
COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
COMP2521 23T3

Balanced Binary Search Trees

Kevin Luxa
cs2521@cse.unsw.edu.au

balanced trees
avl trees

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees

Binary Search Trees

The structure, height, and hence
performance

of a binary search tree
depends on the order of insertion.

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees

Binary Search Trees
The Best Case

Best case

Items are inserted evenly on the left and right throughout the tree
Height of tree will be O(log n)

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees

Binary Search Trees
The Worst Case

Worst case

Items are inserted in ascending or descending order
such that tree consists of a single branch

Height of tree will be O(n)

…

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees

Binary Search Trees

A binary tree of n nodes is said to be
balanced if it has (close to) minimal height (O(log n)), and
degenerate if it has (close to) maximal height (O(n)).

We want to build balanced trees.

COMP2521
23T3

Balance
Examples

Balancing
Operations

Balancing
Methods

AVL Trees

Types of Balance

size balanced
a weight-balanced or
size-balanced tree has,

for every node,
|size (l)− size (r)| ≤ 1

height balanced
a height-balanced tree has,

for every node,
|height (l)− height (r)| ≤ 1

COMP2521
23T3

Balance
Examples

Balancing
Operations

Balancing
Methods

AVL Trees

Balanced or Not?
(I)

4

2

3

5

6

size (τ4) = 5
size (τ2) = 2
size (τ5) = 2
size (τ3) = 1
size (τ6) = 1
size (τ∅) = 0
size balanced

height (τ4) = 2
height (τ2) = 1
height (τ5) = 1
height (τ3) = 0
height (τ6) = 0

height (τ∅) = −1
height balanced

COMP2521
23T3

Balance
Examples

Balancing
Operations

Balancing
Methods

AVL Trees

Balanced or Not?
(I)

4

2

3

5

6

size (τ4) = 5
size (τ2) = 2
size (τ5) = 2
size (τ3) = 1
size (τ6) = 1
size (τ∅) = 0
size balanced

height (τ4) = 2
height (τ2) = 1
height (τ5) = 1
height (τ3) = 0
height (τ6) = 0

height (τ∅) = −1
height balanced

COMP2521
23T3

Balance
Examples

Balancing
Operations

Balancing
Methods

AVL Trees

Balanced or Not?
(II)

4

2

1 3

5

size (τ4) = 5
size (τ2) = 3
size (τ5) = 1
size (τ1) = 1
size (τ3) = 1

|size (τ2)− size (τ5)| = 2
not size balanced

height (τ4) = 2
height (τ2) = 1
height (τ5) = 0
height (τ1) = 0
height (τ3) = 0

|height (τ2)− height (τ5)| = 1
height balanced

COMP2521
23T3

Balance
Examples

Balancing
Operations

Balancing
Methods

AVL Trees

Balanced or Not?
(II)

4

2

1 3

5

size (τ4) = 5
size (τ2) = 3
size (τ5) = 1
size (τ1) = 1
size (τ3) = 1

|size (τ2)− size (τ5)| = 2
not size balanced

height (τ4) = 2
height (τ2) = 1
height (τ5) = 0
height (τ1) = 0
height (τ3) = 0

|height (τ2)− height (τ5)| = 1
height balanced

COMP2521
23T3

Balance
Examples

Balancing
Operations

Balancing
Methods

AVL Trees

Balanced or Not?
(III)

4

3

2

1

5

6

7

Let’s look at τ3.
size (τ2) = 2
size (τ∅) = 0
|2− 0 = 2| > 1

not size balanced

Let’s look at τ5.
height (τ∅) = −1
height (τ6) = 1
|−1− 1| = 2 > 1

not height balanced

COMP2521
23T3

Balance
Examples

Balancing
Operations

Balancing
Methods

AVL Trees

Balanced or Not?
(III)

4

3

2

1

5

6

7

Let’s look at τ3.
size (τ2) = 2
size (τ∅) = 0
|2− 0 = 2| > 1

not size balanced

Let’s look at τ5.
height (τ∅) = −1
height (τ6) = 1
|−1− 1| = 2 > 1

not height balanced

COMP2521
23T3

Balance
Examples

Balancing
Operations

Balancing
Methods

AVL Trees

Balance

Challenge:

Prove that every size-balanced tree is height-balanced.

