BFS Example

visited | 1 1 1 0 0 1 0 0 0 0

pred| -1 | O ol1]l11ofal1]]A

queue 25

O BFS Example

Explore 1 5is already visited

BFS Example

(o] D0l 2 BB (& [81 [el [71 [8] [9]
visited | 1 1 1 0 0 1 0 0 0 0

pred| -1 | O ol1]l11ofal1]]A

queue 25

O BFS Example

Explore 1 Done exploring 1

BFS Example

visited | 1 1 1 0 0 1 0 0 0 0

pred| -1 | O ol1]l11ofal1]]A

queue 25

O BFS Example

Dequeue 2

BFS Example

visited | 1 1 1 0 0 1 0 0 0 0

pred| -1 | O ol1]l11ofal1]]A

queue 5

O BFS Example

Explore 2

BFS Example

visited | 1 1 1 0 0 1 0 0 0 0

pred| -1 | O ol1]l11ofal1]]A

queue 5

O BFS Example

Explore 2 0 is already visited

BFS Example

visited | 1 1 1 0 0 1 0 0 0 0

pred| -1 | O ol1]l11ofal1]]A

queue 5

O BFS Example

Explore 2

BFS Example

visited | 1 1 1 0 0 1 0 0 0 0

pred| -1 | O ol1]l11ofal1]]A

queue 5

O BFS Example

Explore 2 Mark 3 as visited

BFS Example

visited | 1 1 1 0 1 0 0 0 0

pred| 1| 0| O 11011]A

queue 5

O BFS Example

Explore 2 Done exploring 2

BFS Example

visited | 1 1 1 1 0 1 0 0 0 0

predl 1o o210]-]-1]-

queue 5 3

O BFS Example

Dequeue 5

BFS Example

(o] D0l 2 BB (& [81 [el [71 [8] [9]
visited | 1 1 1 1 0 1 0 0 0 0

predl 1o o210]-]-1]-

queue 3

O BFS Example

Explore 5

BFS Example

(o] D0l 2 BB (& [81 [el [71 [8] [9]
visited | 1 1 1 1 0 1 0 0 0 0

predl 1o o210]-]-1]-

queue 3

ot 20 BFS Examp le

Explore 5 0 is already visited

BFS Example

[ol [l [21 (381 & [s] [6] [71 [8] [9]

