
COMP2521
23T3

Graphs

Graph ADT

Graph Rep.

COMP2521 23T3
Graphs (I)

Kevin Luxa

cs2521@cse.unsw.edu.au

graph fundamentals

graph representations

COMP2521
23T3

Graphs

Types of Graphs

Graph Terminology

Graph ADT

Graph Rep.

Graph Fundamentals

COMP2521
23T3

Graphs

Types of Graphs

Graph Terminology

Graph ADT

Graph Rep.

Collections of Related Things

Up to this point, we’ve seen a few collection types…

lists: a linear sequence of items

each node knows about its next node

trees: a branched hierarchy of items

each node knows about its child node(s)

what if we want something more general?

…each node knows about its related nodes

COMP2521
23T3

Graphs

Types of Graphs

Graph Terminology

Graph ADT

Graph Rep.

Collections of Related Things
… Related Nodes? (I)

Many applications need to model relationships between items.

… on a map: cities, connected by roads

… on the Web: pages, connected by hyperlinks

… in a game: states, connected by legal moves

… in a social network: people, connected by friendships

… in scheduling: tasks, connected by constraints

… in circuits: components, connected by traces

… in networking: computers, connected by cables

… in programs: functions, connected by calls

… etc. etc. etc.

COMP2521
23T3

Graphs

Types of Graphs

Graph Terminology

Graph ADT

Graph Rep.

Collections of Related Things
… Related Nodes? (II)

Questions we could answer with a graph:

• what items are connected? how?

• are the items fully connected?

• is there a way to get from A to B?

what’s the best way? what’s the cheapest way?

• in general, what can we reach from A?

• is there a path that lets me visit all items?

• can we form a tree linking all vertices?

• are two graphs “equivalent”?

COMP2521
23T3

Graphs

Types of Graphs

Graph Terminology

Graph ADT

Graph Rep.

Road Distances

adl bne cbr drw mel per syd

adl — 2055 1390 3051 732 2716 1605

bne 2055 — 1291 3429 1671 4771 982

cbr 1390 1291 — 4441 658 4106 309

drw 3051 3429 4441 — 3783 4049 4411

mel 732 1671 658 3783 — 3448 873

per 2716 4771 4106 4049 3448 — 3972

syd 1605 982 309 4411 873 3972 —

COMP2521
23T3

Graphs

Types of Graphs

Graph Terminology

Graph ADT

Graph Rep.

Road Distances

ADL

BNE

CBR

DRW

MEL

PER

SYD

COMP2521
23T3

Graphs

Types of Graphs

Graph Terminology

Graph ADT

Graph Rep.

Road Distances

2055

1390

3051

732

2716

1605

1291

3429

1671

4771

982

4441

658

4106

309

3783

4049

4411

3448

873

3972

ADL

BNE

CBR

DRW

MEL

PER

SYD

COMP2521
23T3

Graphs

Types of Graphs

Graph Terminology

Graph ADT

Graph Rep.

Graphs

A graph G is a set of vertices V and edges E .

E := {(v,w) | v,w ∈ V , (v,w) ∈ V × V}

1

2

3

4

5

v1

v2

v3

v4
V = {v1, v2, v3, v4}

E =

e1 := (v1, v2) ,
e2 := (v2, v3) ,
e3 := (v3, v4) ,
e4 := (v1, v4) ,
e5 := (v1, v3)

COMP2521
23T3

Graphs

Types of Graphs

Graph Terminology

Graph ADT

Graph Rep.

Graphs
Types of Graphs

undirected
directed

multigraph weighted

COMP2521
23T3

Graphs

Types of Graphs

Graph Terminology

Graph ADT

Graph Rep.

Directed Graphs

If edges in a graph are directed,

the graph is a directed graph or digraph.

(v,w) ∈ E does not imply (w, v) ∈ E .

A digraph with V vertices can have at most V 2 edges.

Digraphs can have self loops (v → v)

COMP2521
23T3

Graphs

Types of Graphs

Graph Terminology

Graph ADT

Graph Rep.

