COMP2521 23T3
 Graphs (I)

Kevin Luxa
cs2521@cse.unsw.edu.au

graph fundamentals
graph representations

Graph Fundamentals

Collections of Related Things

Up to this point, we've seen a few collection types...
lists: a linear sequence of items each node knows about its next node trees: a branched hierarchy of items each node knows about its child node(s)
what if we want something more general? ...each node knows about its related nodes

Collections of Related Things

Many applications need to model relationships between items.
... on a map: cities, connected by roads
... on the Web: pages, connected by hyperlinks
... in a game: states, connected by legal moves
... in a social network: people, connected by friendships
... in scheduling: tasks, connected by constraints
... in circuits: components, connected by traces
... in networking: computers, connected by cables
... in programs: functions, connected by calls
... etc. etc. etc.

Collections of Related Things

Questions we could answer with a graph:

- what items are connected? how?
- are the items fully connected?
- is there a way to get from A to B ? what's the best way? what's the cheapest way?
- in general, what can we reach from A ?
- is there a path that lets me visit all items?
- can we form a tree linking all vertices?
- are two graphs "equivalent"?

Road Distances

	ADL	BNE	CBR	DRW	MEL	PER	SYD
ADL	-	2055	1390	3051	732	2716	1605
BNE	2055	-	1291	3429	1671	4771	982
CBR	1390	1291	-	4441	658	4106	309
DRW	3051	3429	4441	-	3783	4049	4411
MEL	732	1671	658	3783	-	3448	873
PER	2716	4771	4106	4049	3448	-	3972
SYD	1605	982	309	4411	873	3972	-

A graph G is a set of vertices V and edges E.

$$
E:=\{(v, w) \mid v, w \in V,(v, w) \in V \times V\}
$$

$$
\begin{aligned}
& V=\left\{\begin{array}{rll}
\left.v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
e_{1} & := & \left(v_{1}, v_{2}\right), \\
e_{2} & := & \left(v_{2}, v_{3}\right), \\
e_{3} & := & \left(v_{3}, v_{4}\right), \\
e_{4} & := & \left(v_{1}, v_{4}\right), \\
e_{5} & := & \left(v_{1}, v_{3}\right)
\end{array}\right\}
\end{aligned}
$$

Graphs

Types of Graphs Graph Terminology

Graph ADT Graph Rep.

undirected

directed

multigraph

weighted

Directed Graphs

If edges in a graph are directed, the graph is a directed graph or digraph.
$(v, w) \in E$ does not imply $(w, v) \in E$. A digraph with V vertices can have at most V^{2} edges.

Digraphs can have self loops ($v \rightarrow v$)

Multi-Graphs...

allow multiple edges between two vertices
(e.g., callgraphs; maps)

Weighted Graphs...
each edge has an associated weight (e.g., maps; networks)

At this point, we'll only consider simple graphs:

- a set of vertices
- a set of undirected edges
- no self loops
- no parallel edges

How many edges can a 7-vertex simple graph have?

At this point, we'll only consider simple graphs:

- a set of vertices
- a set of undirected edges
- no self loops
- no parallel edges

How many edges can a 7-vertex simple graph have?

$$
7 \times(7-1) / 2=21
$$

Note: $|V|$ and $|E|$ is normally written as V and E for simplicity.

For a simple graph:

$$
E \leq(V \times(V-1)) / 2
$$

- if E closer to V^{2}, dense
- if E closer to V, sparse

These properties affect our choice of representation and algorithms.

A complete graph is a graph where

every vertex is connected to all other vertices:

$$
E=(V \times(V-1)) / 2
$$

K_{3}

K_{5}

K_{6}

Two vertices v and w are adjacent if an edge $e:=(v, w)$ connects them; we say e is incident on v and w

The degree of a vertex $v(\operatorname{deg}(v))$ is the number of edges incident on v

A subgraph is a subset of vertices and associated edges

A path is
a sequence of vertices and edges
... $1,0,6,5$
a path is simple
if it has no repeating vertices
a path is a cycle
if it is simple except
 for its first and last vertex, which are the same.

Graph Terminology

A connected graph

has a path from every vertex
to every other vertex
A connected graph with no cycles is a tree.

A tree has exactly one path between each pair of vertices.

A graph that is not connected
consists of a set of connected components:
maximally connected subgraphs

A spanning tree of a graph is a subgraph that contains all its vertices and is a single tree

A spanning forest of a graph is a subgraph that contains all its vertices and is a set of trees

There isn't necessarily only one spanning tree/forest for a graph.

A clique is a complete subgraph.


```
Graphs
```


Graph ADT

What do we need to represent? What operations do we need to support?

What do we need to represent?
A graph G is a set of vertices $V:=\left\{v_{1}, \cdots, v_{n}\right\}$, and a set of edges $E:=\{(v, w) \mid v, w \in V ;(v, w) \in V \times V\}$.