COMP2521
23T3

Balance

Balancing
Operations
Rotations
Partition

Balancing
Methods

AVL Trees

Balancing Operations

Rotation
• Left rotation

• Move right child to root, rearrange links to retain order
• Right rotation

• Move left child to root, rearrange links to retain order

Partition
• Rearrange tree around a specified node by rotating it up to the root

COMP2521
23T3

Balance

Balancing
Operations
Rotations
Partition

Balancing
Methods

AVL Trees

Rotations

left rotation and right rotation:
a pair of operations

that change the balance of a tree

n1

n2

t1 t2

t3

Right rotation

Left rotation

n2

t1
n1

t2 t3

COMP2521
23T3

Balance

Balancing
Operations
Rotations
Partition

Balancing
Methods

AVL Trees

Rotations

Rotations maintain the order of a search tree:

n1

n2

t1 t2

t3

Right rotation

Left rotation

n2

t1
n1

t2 t3

(all values in t1) < n2 < (all values in t2) < n1 < (all values in t3)

COMP2521
23T3

Balance

Balancing
Operations
Rotations
Partition

Balancing
Methods

AVL Trees

Rotations

Method for right rotation:
• before the rotation: n1 is original root, n2 is left child of root
• n1’s left subtree is now what was n2’s right subtree
• n2’s right child is now n1

• n2 is now the new root
• everything else is unchanged

n1

n2

t1 t2

t3

Right rotation

Left rotation

n2

t1 n1

t2 t3

COMP2521
23T3

Balance

Balancing
Operations
Rotations
Partition

Balancing
Methods

AVL Trees

Rotations
Example

Rotate right at 5

5

3

2 4

6

3

2 5

4 6

COMP2521
23T3

Balance

Balancing
Operations
Rotations
Partition

Balancing
Methods

AVL Trees

Rotations
Example

Rotate right at 5

5

3

2 4

6

3

2 5

4 6

COMP2521
23T3

Balance

Balancing
Operations
Rotations
Partition

Balancing
Methods

AVL Trees

Rotations
Example

Rotate left at 3

3

2 5

4 6

5

3

2 4

6

COMP2521
23T3

Balance

Balancing
Operations
Rotations
Partition

Balancing
Methods

AVL Trees

Rotations
Example

Rotate left at 3

3

2 5

4 6

5

3

2 4

6

COMP2521
23T3

Balance

Balancing
Operations
Rotations
Partition

Balancing
Methods

AVL Trees

Rotations
Example

Rotate right at 23

23

7

3 16

11

10

20

30

28 35

7

3 23

16

11

10

20

30

28 35

COMP2521
23T3

Balance

Balancing
Operations
Rotations
Partition

Balancing
Methods

AVL Trees

Rotations
Example

Rotate right at 23

23

7

3 16

11

10

20

30

28 35

7

3 23

16

11

10

20

30

28 35

COMP2521
23T3

Balance

Balancing
Operations
Rotations
Partition

Balancing
Methods

AVL Trees

Rotations
Implementation

struct node *rotateRight(struct node *root) {
if (root == NULL || root->left == NULL) return root;
struct node *newRoot = root->left;
root->left = newRoot->right;
newRoot->right = root;
return newRoot;

}

struct node *rotateLeft(struct node *root) {
if (root == NULL || root->right == NULL) return root;
struct node *newRoot = root->right;
root->right = newRoot->left;
newRoot->left = root;
return newRoot;

}

COMP2521
23T3

Balance

Balancing
Operations
Rotations
Partition

Balancing
Methods

AVL Trees

Rotations
Analysis

Analysis:
• Rotation is cheap - O(1)

• Rotation requires simple, localised pointer re-arrangements

Sometimes, rotation is applied along one branch, from leaf to root
• Cost of this is O(h) where h is the height of the tree

COMP2521
23T3

Balance

Balancing
Operations
Rotations
Partition

Balancing
Methods

AVL Trees

Partition

partition(tree, i)

Rearrange the tree so that the element with index i becomes the root

13
[6]

5
[2]

3
[1]

1
[0]

8
[4]

6
[3]

10
[5]

17
[8]

16
[7]

20
[10]

19
[9]

COMP2521
23T3

Balance

Balancing
Operations
Rotations
Partition

Balancing
Methods

AVL Trees

Partition

Method:
• Find element with index i
• Perform rotations to lift it to the root

• If it is the left child of its parent, perform right rotation at its parent
• If it is the right child of its parent, perform left rotation at its parent
• Repeat until it is at the root of the tree

