COMP2521 23T3
Graphs (I)

Kevin Luxa
cs2521@cse.unsw.edu.au

graph fundamentals
graph representations
Graph Fundamentals
Collections of Related Things

Up to this point, we’ve seen a few collection types...

- **lists**: a linear sequence of items
 each node knows about its next node
- **trees**: a branched hierarchy of items
 each node knows about its child node(s)

what if we want something more general?
...each node knows about its related nodes
Many applications need to model *relationships* between items.

... on a map: cities, connected by roads
... on the Web: pages, connected by hyperlinks
... in a game: states, connected by legal moves
... in a social network: people, connected by friendships
... in scheduling: tasks, connected by constraints
... in circuits: components, connected by traces
... in networking: computers, connected by cables
... in programs: functions, connected by calls
... etc. etc. etc.
Questions we could answer with a graph:

- what items are connected? how?
- are the items fully connected?
- is there a way to get from A to B?
 what’s the best way? what’s the cheapest way?
- in general, what can we reach from A?
- is there a path that lets me visit all items?
- can we form a tree linking all vertices?
- are two graphs “equivalent”?
<table>
<thead>
<tr>
<th></th>
<th>ADL</th>
<th>BNE</th>
<th>CBR</th>
<th>DRW</th>
<th>MEL</th>
<th>PER</th>
<th>SYD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADL</td>
<td>—</td>
<td>2055</td>
<td>1390</td>
<td>3051</td>
<td>732</td>
<td>2716</td>
<td>1605</td>
</tr>
<tr>
<td>BNE</td>
<td>2055</td>
<td>—</td>
<td>1291</td>
<td>3429</td>
<td>1671</td>
<td>4771</td>
<td>982</td>
</tr>
<tr>
<td>CBR</td>
<td>1390</td>
<td>1291</td>
<td>—</td>
<td>4441</td>
<td>658</td>
<td>4106</td>
<td>309</td>
</tr>
<tr>
<td>DRW</td>
<td>3051</td>
<td>3429</td>
<td>4441</td>
<td>—</td>
<td>3783</td>
<td>4049</td>
<td>4411</td>
</tr>
<tr>
<td>MEL</td>
<td>732</td>
<td>1671</td>
<td>658</td>
<td>3783</td>
<td>—</td>
<td>3448</td>
<td>873</td>
</tr>
<tr>
<td>PER</td>
<td>2716</td>
<td>4771</td>
<td>4106</td>
<td>4049</td>
<td>3448</td>
<td>—</td>
<td>3972</td>
</tr>
<tr>
<td>SYD</td>
<td>1605</td>
<td>982</td>
<td>309</td>
<td>4411</td>
<td>873</td>
<td>3972</td>
<td>—</td>
</tr>
</tbody>
</table>
Road Distances
Road Distances

Graphs
Types of Graphs
Graph Terminology
Graph ADT
Graph Rep.

ADL
SYD
BRIS
CBR
MEL
PER
BNE
A graph G is a set of vertices V and edges E.

$E := \{(v, w) \mid v, w \in V, (v, w) \in V \times V\}$

$V = \{v_1, v_2, v_3, v_4\}$

$E = \{e_1 := (v_1, v_2), e_2 := (v_2, v_3), e_3 := (v_3, v_4), e_4 := (v_1, v_4), e_5 := (v_1, v_3)\}$
Types of Graphs

- Undirected
- Directed
- Multigraph
- Weighted
If edges in a graph are directed, the graph is a directed graph or digraph.

\((v, w) \in E\) does not imply \((w, v) \in E\).

A digraph with \(V\) vertices can have at most \(V^2\) edges. Digraphs can have self loops \((v \rightarrow v)\).
Multigraphs and Weighted Graphs

Multi-Graphs...
allow multiple edges between two vertices
(e.g., callgraphs; maps)

Weighted Graphs...
each edge has an associated weight
(e.g., maps; networks)
At this point, we’ll only consider simple graphs:

- a set of vertices
- a set of undirected edges
- no self loops
- no parallel edges

How many edges can a 7-vertex simple graph have?

\[|V| = 7; |E| = 11. \]
At this point, we’ll only consider simple graphs:

- a set of vertices
- a set of undirected edges
- no self loops
- no parallel edges

How many edges can a 7-vertex simple graph have?

\[7 \times (7 - 1)/2 = 21 \]
Graph Terminology

Note: $|V|$ and $|E|$ is normally written as V and E for simplicity.

For a simple graph:

$$E \leq (V \times (V - 1))/2$$

- if E closer to V^2, dense
- if E closer to V, sparse

These properties affect our choice of representation and algorithms.

$V = 7; E = 11$.
A complete graph is a graph where every vertex is connected to all other vertices:

\[E = \left(V \times (V - 1) \right) / 2 \]
Two vertices \(v \) and \(w \) are adjacent if an edge \(e := (v, w) \) connects them; we say \(e \) is incident on \(v \) and \(w \).

The degree of a vertex \(v (\text{deg}(v)) \) is the number of edges incident on \(v \).
A subgraph is a subset of vertices and associated edges.
A path is a sequence of vertices and edges... 1, 0, 6, 5

A path is simple if it has no repeating vertices.

A path is a cycle if it is simple except for its first and last vertex, which are the same.
A **connected graph** has a path from every vertex to every other vertex.

A connected graph with no cycles is a **tree**.

A tree has exactly one path between each pair of vertices.
A graph that is not connected consists of a set of connected components: maximally connected subgraphs.
A **spanning tree** of a graph is a subgraph that contains all its vertices and is a single tree.

A **spanning forest** of a graph is a subgraph that contains all its vertices and is a set of trees.

