Graphs Graph AD Graph Re

COMP2521 23T3 Graphs (I)

Kevin Luxa cs2521@cse.unsw.edu.au

graph fundamentals graph representations

Graphs

Types of Graphs Graph Terminology

Graph AD

Graph Rep

Graph Fundamentals

Collections of Related Things

Graphs

Types of Graphs Graph Terminolog

Graph AD

Graph Rep

Up to this point, we've seen a few collection types...

lists: a linear sequence of items each node knows about its next node trees: a branched hierarchy of items each node knows about its child node(s)

what if we want something more general? ...each node knows about its *related* nodes

Collections of Related Things

... Related Nodes? (I)

Graphs

Types of Graphs Graph Terminology

Graph ADT

Graph Rep.

Many applications need to model relationships between items.

... on a map: cities, connected by roads ... on the Web: pages, connected by hyperlinks ... in a game: states, connected by legal moves ... in a social network: people, connected by friendships ... in scheduling: tasks, connected by constraints ... in circuits: components, connected by traces ... in networking: computers, connected by cables ... in programs: functions, connected by calls ... etc. etc.

Collections of Related Things

... Related Nodes? (II)

Graphs

Types of Graphs Graph Terminology

Graph ADT

Graph Rep.

Questions we could answer with a graph:

- what items are connected? how?
- are the items fully connected?
- is there a way to get from A to B? what's the best way? what's the cheapest way?
- in general, what can we reach from A?
- is there a path that lets me visit all items?
- can we form a tree linking all vertices?
- are two graphs "equivalent"?

Road Distances

Graphs

Types of Graphs Graph Terminology

Graph AD1

	ADL	BNE	CBR	DRW	MEL	PER	SYD
ADL	—	2055	1390	3051	732	2716	1605
BNE	2055	_	1291	3429	1671	4771	982
CBR	1390	1291	—	4441	658	4106	309
DRW	3051	3429	4441	_	3783	4049	4411
MEL	732	1671	658	3783	—	3448	873
PER	2716	4771	4106	4049	3448	_	3972
SYD	1605	982	309	4411	873	3972	_

Graphs

Types of Graphs Graph Terminology

Graph AD

Road Distances

Types of Graphs Graph Terminolog

Graph AD1

Graphs

Types of Graphs Graph Terminolog

Graph AD

Graph Rep

A graph G is a set of vertices V and edges E. $E := \{(v, w) \mid v, w \in V, (v, w) \in V \times V\}$

$$V = \{v_1, v_2, v_3, v_4\}$$

$$E = \begin{cases} e_1 := (v_1, v_2), \\ e_2 := (v_2, v_3), \\ e_3 := (v_3, v_4), \\ e_4 := (v_1, v_4), \\ e_5 := (v_1, v_3) \end{cases}$$

Graphs Types of Graphs

Graphs

Types of Graphs

diapit termino

Graph AD

Graph Rep

undirected

directed

multigraph

weighted

If edges in a graph are directed, the graph is a directed graph or digraph.

 $(v, w) \in E$ does not imply $(w, v) \in E$. A digraph with V vertices can have at most V^2 edges. Digraphs can have self loops $(v \to v)$

COMP2521 23T3

Graphs

Types of Graphs

Graph ADT

Multigraphs and Weighted Graphs

Graphs

Types of Graphs Graph Terminology Graph ADT Graph Rep.

Multi-Graphs...

allow multiple edges between two vertices (e.g., callgraphs; maps)

Weighted Graphs...

each edge has an associated weight (e.g., maps; networks)

Simple Graphs

Graphs Types of Graphs Graph Terminology Graph ADT Graph Rep.

At this point, we'll only consider simple graphs:

- a set of vertices
- a set of undirected edges
- no self loops
- no parallel edges

How many edges can a 7-vertex simple graph have?

Simple Graphs

Types of Graphs

At this point, we'll only consider simple graphs:

- a set of vertices
- a set of undirected edges
- no self loops
- no parallel edges

6 5 4 3 |V| = 7; |E| = 11.

How many edges can a 7-vertex simple graph have? $7 \times (7-1)/2 = 21$

Graphs Types of Graphs Graph Terminology Graph ADT Graph Rep. Graph Terminology

Note: |V| and |E| is normally written as V and E for simplicity.