COMP2521
23T3

Balance

Balancing
Operations
Rotations
Partition

Balancing
Methods

AVL Trees

Partition
Example

Partition this tree around index 3:

10
[1]

5
[0]

14
[2]

30
[4]

29
[3]

32
[5]

3

COMP2521
23T3

Balance

Balancing
Operations
Rotations
Partition

Balancing
Methods

AVL Trees

Partition
Example

Partition this tree around index 3:

10
[1]

5
[0]

14
[2]

30
[4]

29
[3]

32
[5]

1

2

3

COMP2521
23T3

Balance

Balancing
Operations
Rotations
Partition

Balancing
Methods

AVL Trees

Partition
Example

After right rotation at 30:

10

5 14

29

30

32

2

3

COMP2521
23T3

Balance

Balancing
Operations
Rotations
Partition

Balancing
Methods

AVL Trees

Partition
Example

After left rotation at 14:

10

5 29

14 30

32

3

COMP2521
23T3

Balance

Balancing
Operations
Rotations
Partition

Balancing
Methods

AVL Trees

Partition
Example

After left rotation at 10:

29

10

5 14

30

32

COMP2521
23T3

Balance

Balancing
Operations
Rotations
Partition

Balancing
Methods

AVL Trees

Partition
Pseudocode

partition(t, i):
Inputs: tree t, index i
Output: tree with i-th item moved to root

m = size(t->left)
if i < m:

t->left = partition(t->left, i)
t = rotateRight(t)

else if i > m:
t->right = partition(t->right, i - m - 1)
t = rotateLeft(t)

return t

COMP2521
23T3

Balance

Balancing
Operations
Rotations
Partition

Balancing
Methods

AVL Trees

Partition
Analysis

Analysis:
• size() operation is expensive

• needs to traverse whole subtree
• can cause partition to be O(n2) in the worst case
• to improve efficiency, can change node structure so that each node
stores the size of its subtree in the node itself

• however, this will require extra work in other functions to maintain

struct node {
int item;
int size;
struct node *left;
struct node *right;

};

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

AVL Trees

Balancing Methods

• Global Rebalancing
• Root Insertion
• Randomised Insertion

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

AVL Trees

Global Rebalancing

Idea:
Completely rebalance whole tree so it is size-balanced

Method:
Lift the median node to the root
by partitioning on size(t)/2,

then rebalance both subtrees (recursively)

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

AVL Trees

Global Rebalancing

First, partition on index n/2…

…then rebalance both subtrees

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

AVL Trees

Global Rebalancing
Pseudocode

rebalance(t):
Inputs: tree t
Output: rebalanced t

if size(t) < 3:
return t

t = partition(t, size(t) / 2)
t->left = rebalance(t->left)
t->right = rebalance(t->right)
return t

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

AVL Trees

Global Rebalancing
Analysis

Worst-case time complexity: O(n log n)
• Assume nodes store the size of their subtrees
• First step: partition entire tree on index n/2

• This takes at most n recursive calls, n rotations⇒ n steps
• Result is two subtrees of size ≈ n/2

• Then partition both subtrees
• Partitioning these subtrees takes n/2 steps each⇒ n steps in total
• Result is four subtrees of size ≈ n/4

• …and so on…
• About log2 n levels of partitioning in total, each requiring n steps
⇒ O(n log n)

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

AVL Trees

Global Rebalancing
Problems

What if we insert more items?
• Options:

• Rebalance on every insertion
• Not feasible

• Rebalance every k insertions; what k is good?
• Rebalance when imbalance exceeds threshold.

• It’s a tradeoff…
• We either have more costly insertions
• Or we have degraded performance for periods of time

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

AVL Trees

Periodic Rebalancing

bstInsert(t, v):
Inputs: tree t, value v
Output: t with v inserted

t = insertAtLeaf(t, v)

if size(t) mod k = 0:
t = rebalance(t)

return t

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

AVL Trees

Periodic Rebalancing
Remarks

• Good if tree is not modified very often
• Otherwise…

• Insertion will be slow occasionally due to rebalancing
• Performance will gradually degrade until next rebalance

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

AVL Trees

Global vs Local Rebalancing

global rebalancing
walks every node, balances its subtree;
⇒ perfectly balanced tree — at cost.

local rebalancing
do small, incremental operations

to improve the overall balance of the tree
… at the cost of imperfect balance

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

AVL Trees

Root Insertion

Idea:

Rotations change the structure of a tree

If we perform some rotations every time we insert,
that may restructure the tree randomly enough

such that it is more balanced

One systematic way to perform these rotations:
Insert new values at the root

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

AVL Trees

Root Insertion

Method:
Insert new value normally (at the leaf) …

… and then rotate the new node up to the root.