Multigraphs and Weighted Graphs

Multi-Graphs…

allow multiple edges between two

vertices

(e.g., callgraphs; maps)

Weighted Graphs…

each edge has an associated weight

(e.g., maps; networks)

COMP2521
23T3

Graphs

Types of Graphs

Graph Terminology

Graph ADT

Graph Rep.

Simple Graphs

At this point,

we’ll only consider simple graphs:

• a set of vertices

• a set of undirected edges

• no self loops

• no parallel edges

0

1

6

2 3
4

5

|V | = 7; |E | = 11.

How many edges can a

7-vertex simple graph have?

7× (7− 1)/2 = 21

COMP2521
23T3

Graphs

Types of Graphs

Graph Terminology

Graph ADT

Graph Rep.

Simple Graphs

At this point,

we’ll only consider simple graphs:

• a set of vertices

• a set of undirected edges

• no self loops

• no parallel edges

0

1

6

2 3
4

5

|V | = 7; |E | = 11.

How many edges can a

7-vertex simple graph have?

7× (7− 1)/2 = 21

COMP2521
23T3

Graphs

Types of Graphs

Graph Terminology

Graph ADT

Graph Rep.

Graph Terminology
(I)

Note: |V | and |E | is normally written as V and E for simplicity.

For a simple graph:

E ≤ (V × (V − 1))/2

• if E closer to V 2, dense

• if E closer to V , sparse

These properties affect our choice

of representation and algorithms.

0

1

6

2 3
4

5

V = 7; E = 11.

COMP2521
23T3

Graphs

Types of Graphs

Graph Terminology

Graph ADT

Graph Rep.

Graph Terminology
(II)

A complete graph is a graph where

every vertex is connected to all other vertices:

E = (V × (V − 1))/2

K3
K5 K6

COMP2521
23T3

Graphs

Types of Graphs

Graph Terminology

Graph ADT

Graph Rep.

Graph Terminology
(III)

Two vertices v and w are adjacent

if an edge e := (v,w) connects them;

we say e is incident on v and w

The degree of a vertex v (deg(v))
is the number of edges incident on v

0

1

6

2 3
4

5

COMP2521
23T3

Graphs

Types of Graphs

Graph Terminology

Graph ADT

Graph Rep.

Graph Terminology
(IV)

A subgraph is a

subset of vertices

and associated edges

0

1

6

2 3
4

5

COMP2521
23T3

Graphs

Types of Graphs

Graph Terminology

Graph ADT

Graph Rep.

Graph Terminology
(V)

A path is

a sequence of

vertices and edges

… 1, 0, 6, 5

a path is simple

if it has no repeating vertices

a path is a cycle

if it is simple except

for its first and last vertex,

which are the same.

0

1

6

2 3
4

5

COMP2521
23T3

Graphs

Types of Graphs

Graph Terminology

Graph ADT

Graph Rep.

Graph Terminology
(VI)

A connected graph

has a path from every vertex

to every other vertex

A connected graph

with no cycles is a tree.

A tree has exactly one path

between each pair of vertices.

0

1

6

2 3
4

5

(not a tree)

COMP2521
23T3

Graphs

Types of Graphs

Graph Terminology

Graph ADT

Graph Rep.

Graph Terminology
(VII)

A graph that is not connected

consists of a set of

connected components:

maximally connected subgraphs

1

2

3

4

0

6

5

COMP2521
23T3

Graphs

Types of Graphs

Graph Terminology

Graph ADT

Graph Rep.

Graph Terminology
(VIII)

A spanning tree of a graph

is a subgraph that

contains all its vertices

and is a single tree

A spanning forest of a graph

is a subgraph that

contains all its vertices

and is a set of trees

There isn’t necessarily only one

spanning tree/forest for a graph.

0

1

6

2 3
4

5

COMP2521
23T3

Graphs

Types of Graphs

Graph Terminology

Graph ADT

Graph Rep.

Graph Terminology
(IX)

A clique is a complete subgraph.