For a simple graph:

 $E \leq (\,V \times (\,V-1))/2$

- if E closer to V^2 , dense
- if *E* closer to *V*, sparse

These properties affect our choice of representation and algorithms.

Graphs Types of Graphs Graph Terminology Graph ADT

Graph Rep

Graph Terminology

A complete graph is a graph where every vertex is connected to all other vertices: $E = (V \times (V - 1))/2$

Graphs Types of Graphs Graph Terminology Graph ADT Graph Rep.

> Two vertices v and w are adjacent if an edge e := (v, w) connects them; we say e is incident on v and w

> The degree of a vertex v (deg(v)) is the number of edges incident on v

Graph Terminology

Graphs Types of Graphs Graph Terminology

Graph Rep

A subgraph is a subset of vertices and associated edges

Graph Terminology

Graphs Types of Graphs Graph Terminology Graph ADT

A path is a sequence of vertices and edges ... 1,0,6,5

a path is simple if it has no repeating vertices

a path is a cycle if it is simple *except* for its first and last vertex, which are the same.

Graph Terminology

(V)

aohs

Graph Terminology

Graph ADT

Graph Rep

A connected graph

has a path from every vertex to every other vertex

A connected graph with no cycles is a tree.

A tree has exactly one path between each pair of vertices.

Graph Terminology

Graphs Types of Graphs Graph Terminology Graph ADT

Graph Rep

A graph that is not connected consists of a set of connected components: maximally connected subgraphs

Graph Terminology

Graph Terminology

A spanning tree of a graph is a subgraph that contains all its vertices and is a single tree

A spanning forest of a graph is a subgraph that contains all its vertices and is a set of trees

There isn't necessarily only one spanning tree/forest for a graph.

COMP2521 23T3

Graphs Types of Graphs Graph Terminology Graph ADT Graph Rep.

Graph Terminology

COMP2521 23T3

Graph Terminology

Graphs

Graph ADT

Graph Rep

Graph ADT

Graphs

Graph ADT

Graph Rep

What do we need to represent? What operations do we need to support?

Graph ADT

Graphs

Graph ADT

COMP2521

23T3

Graph Rep.

What do we need to represent? A graph G is a set of vertices $V := \{v_1, \dots, v_n\}$, and a set of edges $E := \{(v, w) | v, w \in V; (v, w) \in V \times V\}$. Directed graphs: $(v, w) \neq (w, v)$. Weighted graphs: $E := \{(v, w, \sigma)\}$.

What operations do we need to support?

create/destroy graph; add/remove vertices, edges; get #vertices, #edges;

Graph ADT Operations

Granhe

Graph ADT

COMP2521

23T3

Graph Rep

create/destroy

create a graph free memory allocated to graph

query

get number of vertices get number of edges check if an edge exists

manipulate

add edge remove edge

We will extend this ADT with more complex operations later.

A Graph ADT "Graph.h" - Operations to Create/Destroy

COMP2521 23T3

Graphs

Graph ADT

Graph Rep.

typedef struct graph *Graph;

// vertices denoted by integers 0..V-1
typedef int Vertex;

/** Creates a new graph with nV vertices */
Graph GraphNew(int nV);

```
/** Frees memory allocated to a graph */
void GraphFree(Graph g);
```

A Graph ADT "Graph.h" - Operations to Query

COMP2521

23T3

Graph ADT

Graph Rep.

```
/** Returns the number of vertices in a graph */
int GraphNumVertices(Graph g);
```

```
/** Returns the number of edges in a graph */
int GraphNumEdges(Graph g);
```

/** Returns true if there is an edge between given vertices and false otherwise */ bool GraphIsAdjacent(Graph g, Vertex v, Vertex w);

A Graph ADT "Graph.h" - Operations to Manipulate

COMP2521 23T3

Graphs

Graph ADT

Graph Rep.

/** Inserts an edge into a graph */
void GraphInsertEdge(Graph g, Vertex v, Vertex w);

/** Removes an edge from a graph */
void GraphRemoveEdge(Graph g, Vertex v, Vertex w);

Graphs

Graph ADT

Graph Rep.