visited | 1 1 1 1 0 1 0 0 0 0

predl 1 oo |21l o]|a]|-a]|-a]-

queue 3

O BFS Example

Explore 5 1is already visited

BFS Example

(o] D0l 2 BB (& [81 [el [71 [8] [9]
visited | 1 1 1 1 0 1 0 0 0 0

predl 1o o210]-]-1]-

queue 3

O BFS Example

Explore 5 3 is already visited

BFS Example

(o] D0l 2 BB (& [81 [el [71 [8] [9]
visited | 1 1 1 1 0 1 0 0 0 0

predl 1o o210]-]-1]-

queue 3

O BFS Example

Explore 5

BFS Example

(o] D0l 2 BB (& [81 [el [71 [8] [9]
visited | 1 1 1 1 0 1 0 0 0 0

predl 1o o210]-]-1]-

queue 3

O BFS Example

Explore 5 Mark 4 as visited

BFS Example

(o] D0l 2 BB (& [81 [el [71 [8] [9]
visited | 1 1 1 1 1 0 0 0 0

pred| 1| 0| 0| 2 o111

queue 3

O BFS Example

Explore 5

BFS Example

(o] D0l 2 BB (& [81 [el [71 [8] [9]
visited | 1 1 1 1 1 1 0 0 0 0

predl 1 oo 2|50]-1]-1]-

queue 34

O BFS Example

Explore 5 Mark 6 as visited

BFS Example

(o] D0l 2 BB (& [81 [el [71 [8] [9]
visited | 1 1 1 1 1 1 0 0 0

pred| 1| 0| 0| 2 510 11 1] -

queue 34

O BFS Example

Explore 5

BFS Example

(o] D0l 2 BB (& [81 [el [71 [8] [9]
visited | 1 1 1 1 1 1 1 0 0 0

predl 1 oo 2]|5]|]0]|5]-1]-1]-

queue 346

O BFS Example

Explore 5 Mark 7 as visited

BFS Example

(o] D0l 2 BB (& [81 [el [71 [8] [9]
visited | 1 1 1 1 1 1 1 0 0

predl 10| 0| 2]5] 0] S5 11 -1

queue 346

O BFS Example

Explore 5 Done exploring 5

BFS Example

visited | 1 1 1 1 1 1 1 1 0 0

predl 1o fof|2]|5]|]0]|5]5]-1]-

queue 3467

O BFS Example

Dequeue 3

BFS Example

visited | 1 1 1 1 1 1 1 1 0 0

predl 1o fof|2]|5]|]0]|5]5]-1]-

queue 46 7

O BFS Example

Explore 3

BFS Example

visited | 1 1 1 1 1 1 1 1 0 0

predl 1o fof|2]|5]|]0]|5]5]-1]-

queue 46 7

O BFS Example

Explore 3 2 is already visited

BFS Example

visited | 1 1 1 1 1 1 1 1 0 0

predl 1o fof|2]|5]|]0]|5]5]-1]-

queue 46 7

O BFS Example

Explore 3 4 is already visited

BFS Example

visited | 1 1 1 1 1 1 1 1 0 0

predl 1o fof|2]|5]|]0]|5]5]-1]-

queue 46 7

O BFS Example

Explore 3 5is already visited

BFS Example

(o] D0l 2 BB (& [81 [el [71 [8] [9]
visited | 1 1 1 1 1 1 1 1 0 0

predl 1o fof|2]|5]|]0]|5]5]-1]-

queue 46 7

O BFS Example

Explore 3 Done exploring 3

BFS Example

visited | 1 1 1 1 1 1 1 1 0 0

predl 1o fof|2]|5]|]0]|5]5]-1]-

queue 46 7

O BFS Example

Dequeue 4

BFS Example

visited | 1 1 1 1 1 1 1 1 0 0

predl 1o fof|2]|5]|]0]|5]5]-1]-

queue 6 7

O BFS Example

Explore 4

BFS Example

visited | 1 1 1 1 1 1 1 1 0 0

predl 1o fof|2]|5]|]0]|5]5]-1]-

queue 6 7

O BFS Example

Explore 4 3 is already visited

BFS Example

visited | 1 1 1 1 1 1 1 1 0 0

predl 1o fof|2]|5]|]0]|5]5]-1]-

queue 6 7

O BFS Example

Explore 4 5is already visited

BFS Example

O