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

AVL Trees

Root Insertion
Example

Insert 24 at the root of this tree:

10

5 14

30

29 32

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

AVL Trees

Root Insertion
Example

Insert 24 at the root of this tree:

10

5 14

30

29

24

32

1

2

3

4

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

AVL Trees

Root Insertion
Example

Rotate right at 29

10

5 14

30

29

24

32

1

2

3

4

10

5 14

30

24

29

32

2

3

4

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

AVL Trees

Root Insertion
Example

Rotate right at 30

10

5 14

30

24

29

32

2

3

4

10

5 14

24

30

29 32

3

4

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

AVL Trees

Root Insertion
Example

Rotate left at 14

10

5 14

24

30

29 32

3

4

10

5 24

14 30

29 32

4

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

AVL Trees

Root Insertion
Example

Rotate left at 10

10

5 24

14 30

29 32

4

24

10

5 14

30

29 32

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

AVL Trees

Root Insertion
Pseudocode

insertAtRoot(t, v):
Inputs: tree t, value v
Output: t with v inserted at the root

if t is empty:
return new node containing v

else if v < t->item:
t->left = insertAtRoot(t->left, v)
t = rotateRight(t)

else if v > t->item:
t->right = insertAtRoot(t->right, v)
t = rotateLeft(t)

return t

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

AVL Trees

Root Insertion
Analysis

Analysis:
• Same complexity as normal insertion: O(h)

• In reality, cost is doubled, as you need to traverse down and rotate up
• Tree is more likely to be balanced, but no guarantee
• Insert at root ensures recently inserted items are close to the root

• Useful for applications where recently added items are more likely to be
searched

• Major problem: ascending-ordered and descending-ordered data is still
a worst case for root insertion

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

AVL Trees

Randomised Insertion

BSTs don’t have control over insertion order.
worst cases — (partially) ordered data — are common.

Idea:
Introduce some randomness into insertion algorithm:

Randomly choose whether to insert normally or insert at root

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

AVL Trees

Randomised Insertion
Pseudocode

insertRandom(t, v):
Inputs: tree t, value v
Output: t with v inserted

if t is empty:
return new node containing v

// p/q chance of inserting at root
if random() mod q < p:

return insertAtRoot(t, v)
else:

return insertAtLeaf(t, v)

Note: random() is a pseudo-random number generator
30% chance of root insertion⇒ choose p = 3, q = 10

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods
Global Rebalancing
Root Insertion
Randomised
Insertion

AVL Trees

Randomised Insertion
Remarks

Randomised insertion creates similar results to
inserting items in random order.

Tree is more likely to be balanced (but no guarantee)

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search AVL Trees

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Trees

Motivation:
• Previous balancing methods are either inefficient, or don’t guarantee a
balanced tree (O(log n) height)

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Trees

Invented by Georgy Adelson-Velsky and Evgenii Landis (1962)

Approach:
• Keep tree height-balanced
• Repair balance as soon as imbalance occurs

• During insertion or deletion
• Repairs are done locally, not by restructuring entire tree

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion

Method:
• Insert item recursively
• Check balance at each node along the insertion path in reverse

• i.e., from bottom to top
• As soon as an imbalance is found, fix it

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion

Example: Insert 5 into this tree

6
3

2

1 4

3

9

8

Balance must be checked at 4, then at 2, then at 6

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion

Example: Insert 5 into this tree

6
3

2
2

1 4
1

3 5

9

8

Balance must be checked at 4, then at 2, then at 6

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion

How to check balance along insertion path in reverse?
• Simple - perform balance checking as a postorder operation in the
insertion function

• In other words - insert balance checking code below recursive calls to
insert

Outline of insertion process:
1 if the tree is empty:

• return new node
2 insert recursively
3 check (and fix) balance
4 return root of updated tree

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Pseudocode

avlInsert(t, v):
Inputs: AVL tree t, item v
Output: t with v inserted

if t is empty:
return new node containing v

else if v < t->item:
t->left = avlInsert(t->left, v)

else if v > t->item:
t->right = avlInsert(t->right, v)

else:
return t

... continued on next slide ...