Adjacency Matri Adjacency List Array of Edges

Graph Representations

Graph Representations

COMP2521 23T3

Graphs

Graph ADT

Graph Rep.

Adjacency Matri: Adjacency List Array of Edges 3 main graph representations:

Adjacency Matrix Edges defined by presence value in $V \times V$ matrix

Adjacency List Edges defined by entries in array of *V* lists

Array of Edges Explicit representation of edges as (v, w) pairs

We'll consider these representations for unweighted, undirected graphs.

Adjacency Matrix

Graphs

COMP2521 23T3

Graph AD

Graph Rep

Adjacency Matrix

Adjacency List Array of Edges A $V \times V$ matrix; each cell represents an edge.

directed

Adjacency Matrix COMP2521 23T3 Implementation in C Adjacency Matrix struct graph { int nV; 0 1 0 1 graph int nE; bool **edges; edges [0] }; 0 0 1 1 4 [1] n۷ 1 4 [2] 0 0 0 1 nE

[3]

1

1

1

0

Graphs

Graph AD1

Graph Rep. Adjacency Matrix Adjacency List Array of Edges

Advantages

- Easy to implement! two-dimensional array of bool/int/double/...
- Works for: graphs! digraphs! weighted graphs!
- Efficient! O(1) edge-insert, edge-delete O(1) is-adjacent

Adjacency Matrix

Advantages and Disadvantages

Disadvantages

- Huge space overheads!
 V² cells of some type
 sparse graph ⇒ wasted space!
 undirected graph ⇒ wasted space!
- Inefficient!
 O(V²) initialisation

Graph AD

Graph Rep

Adjacency Matri

Adjacency List

Array of Edges

Adjacency List

undirected

directed

Graphs

Graph AD

Graph Rep

Adjacency Mat

Adjacency List

Array of Edges

struct graph { int nV; int nE; struct adjNode **edges; };

```
struct adjNode {
    Vertex v;
    struct adjNode *next;
};
```


Adjacency List

Implementation in C

Graphs

Graph AD1

Graph Rep.

Adjacency List

Adjacency List

Advantages and Disadvantages

Advantages

- Relatively easy to implement!
- Works for: graphs! digraphs! weighted graphs!
- Space-efficient! if graph has fewer edges O(V + E) memory usage

Disadvantages

Inefficient!
 O(V) edge-insert, edge-delete
 O(V) is-adjacent
 (matters less for sparse graphs)

Array of Edges

Edges represented by an array of edge structs (pairs of vertices)

COMP2521 23T3

Graphs

Graph AD

Graph Rep. Adjacency Matr

Array of Edges

Graphs

Graph Al

G**raph Rep.** Adjacency Matrix Adjacency List

Array of Edges

struct graph { int nV; int nE; int maxE; struct edge *edges; }; struct edge { Vertex v; Vertex w; }

};

Array of Edges

Implementation in C

Graphs

Graph AD⁻

Graph Rep. Adjacency Matrix Adjacency List Array of Edges

Array of Edges

Advantages and Disadvantages

Advantages

- Works for: graphs! digraphs! weighted graphs!
- Very space-efficient! especially for sparse graphs where E < V

Disadvantages

• Inefficient! O(E) edge-insert, edge-delete

Graphs

Graph AD⁻

Graph Rep. Adjacency Matrix Adjacency List

Array of Edges

Summary of Graph Representations

	Adjacency Matrix	Adjacency List	Array of Edges
Space usage	$O(V^2)$	O(V+E)	O(E)
Create	$O(V^2)$	O(V)	O(1)
Destroy	O(V)	O(V+E)	O(1)
Insert edge	O(1)	O(V)	O(E)
Remove edge	<i>O</i> (1)	O(V)	O(E)
Is adjacent	<i>O</i> (1)	O(V)	$O(E)^{\star}$
Degree	O(V)	O(V)	$O(E)^{\star}$

* Can be $O(\log E)$ if the array is ordered

and both directions of each edge are stored in an undirected graph

Graphs

Graph AD

Graph Rep. Adjacency Matri:

Array of Edges

https://forms.office.com/r/aPF09YHZ3X

Feedback