(o] D0l 2 BB (& [81 [el [71 [8] [9]
visited | 1 1 1 1 1 1 1 1 0 0

predl 1o fof|2]|5]|]0]|5]5]-1]-

queue 6 7

O BFS Example

Explore 4 7 is already visited

BFS Example

visited | 1 1 1 1 1 1 1 1 0 0

predl 1o fof|2]|5]|]0]|5]5]-1]-

queue 6 7

O BFS Example

Explore 4

BFS Example

visited | 1 1 1 1 1 1 1 1 0 0

predl 1o fof|2]|5]|]0]|5]5]-1]-

queue 6 7

ot 20 BFS Examp le

Explore 4 Mark 8 as visited

BFS Example

visited | 1 1 1 1 1 1 1 1 0

predl 1|l o]Jo|2|5]0|5]5 -1

queue 6 7

O BFS Example

Explore 4 Done exploring 4

BFS Example

visited | 1 1 1 1 1 1 1 1 1 0

predl 1 oo 2]|5]|]0]|5]|5]4]-

queue 6 7 8

O BFS Example

Dequeue 6

BFS Example

visited | 1 1 1 1 1 1 1 1 1 0

predl 1 oo 2]|5]|]0]|5]|5]4]-

queue 7 8

O BFS Example

Explore 6

BFS Example

visited | 1 1 1 1 1 1 1 1 1 0

predl 1 oo 2]|5]|]0]|5]|5]4]-

queue 7 8

O BFS Example

Explore 6 5is already visited

BFS Example

(o] D0l 2 BB (& [81 [el [71 [8] [9]
visited | 1 1 1 1 1 1 1 1 1 0

predl 1 oo 2]|5]|]0]|5]|5]4]-

queue 7 8

O BFS Example

Explore 6 Done exploring 6

BFS Example

visited | 1 1 1 1 1 1 1 1 1 0

predl 1 oo 2]|5]|]0]|5]|5]4]-

queue 7 8

O BFS Example

Dequeue 7

BFS Example

visited | 1 1 1 1 1 1 1 1 1 0

predl 1 oo 2]|5]|]0]|5]|5]4]-

queue 8

O BFS Example

Explore 7

BFS Example

visited | 1 1 1 1 1 1 1 1 1 0

predl 1 oo 2]|5]|]0]|5]|5]4]-

queue 8

O BFS Example

Explore 7 4 is already visited

BFS Example

visited | 1 1 1 1 1 1 1 1 1 0

predl 1 oo 2]|5]|]0]|5]|5]4]-

queue 8

O BFS Example

Explore 7 5is already visited

BFS Example

(o] D0l 2 BB (& [81 [el [71 [8] [9]
visited | 1 1 1 1 1 1 1 1 1 0

predl 1 oo 2]|5]|]0]|5]|5]4]-

queue 8

O BFS Example

Explore 7 8 is already visited

BFS Example

visited | 1 1 1 1 1 1 1 1 1 0

predl 1 oo 2]|5]|]0]|5]|5]4]-

queue 8

O BFS Example

Explore 7

BFS Example

visited | 1 1 1 1 1 1 1 1 1 0

predl 1 oo 2]|5]|]0]|5]|5]4]-

queue 8

ot 20 BFS Examp le

Explore 7 Mark 9 as visited

BFS Example

visited | 1 1 1 1 1 1 1 1 1

predl 1|0 |lO0O|25]|0]|5]|5]¢4

queue 8

O BFS Example

Explore 7 Done exploring 7

BFS Example

visited | 1 1 1 1 1 1 1 1 1 1

pred| 1| 0| 0| 2 51015 51 4 7

queue 8 9

O BFS Example

Dequeue 8

BFS Example

visited | 1 1 1 1 1 1 1 1 1 1

pred| 1| 0| 0| 2 51015 51 4 7

queue 9

O BFS Example

Explore 8

BFS Example

visited | 1 1 1 1 1 1 1 1 1 1

pred| 1| 0| 0| 2 51015 51 4 7

queue 9

O BFS Example

Explore 8 4 is already visited

BFS Example

visited | 1 1 1 1 1 1 1 1 1 1

pred| 1| 0| 0| 2 51015 51 4 7

queue 9

O BFS Example

Explore 8 7 is already visited

BFS Example

visited | 1 1 1 1 1 1 1 1 1 1

pred| 1| 0| 0| 2 51015 51 4 7

queue 9

O BFS Example