Directed graphs: $(v, w) \neq(w, v)$.
Weighted graphs: $E:=\{(v, w, \sigma)\}$.
What operations do we need to support? create/destroy graph; add/remove vertices, edges; get \#vertices, \#edges;

> create/destroy
> create a graph
> free memory allocated to graph

> query
> get number of vertices
> get number of edges
> check if an edge exists

manipulate
 add edge
 remove edge

We will extend this ADT with more complex operations later.
"Graph.h" - Operations to Create/Destroy

```
typedef struct graph *Graph;
// vertices denoted by integers 0..V-1
typedef int Vertex;
/** Creates a new graph with nV vertices */
Graph GraphNew(int nV);
/** Frees memory allocated to a graph */
void GraphFree(Graph g);
```

"Graph.h" - Operations to Query

```
/** Returns the number of vertices in a graph */
int GraphNumVertices(Graph g);
/** Returns the number of edges in a graph */
int GraphNumEdges(Graph g);
/** Returns true if there is an edge between given vertices
        and false otherwise */
bool GraphIsAdjacent(Graph g, Vertex v, Vertex w);
```


A Graph ADT

"Graph.h" - Operations to Manipulate

```
/** Inserts an edge into a graph */
void GraphInsertEdge(Graph g, Vertex v, Vertex w);
/** Removes an edge from a graph */
void GraphRemoveEdge(Graph g, Vertex v, Vertex w);
```

Graph ADT

Graph Representations

3 main graph representations:

Adjacency Matrix

Edges defined by presence value in $V \times V$ matrix

Adjacency List

Edges defined by entries in array of V lists

Array of Edges

Explicit representation of edges as (v, w) pairs

We'll consider these representations for unweighted, undirected graphs. Graph ADT Graph Rep.
Adjacency Matrix Adjacency Matrix Adjacency List Adjacency List
Array of Edges

A $V \times V$ matrix; each cell represents an edge.

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

directed

```
struct graph {
        int nV;
        int nE;
        bool **edges;
};
```


Advantages

- Easy to implement! two-dimensional array of bool/int/double/...
- Works for: graphs! digraphs! weighted graphs!
- Efficient!
$O(1)$ edge-insert, edge-delete $O(1)$ is-adjacent

Disadvantages

- Huge space overheads!
V^{2} cells of some type sparse graph \Rightarrow wasted space! undirected graph \Rightarrow wasted space!
- Inefficient!
$O\left(V^{2}\right)$ initialisation

Array of V lists

$$
\begin{aligned}
& A[0]=\langle 1,3\rangle \\
& A[1]=\langle 0,3\rangle \\
& A[2]=\langle 3\rangle \\
& A[3]=\langle 0,1,2\rangle
\end{aligned}
$$

undirected

$$
\begin{aligned}
& A[0]=\langle 1,3\rangle \\
& A[1]=\langle 0,3\rangle \\
& A[2]=<> \\
& A[3]=<2>
\end{aligned}
$$

directed

Adjacency List

Implementation in C

Graphs Graph ADT

Graph Rep. Adjacency Matri: Adjacency List Array of Edges

```
struct graph {
        int nV;
        int nE;
        struct adjNode **edges;
};
struct adjNode {
        Vertex v;
        struct adjNode *next;
};
```


Advantages

- Relatively easy to implement!
- Works for: graphs! digraphs! weighted graphs!
- Space-efficient! if graph has fewer edges $O(V+E)$ memory usage

Disadvantages

- Inefficient!
$O(V)$ edge-insert, edge-delete
$O(V)$ is-adjacent (matters less for sparse graphs)

Edges represented by an array of edge structs (pairs of vertices)

undirected

$$
\begin{aligned}
A= & {[} \\
& (0,1), \\
& (0,3), \\
& (1,0), \\
& (1,3), \\
& (3,2),
\end{aligned}
$$

directed

Array of Edges

Implementation in C

```
        struct graph {
        int nV;
        int nE;
        int maxE;
        struct edge *edges;
        };
    struct edge {
        Vertex v;
        Vertex w;
    };
```


Advantages

- Works for:

Disadvantages

 graphs! digraphs! weighted graphs!- Very space-efficient!
- Inefficient! $O(E)$ edge-insert, edge-delete especially for sparse graphs where $E<V$

Summary of Graph Representations

	Adjacency Matrix	Adjacency List	Array of Edges
Space usage	$O\left(V^{2}\right)$	$O(V+E)$	$O(E)$
Create	$O\left(V^{2}\right)$	$O(V)$	$O(1)$
Destroy	$O(V)$	$O(V+E)$	$O(1)$
Insert edge	$O(1)$	$O(V)$	$O(E)$
Remove edge	$O(1)$	$O(V)$	$O(E)$
Is adjacent	$O(1)$	$O(V)$	$O(E)^{*}$
Degree	$O(V)$	$O(V)$	$O(E)^{*}$

* Can be $O(\log E)$ if the array is ordered
and both directions of each edge are stored in an undirected graph
https://forms.office.com/r/aPF09YHZ3X