0

1
2

3

4 8

9
10

11

5

6 7

COMP2521
23T3

Graphs

Graph ADT

Graph Rep.

Graph ADT

COMP2521
23T3

Graphs

Graph ADT

Graph Rep.

Graph ADT

What do we need to represent?

What operations do we need to support?

COMP2521
23T3

Graphs

Graph ADT

Graph Rep.

Graph ADT

What do we need to represent?

A graph G is a set of vertices V := {v1, · · · , vn},
and a set of edges E := {(v,w) | v,w ∈ V ; (v,w) ∈ V × V}.

Directed graphs: (v,w) 6= (w, v).
Weighted graphs: E := {(v,w, σ)}.

What operations do we need to support?

create/destroy graph;

add/remove vertices, edges;

get #vertices, #edges;

COMP2521
23T3

Graphs

Graph ADT

Graph Rep.

Graph ADT
Operations

create/destroy

create a graph

free memory allocated to graph

query

get number of vertices

get number of edges

check if an edge exists

manipulate

add edge

remove edge

We will extend this ADT with more complex operations later.

COMP2521
23T3

Graphs

Graph ADT

Graph Rep.

A Graph ADT
"Graph.h" - Operations to Create/Destroy

typedef struct graph *Graph;

// vertices denoted by integers 0..V-1

typedef int Vertex;

/** Creates a new graph with nV vertices */

Graph GraphNew(int nV);

/** Frees memory allocated to a graph */

void GraphFree(Graph g);

COMP2521
23T3

Graphs

Graph ADT

Graph Rep.

A Graph ADT
"Graph.h" - Operations to Query

/** Returns the number of vertices in a graph */

int GraphNumVertices(Graph g);

/** Returns the number of edges in a graph */

int GraphNumEdges(Graph g);

/** Returns true if there is an edge between given vertices

and false otherwise */

bool GraphIsAdjacent(Graph g, Vertex v, Vertex w);

COMP2521
23T3

Graphs

Graph ADT

Graph Rep.

A Graph ADT
"Graph.h" - Operations to Manipulate

/** Inserts an edge into a graph */

void GraphInsertEdge(Graph g, Vertex v, Vertex w);

/** Removes an edge from a graph */

void GraphRemoveEdge(Graph g, Vertex v, Vertex w);

COMP2521
23T3

Graphs

Graph ADT

Graph Rep.

Adjacency Matrix

Adjacency List

Array of Edges

Graph Representations

COMP2521
23T3

Graphs

Graph ADT

Graph Rep.

Adjacency Matrix

Adjacency List

Array of Edges

Graph Representations

3 main graph representations:

Adjacency Matrix

Edges defined by presence value in V × V matrix

Adjacency List

Edges defined by entries in array of V lists

Array of Edges

Explicit representation of edges as (v,w) pairs

We’ll consider these representations for unweighted, undirected graphs.

COMP2521
23T3

Graphs

Graph ADT

Graph Rep.

Adjacency Matrix

Adjacency List

Array of Edges

Adjacency Matrix

A V × V matrix; each cell represents an edge.

0

1

2

3

0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0

undirected

0

1

2

3

0 1 0 1
1 0 0 1
0 0 0 0
0 0 1 0

directed

COMP2521
23T3

Graphs

Graph ADT

Graph Rep.

Adjacency Matrix

Adjacency List

Array of Edges

Adjacency Matrix
Implementation in C

struct graph {

int nV;

int nE;

bool **edges;

};

0

1

2

3

graph

edges

nV 4

nE 4

[0]

[1]

[2]

[3]

0 1 0 1

1 0 0 1

0 0 0 1

1 1 1 0

COMP2521
23T3

Graphs

Graph ADT

Graph Rep.

Adjacency Matrix

Adjacency List

Array of Edges

Adjacency Matrix
Advantages and Disadvantages

Advantages

• Easy to implement!

two-dimensional array of

bool/int/double/…

• Works for:

graphs! digraphs!

weighted graphs!

• Efficient!

O(1) edge-insert, edge-delete
O(1) is-adjacent

Disadvantages

• Huge space overheads!