Explore 8 9 is already visited

BFS Example

visited | 1 1 1 1 1 1 1 1 1 1

pred| 1| 0| 0| 2 51015 51 4 7

queue 9

O BFS Example

Explore 8 Done exploring 8

BFS Example

visited | 1 1 1 1 1 1 1 1 1 1

predl 1 |lo0o|loOo|2|5|0]|5|5]|4]|7

queue 9

O BFS Example

Dequeue 9

BFS Example

visited | 1 1 1 1 1 1 1 1 1 1

pred| 1| 0| 0| 2 51015 51 4 7

queue

O BFS Example

Explore 9

BFS Example

visited | 1 1 1 1 1 1 1 1 1 1

pred| 1| 0| 0| 2 51015 51 4 7

queue

O BFS Example

Explore 9 7 is already visited

BFS Example

visited | 1 1 1 1 1 1 1 1 1 1

pred| 1| 0| 0| 2 51015 51 4 7

queue

O BFS Example

Explore 9 8 is already visited

BFS Example

visited | 1 1 1 1 1 1 1 1 1 1

pred| 1| 0| 0| 2 51015 51 4 7

queue

O BFS Example

Explore 9 Done exploring 9

BFS Example

visited | 1 1 1 1 1 1 1 1 1 1

predl 1 |lo0o|loOo|2|5|0]|5|5]|4]|7

queue

O BFS Example

BFS Example

visited | 1 1 1 1 1 1 1 1 1 1

pred| 1| 0| 0| 2 51015 51 4 7

queue

O DFS Example

DFS starting at 0

DFS Example

visited| 0 0 0 0 0 0 0 0 0 0

visit order call stack

ot 20 DFS Examp le

DFS Example

visited| 0 ol o lololo|lo]o|lo]fo H dfs(0) H

visit order call stack

COMP2521
23T3

DFS Example

DFS Example

Mark 0 as visited

[ol 01 [21 81 [« [s1 [6] [71 [81 [9]

visited ololoflololo]oflo]o H dfs(0) H

visit order call stack

COMP2521
23T3

DFS Example

DFS Example

1 has not been visited

[ol 01 [21 81 [« [s1 [6] [71 [81 [9]

visited| 1 ol ololololo]o|lo]fo H dfs(0) H

visit order 0 call stack

ot 20 DFS Examp le

Recurse into 1

DFS Example

[0 @ Bl W 5 (6l [(8] o] \ dfs(1)
visitedf 1| O[O [O0O]JOfO0O]O|O]O]|oO dfs(0)

visit order 0 call stack

O DFS Example

Mark 1 as visited

DFS Example

] [I BB [(5] el] [s] [\ dfs(1) \
visited [1 ojlofofoflofo]O]oO dfs(0)

call stack
visit order 0

ot 20 DFS Examp le

5 has not been visited

DFS Example

o] [&1 Bl [51 6 [(8 9] dfs(1)

visited | 1 1 ololJoflo]J]o|lo]oOo|oO dfs(0)

k
visit order 0 1 call stac

O DFS Example

Recurse into 5

DFS Example

dfs(5)

o] [&1 Bl [51 6 [(8 9] dfs(1)
visited| 1| 1]0]JO0]JOoO|lO|O]O]O]O dfs(0)
call stack

visit order 0 1

O DFS Example

Mark 5 as visited

DFS Example

dfs(5)

o] [&1 Bl [51 6 [(8 9] dfs(1)
visited| 1T | 1| 0] 0] O ojlo]o]oO dfs(0)
call stack

visit order 0 1

O DFS Example

3 has not been visited

DFS Example

dfs(5)

o] [&1 Bl [51 6 [(8 9] dfs(1)
visited| 1| 1]0]JO0]JO|1T|O0O]O]O]O dfs(0)
call stack

visitorder 0 1 5

ot 20 DFS Examp le

Recurse into 3

DFS Example

dfs(3)
dfs(5)

dfs(1)

visited | 1 1 olo| o] oloJlofo dfs(0)

[stack
visitorder 0 1 5 cal

ot 20 DFS Examp le

Mark 3 as visited

DFS Example

dfs(3)
dfs(5)

dfs(1)

visited | 1 1 0 0o 1 oloJlofo dfs(0)