There isn’t necessarily *only* one spanning tree/forest for a graph.
A clique is a complete subgraph.
Graph ADT
What do we need to represent?
What operations do we need to support?
What do we need to represent?

A graph G is a set of vertices $V := \{v_1, \ldots, v_n\}$, and a set of edges $E := \{(v, w) \mid v, w \in V; (v, w) \in V \times V\}$.

Directed graphs: $(v, w) \neq (w, v)$.

Weighted graphs: $E := \{(v, w, \sigma)\}$.

What operations do we need to support?

create/destroy graph;
add/remove vertices, edges;
get #vertices, #edges;
Graph ADT

Operations

create/destroy
create a graph
free memory allocated to graph

query
get number of vertices
get number of edges
check if an edge exists

manipulate
add edge
remove edge

We will extend this ADT with more complex operations later.
typedef struct graph *Graph;

// vertices denoted by integers 0..V-1
typedef int Vertex;

/** Creates a new graph with nV vertices */
Graph GraphNew(int nV);

/** Frees memory allocated to a graph */
void GraphFree(Graph g);
/** Returns the number of vertices in a graph */
int GraphNumVertices(Graph g);

/** Returns the number of edges in a graph */
int GraphNumEdges(Graph g);

/** Returns true if there is an edge between given vertices and false otherwise */
bool GraphIsAdjacent(Graph g, Vertex v, Vertex w);
A Graph ADT

"Graph.h" - Operations to Manipulate

/** Inserts an edge into a graph */
void GraphInsertEdge(Graph g, Vertex v, Vertex w);

/** Removes an edge from a graph */
void GraphRemoveEdge(Graph g, Vertex v, Vertex w);
Graph Representations
Graph Representations

3 main graph representations:

Adjacency Matrix
Edges defined by presence value in $V \times V$ matrix

Adjacency List
Edges defined by entries in array of V lists

Array of Edges
Explicit representation of edges as (v, w) pairs

We’ll consider these representations for *unweighted, undirected* graphs.
A $V \times V$ matrix; each cell represents an edge.

Adjacency Matrix

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

undirected

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

directed
struct graph {
 int nV;
 int nE;
 bool **edges;
};
Advantages

- Easy to implement! two-dimensional array of bool/int/double/...
- Works for: graphs! digraphs! weighted graphs!
- Efficient! \(O(1)\) edge-insert, edge-delete \(O(1)\) is-adjacent

Disadvantages

- Huge space overheads! \(V^2\) cells of some type sparse graph \(\Rightarrow\) wasted space!
 undirected graph \(\Rightarrow\) wasted space!
- Inefficient! \(O(V^2)\) initialisation
Adjacency List

Array of V lists

undirected

```
A[0] = <1, 3>
A[1] = <0, 3>
A[3] = <0, 1, 2>
```

directed

```
A[0] = <1, 3>
A[1] = <0, 3>
A[2] = <>
```
Adjacency List

Implementation in C

```c
struct graph {
    int nV;
    int nE;
    struct adjNode **edges;
};

struct adjNode {
    Vertex v;
    struct adjNode *next;
};
```

```
graph
edges
nV 4
nE 4
```

```
[0]
[1]
[2]
[3]
```

```
1 0
3 0
1 2
```
Advantages

- Relatively easy to implement!
- Works for: graphs! digraphs! weighted graphs!
- Space-efficient! if graph has fewer edges $O(V + E)$ memory usage

Disadvantages

- Inefficient! $O(V)$ edge-insert, edge-delete $O(V)$ is-adjacent (matters less for sparse graphs)
Edges represented by an array of edge structs (pairs of vertices)

A = [(0, 1),
 (0, 3),
 (1, 3),
 (2, 3),
]

undirected

A = [(0, 1),
 (0, 3),
 (1, 0),
 (1, 3),
 (3, 2),
]

directed
Graphs
Graph ADT
Graph Rep.
Adjacency Matrix
Adjacency List
Array of Edges

Array of Edges
Implementation in C

```c
struct graph {
    int nV;
    int nE;
    int maxE;
    struct edge *edges;
};

struct edge {
    Vertex v;
    Vertex w;
};
```

```
graph
edges
nV 4
nE 4
maxE 8
```

```
(0,1) (0,3) (1,3) (2,3)
```
Advantages

• Works for: graphs! digraphs! weighted graphs!
• Very space-efficient! especially for sparse graphs where $E < V$

Disadvantages

• Inefficient! $O(E)$ edge-insert, edge-delete
Summary of Graph Representations

<table>
<thead>
<tr>
<th></th>
<th>Adjacency Matrix</th>
<th>Adjacency List</th>
<th>Array of Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space usage</td>
<td>$O(V^2)$</td>
<td>$O(V + E)$</td>
<td>$O(E)$</td>
</tr>
<tr>
<td>Create</td>
<td>$O(V^2)$</td>
<td>$O(V)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Destroy</td>
<td>$O(V)$</td>
<td>$O(V + E)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Insert edge</td>
<td>$O(1)$</td>
<td>$O(V)$</td>
<td>$O(E)$</td>
</tr>
<tr>
<td>Remove edge</td>
<td>$O(1)$</td>
<td>$O(V)$</td>
<td>$O(E)$</td>
</tr>
<tr>
<td>Is adjacent</td>
<td>$O(1)$</td>
<td>$O(V)$</td>
<td>$O(E)^*$</td>
</tr>
<tr>
<td>Degree</td>
<td>$O(V)$</td>
<td>$O(V)$</td>
<td>$O(E)^*$</td>
</tr>
</tbody>
</table>

* Can be $O(\log E)$ if the array is ordered and both directions of each edge are stored in an undirected graph.
https://forms.office.com/r/aPF09YHZ3X