V 2 cells of some type

sparse graph ⇒ wasted space!

undirected graph ⇒ wasted space!

• Inefficient!

O(V 2) initialisation

COMP2521
23T3

Graphs

Graph ADT

Graph Rep.

Adjacency Matrix

Adjacency List

Array of Edges

Adjacency List

Array of V lists

0

1

2

3

Filler

A[0] = <1, 3>

A[1] = <0, 3>

A[2] = <3>

A[3] = <0, 1, 2>

undirected

0

1

2

3

Filler

A[0] = <1, 3>

A[1] = <0, 3>

A[2] = <>

A[3] = <2>

directed

COMP2521
23T3

Graphs

Graph ADT

Graph Rep.

Adjacency Matrix

Adjacency List

Array of Edges

Adjacency List
Implementation in C

struct graph {

int nV;

int nE;

struct adjNode **edges;

};

struct adjNode {

Vertex v;

struct adjNode *next;

};

0

1

2

3

graph

edges

nV 4

nE 4

[0]

[1]

[2]

[3]

1 3

0 3

3

0 1 2

COMP2521
23T3

Graphs

Graph ADT

Graph Rep.

Adjacency Matrix

Adjacency List

Array of Edges

Adjacency List
Advantages and Disadvantages

Advantages

• Relatively easy to implement!

• Works for:

graphs! digraphs!

weighted graphs!

• Space-efficient!

if graph has fewer edges

O(V + E) memory usage

Disadvantages

• Inefficient!

O(V) edge-insert, edge-delete
O(V) is-adjacent
(matters less for sparse graphs)

COMP2521
23T3

Graphs

Graph ADT

Graph Rep.

Adjacency Matrix

Adjacency List

Array of Edges

Array of Edges

Edges represented by an array of edge structs (pairs of vertices)

0

1

2

3

A = [

(0, 1),

(0, 3),

(1, 3),

(2, 3),

]

undirected

0

1

2

3

Filler

A = [

(0, 1),

(0, 3),

(1, 0),

(1, 3),

(3, 2),

]

directed

COMP2521
23T3

Graphs

Graph ADT

Graph Rep.

Adjacency Matrix

Adjacency List

Array of Edges

Array of Edges
Implementation in C

struct graph {

int nV;

int nE;

int maxE;

struct edge *edges;

};

struct edge {

Vertex v;

Vertex w;

};

0

1

2

3

graph

edges

nV 4

nE 4

maxE 8

(0,1) (0,3) (1,3) (2,3)

COMP2521
23T3

Graphs

Graph ADT

Graph Rep.

Adjacency Matrix

Adjacency List

Array of Edges

Array of Edges
Advantages and Disadvantages

Advantages

• Works for:

graphs! digraphs!

weighted graphs!

• Very space-efficient!

especially for sparse graphs

where E < V

Disadvantages

• Inefficient!

O(E) edge-insert, edge-delete

COMP2521
23T3

Graphs

Graph ADT

Graph Rep.

Adjacency Matrix

Adjacency List

Array of Edges

Summary of Graph Representations

Adjacency Matrix Adjacency List Array of Edges

Space usage O(V 2) O(V + E) O(E)

Create O(V 2) O(V) O(1)

Destroy O(V) O(V + E) O(1)

Insert edge O(1) O(V) O(E)

Remove edge O(1) O(V) O(E)

Is adjacent O(1) O(V) O(E)*

Degree O(V) O(V) O(E)*

* Can be O(log E) if the array is ordered

and both directions of each edge are stored in an undirected graph

COMP2521
23T3

Graphs

Graph ADT

Graph Rep.

Adjacency Matrix

Adjacency List

Array of Edges

Feedback

https://forms.office.com/r/aPF09YHZ3X

https://forms.office.com/r/aPF09YHZ3X

	Graph Fundamentals
	Types of Graphs
	Graph Terminology

	Graph ADT
	Graph Representations
	Adjacency Matrix
	Adjacency List
	Array of Edges