[l stack
visitorder 0 1 5 ca

ot 20 DFS Examp le

2 has not been visited

DFS Example

dfs(3)
dfs(5)

dfs(1)

visited | 1 1 0| 1 0o 1 oloJlofo dfs(0)

visitorder 0 1 5 3 call stack

ot 20 DFS Examp le

Recurse into 2

DFS Example

dfs(2)
dfs(3)

dfs(5)

dfs(1)

visited | 1 1 0| 1 0o 1 oloJlofo dfs(0)

visitorder 0 1 5 3 call stack

ot 20 DFS Examp le

Mark 2 as visited

DFS Example

dfs(2)
dfs(3)

dfs(5)

dfs(1)

visited | 1 1 1 0| 1 oloJlofo dfs(0)

call stack
visitorder 0 1 5 3

ot 20 DFS Examp le

Return

DFS Example

dfs(3)
dfs(5)

dfs(1)

visited | 1 1 1 1 0o 1 oloJlofo dfs(0)

visitorder 0 1 5 3 2 call stack

O DFS Example

4 has not been visited

DFS Example

! @ dfs(3)

dfs(5)

6] [71 81 I[9] dfs(1)

visited| 1 [1|1 |1 |of1|[ofofo]foO dfs(0)
call stack

visitorder 0 1 5 3 2

COMP2521

2413 DFS Example

Recurse into &

DFS Example

dfs(4)
dfs(3)
dfs(5)
dfs(1)
visited| 1 [1|1 |1 |of1|[ofofo]foO dfs(0)

visitorder 0 1 5 3 2 call stack

COMP2521

2413 DFS Example

Mark & as visited

DFS Example

dfs(4)
dfs(3)
dfs(5)
dfs(1)
visited| 1 [1] 1 [1 1{o0]lJo0ofo0]oO dfs(0)

visitorder 0 1 5 3 2 call stack

COMP2521

2413 DFS Example

7 has not been visited

DFS Example

dfs(4)
dfs(3)
dfs(5)
dfs(1)
visited| 1 [1 |1 |11 |[1|[ofofofoO dfs(0)

visitorder 0 1 5 3 2 4 call stack

T DFS Example

Recurse into 7

DFS Example

dfs(7)
dfs(4)

dfs(3)

dfs(5)

dfs(1)

visited | 1 1 1 1 1 1 oloJlofo dfs(0)

visitorder 0 1 5 3 2 4 call stack

ot 20 DFS Examp le

Mark 7 as visited

DFS Example

dfs(7)
dfs(4)

dfs(3)

dfs(5)

dfs(1)

visited | 1 1 1 1 1 1 0 of|o dfs(0)

all stack
visitorder 0 1 5 3 2 4 ¢

ot 20 DFS Examp le

8 has not been visited

DFS Example

dfs(7)
dfs(4)

dfs(3)

dfs(5)

(81 [o] dfs(1)

visited | 1 1 1 1 1 1 0| 1 of|o dfs(0)

visitorder 0 1 5 3 2 4 7 call stack

COMP2521

= DFS Example

Recurse into 8

dfs(8)
dfs(7)
dfs(4)
dfs(3)
dfs(5)
dfs(1)
visited| 1 [1|1 |1 |1 |[1|[of1|ofoO dfs(0)

DFS Example

visitorder 0 1 5 3 2 4 7 call stack

COMP2521

= DFS Example

Mark 8 as visited

dfs(8)
dfs(7)
dfs(4)
dfs(3)
dfs(5)
dfs(1)
visited| 1 [1 [1|1 |1 1]o0o]n 0 dfs(0)

DFS Example

visitorder 0 1 5 3 2 4 7 call stack

COMP2521

2413 DFS Example

9 has not been visited

dfs(8)
dfs(7)
dfs(4)
dfs(3)
dfs(5)
dfs(1)
visited| 1 [1|1 [1|11 |[of1|[1]o0 dfs(0)

DFS Example

visitorder 0 1 5 3 2 4 7 8 call stack

COMP2521

= DFS Example

Recurse into 9

dfs(9)
dfs(8)
dfs(7)
dfs(4)
dfs(3)
dfs(5)
dfs(1)
visited| 1 [1|1 [1|11 |[of1|[1]o0 dfs(0)

DFS Example

visitorder 0 1 5 3 2 4 7 8 call stack

COMP2521

= DFS Example

Mark 9 as visited

dfs(9)
dfs(8)
dfs(7)
dfs(4)
dfs(3)
dfs(5)
dfs(1)
visited| 1 [1 [1 [1|11 [of 1] dfs(0)

DFS Example

visitorder 0 1 5 3 2 4 7 8 call stack

COMP2521

= DFS Example

Return

dfs(8)
dfs(7)
dfs(4)
dfs(3)
dfs(5)
dfs(1)
visited| 1 [1 1|1 |11 [of1]|1]n dfs(0)

DFS Example

visitorder 0 1 5 3 2 4 7 8 9 call stack

o DFS Example

Return

DFS Example

dfs(7)
dfs(4)

dfs(3)

dfs(5)

dfs(1)

visited | 1 1 1 1 1 1 0| 1 1 1 dfs(0)

visitorder 0 1 5 3 2 4 7 8 9 call stack

COMP2521

= DFS Example

Return

DFS Example

dfs(4)
dfs(3)
dfs(5)
dfs(1)
visited| 1 [1 1|1 |11 [of1]|1]n dfs(0)

visitorder 0 1 5 3 2 4 7 8 9 call stack

O DFS Example

Return

DFS Example

dfs(3)

dfs(5)

] M [B & 5 6 7 8 [dfs(1)
visited| 1 [1 1|1 |11 [of1]|1]n dfs(0)
call stack

visitorder 0 1 5 3 2 4 7 8 9

O DFS Example

Return

DFS Example

dfs(5)

o] [&1 Bl [51 6 [(8 9] dfs(1)
visited | 1 1 1 1 1 1 0| 1 1 1 dfs(0)
call stack

visitorder 0 1 5 3 2 4 7 8 9

O DFS Example

6 has not been visited

DFS Example

dfs(5)

o] [21 Bl [51 6 [(8 9] dfs(1)
visited | 1 1 1 1 1 1 0| 1 1 1 dfs(0)
call stack

visitorder 0 1 5 3 2 4 7 8 9

COMP2521

= DFS Example

Recurse into 6

DFS Example

dfs(6)

dfs(5)

o 0 @ B W B 6 @ s dfs(1)
visited| 1 [1 1|1 |11 [of1]|1]n dfs(0)

visitorder 0 1 5 3 2 4 7 8 9 call stack

COMP2521

= DFS Example

Mark 6 as visited

DFS Example

dfs(6)

dfs(5)

o 0 @ B W B 6 @ s dfs(1)
visited| 1 [1 [1 [1] 1] 1111 dfs(0)

visitorder 0 1 5 3 2 4 7 8 9 call stack

O DFS Example

Return

DFS Example

dfs(5)

o] [&1 Bl [51 6 [(8 9] dfs(1)
visited | 1 1 1 1 1 1 1 1 1 1 dfs(0)
call stack

visitorder 0 1 5 3 2 4 7 8 9 6

o DFS Example

DFS Example

o] [&1 Bl [51 6 [(8 9] dfs(1)
visited | 1 1 1 1 1 1 1 1 1 1 |dfs(0)

visitorder 0 1 5 3 2 4 7 8 9 6 call stack

o DFS Example

Return

DFS Example

visited | 1 1 1 1 1 1 1 1 1 1 dfs(0)

visitorder 0 1 5 3 2 4 7 8 9 6 call stack

o DFS Example

Return

DFS Example

visited| 1T [1T [T [t [1[1|1]n1

visitorder 0 1 5 3 2 4 7 8 9 6 call stack

O Path-Checking with Recursive DFS

Example

Is there a path between 0 and 7?

Path-Checking
Example

visited| 0ol ol ol olo|lo|lo|lo]|o]fo call stack

COMP2521
23T3

Path-Checking
Example

Path-Checking with Recursive DFS

Example

o H path(0, 7)? |

visited| 0ol ol ol olo|lo|lo|lo]|o]fo call stack

O Path-Checking with Recursive DFS

Example

Mark 0 as visited

Path-Checking
Example

. H path(0, 7)? ‘

o] [[381 [[s1 [el [71 [8]

visited ololololo|lolo]lo]lo call stack

O Path-Checking with Recursive DFS

Example

1 has not been visited

Path-Checking
Example

. H path(0, 7)? ‘

o] [[381 [[s1 [el [71 [8]

visited| 1 ol ol ololo|lo[o]|o]fo call stack

O Path-Checking with Recursive DFS

Example

Recurse into 1

Path-Checking
Example

path(1, 7)?
path(0, 7)?

call stack

visited | 1 0 0 0 0 0 0 0 0 0

O Path-Checking with Recursive DFS

Example

Mark 1 as visited

Path-Checking
Example

path(1, 7)?
path(0, 7)?

call stack

visited | 1 0 0 0 0 0 0 0 0

O Path-Checking with Recursive DFS

Example

5 has not been visited

Path-Checking
Example

\@ path(1, 7)?

?
[0] [[2] [3] [4] [5] [6] 7] 8] [9] path(O, 7)
visited| 1 | 1|0 |0 fofof[of[o0o]O0o]foO

call stack

COMP2521
23T3

Path-Checking with Recursive DFS

Example

Recurse into 5

Path-Checking
Example

>/ path(s, 7)?

\@ path(1,7)?

?

ol 0l [2 B [[s1 [6] [71 (8] [9] path(0, 7):
visited| 1 | 1ol oloflo|lo|[o]|]o]foO call stack

COMP2521
23T3

Path-Checking with Recursive DFS

Example

Mark 5 as visited

Path-Checking
Example

Y, path(s, 7)?

\@ path(1, 7)?

?

ol 0l [2 B [[s1 [6] [71 (8] [9] path(0, 7):
visited| 1 [1| O[O0 O olololo call stack

COMP2521
23T3

Path-Checking with Recursive DFS

Example

3 has not been visited

Path-Checking
Example

path(s, 7)?
path(1, 7)?

path(0, 7)?
visited| 1 {1 lo0oloflo]1]loloflo]o call stack

COMP2521

s Path-Checking with Recursive DFS

Example

Recurse into 3

Path-Checking
Example

path(3, 7)?
path(5, 7)?
path(1, 7)?
path(0, 7)?

visited| 1 |1 ololo|1|oflo]o]fo call stack

COMP2521

s Path-Checking with Recursive DFS

Example

Mark 3 as visited

Path-Checking
Example

path(3, 7)?
path(s, 7)?
path(1, 7)?
path(0, 7)?

o] [[381 [[s1 [l [71 [8] [9]

visited| 1 [1 | O ol11lolololo call stack

COMP2521

s Path-Checking with Recursive DFS

Example

2 has not been visited

Path-Checking
Example

path(3, 7)?
path(s, 7)?
path(1, 7)?
path(0, 7)?

visited| 1 |1 o1 lof1|oflo|lo]fo call stack

COMP2521

s Path-Checking with Recursive DFS

Example

Recurse into 2

Path-Checking
Example

path(2, 7)?
path(3, 7)?
path(s, 7)?

path(1, 7)?
path(0, 7)?

visited| 1 |1 o1 lof1|oflo|lo]fo call stack

COMP2521

s Path-Checking with Recursive DFS

Example

Mark 2 as visited

Path-Checking
Example

path(2, 7)?
path(3, 7)?
path(s, 7)?

path(1, 7)?
path(0, 7)?

visited [1 [1 1 1ol 1lolololo call stack

COMP2521

s Path-Checking with Recursive DFS

Example

Return false

Path-Checking
Example

path(2, 7)?
path(3, 7)?
path(s, 7)?

path(1, 7)?
path(0, 7)?

visited| 1 [1|11 lof1|oflo|lo]fo call stack

COMP2521

s Path-Checking with Recursive DFS

Example

Path-Checking
Example

path(3, 7)?
path(5, 7)?
path(1, 7)?
path(0, 7)?

visited| 1 [1|11 lof1|oflo|lo]fo call stack

COMP2521

s Path-Checking with Recursive DFS

Example

4 has not been visited

Path-Checking
Example

path(3, 7)?
7 ° path(5, 7)?
path(1, 7)?
path(0, 7)?

visited| 1 [1|11 lof1|oflo|lo]fo call stack

COMP2521

s Path-Checking with Recursive DFS

Example

Recurse into 4

Path-Checking
Example

path(4, 7)?
path(3, 7)?
path(5, 7)?
path(1, 7)?
path(0, 7)?

visited| 1 [1|11 lof1|oflo|lo]fo call stack

COMP2521

s Path-Checking with Recursive DFS

Example

Mark 4 as visited

Path-Checking
Example

path(s, 7)?
path(3, 7)?
path(s, 7)?
path(1, 7)?
path(0, 7)?

visited[1 | 1 [1| 1 11lolololo call stack

COMP2521

s Path-Checking with Recursive DFS

Example

7 has not been visited

Path-Checking
Example

path(4, 7)?
path(3, 7)?
path(s, 7)?
path(1, 7)?
path(0, 7)?

visited| 1 [11|11 |1 |oflo]o]fo call stack

compzs2n Path-Checking with Recursive DFS

23T3
Example

Recurse into 7

path(7, 7)?
path(4, 7)?
path(3, 7)?
path(s, 7)?
path(1, 7)?
path(0, 7)?

call stack

Path-Checking
Example

visited | 1 1 1 1 1 1 0 0 0 0

compzs2n Path-Checking with Recursive DFS

23T3
Example

Mark 7 as visited

path(7, 7)?
path(4, 7)?
path(3, 7)?
path(s, 7)?
path(1, 7)?
path(0, 7)?

call stack

Path-Checking
Example

visited | 1 1 1 1 1 1 0 0 0

compzs2n Path-Checking with Recursive DFS

23T3
Example

Return true

path(7, 7)?
path(4, 7)?
path(3, 7)?
path(s, 7)?
path(1, 7)?
path(0, 7)?

call stack

Path-Checking
Example

visited | 1 1 1 1 1 1 0 1 0 0

COMP2521

s Path-Checking with Recursive DFS

Example

Return true

Path-Checking
Example

path(4, 7)?
path(3, 7)?
path(5, 7)?
path(1, 7)?
path(0, 7)?

visited| 1 [11|11 |1 |o[1]o0o]fo0 call stack

COMP2521

s Path-Checking with Recursive DFS

Example

Return true

Path-Checking
Example

path(3, 7)?
path(5, 7)?
path(1, 7)?
path(0, 7)?

visited| 1 [11|11 |1 |o[1]o0o]fo0 call stack

COMP2521
23T3

Path-Checking with Recursive DFS

Example

Return true

Path-Checking
Example

W, path(s, 7)?

\@ path(1,7)?

?

ol 0l [2 B [[s1 [6] [71 (8] [9] path(0, 7):
visited| 1 [11|11 |1 |o[1]o0o]fo0 call stack

O Path-Checking with Recursive DFS

Example

Return true

Path-Checking
Example

path(1, 7)?
path(0, 7)?

call stack

visited | 1 1 1 1 1 1 0 1 0 0

O Path-Checking with Recursive DFS

Example

Return true

Path-Checking
Example

o H path(0, 7)? |

visited| 1 [11|11 |1 |o[1]o0o]fo0 call stack

O Path-Checking with Recursive DFS

Example

Answer: Yes

Path-Checking
Example

visited| 1 [11|11 |1 |o[1]o0o]fo0 call stack

	Graph Traversal
	BFS and DFS

	Breadth-First Search
	Example
	Pseudocode
	Analysis
	Path Finding

	Depth-First Search
	Recursive
	Iterative

	Ideas/Issues
	Spanning Trees
	Unconnected Graphs

	Appendix
	BFS Example
	DFS Example
	Path-Checking Example