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Pseudocode

... continued from previous slide ...

leftHeight = height(t->left)
rightHeight = height(t->right)

if (leftHeight - rightHeight) > 1:
if v > t->left->item:

t->left = rotateLeft(t->left)
t = rotateRight(t)

else if (rightHeight - leftHeight) > 1:
if v < t->right->item:

t->right = rotateRight(t->right)
t = rotateLeft(t)

return t

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion

There are 4 rebalancing cases:

Left Left
Left Right
Right Left
Right Right

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion

Left Left
if (leftHeight - rightHeight) > 1:

if v > t->left->item:
t->left = rotateLeft(t->left)

t = rotateRight(t)
else if (rightHeight - leftHeight) > 1:

if v < t->right->item:
t->right = rotateRight(t->right)

t = rotateLeft(t)

t
1

Left Right
if (leftHeight - rightHeight) > 1:

if v > t->left->item:
t->left = rotateLeft(t->left)

t = rotateRight(t)
else if (rightHeight - leftHeight) > 1:

if v < t->right->item:
t->right = rotateRight(t->right)

t = rotateLeft(t)

t
2

1

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion

Right Left
if (leftHeight - rightHeight) > 1:

if v > t->left->item:
t->left = rotateLeft(t->left)

t = rotateRight(t)
else if (rightHeight - leftHeight) > 1:

if v < t->right->item:
t->right = rotateRight(t->right)

t = rotateLeft(t)

t
2

1

Right Right
if (leftHeight - rightHeight) > 1:

if v > t->left->item:
t->left = rotateLeft(t->left)

t = rotateRight(t)
else if (rightHeight - leftHeight) > 1:

if v < t->right->item:
t->right = rotateRight(t->right)

t = rotateLeft(t)

t
1

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Rebalancing - Left Left

Insert 7 into this tree:

6 3

2 2

1 0 5 1

3 0

9 1

8 0

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Rebalancing - Left Left

6 3

2 2

1 0 5 1

3 0

9 2

8 1

7 0

Check for balance at 8, then at 9, then at 6.

9 is unbalanced.

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Rebalancing - Left Left

6 3

2 2

1 0 5 1

3 0

9 2

8 1

7 0

6 3

2 2

1 0 5 1

3 0

8 1

7 0 9 0

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Rebalancing - Left Right

Insert 4 into this tree:

6 3

2 2

1 0 5 1

3 0

9 1

8 0

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Rebalancing - Left Right

6 4

2 3

1 0 5 2

3 1

4 0

9 1

8 0

Check for balance at 3, then at 5, then at 2, then at 6.

5 is unbalanced.

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Rebalancing - Left Right

6 4

2 3

1 0 5 2

3 1

4 0

9 1

8 0

1

2

6 3

2 2

1 0 4 1

3 0 5 0

9 1

8 0

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Issues

AVL tree insertion requires balance checking
at each node on the insertion path…

…which requires the height of many subtrees to be computed

In an ordinary binary search tree, computing the height is O(n)!
(need to traverse whole (sub)tree)

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Issues

Solution:

For each node, store the height of its subtree in the node itself:

struct node {
int item;
int height;
struct node *left;
struct node *right;

};

Extra effort is required to maintain this data whenever the tree is modified.

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Maintaining Height Data

Height of each node’s subtree is stored in the node itself

6 3

2 2

1 0 5 1

3 0

9 1

8 0

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Maintaining Height Data

When does height data need to be maintained?
• Whenever a node is inserted

• Heights of all ancestors may be affected
• Whenever a rotation is performed

• Heights of original root and new root may be affected

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Maintaining Height Data - Insertions

Whenever a node is inserted…
…heights of all ancestors may be affected

Example: Insert 4 into this tree

6 2

2 1

1 0 5 0

9 1

8 0

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Maintaining Height Data - Insertions

6 ?

2 ?

1 0 5 ?

4 0

9 1

8 0

Recompute height of each ancestor (from bottom to top)
using the heights stored in its children.

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Maintaining Height Data - Insertions

6 ?

2 ?

1 0 5 ?

4 0

9 1

8 0

The heights of 5’s children are 0 and -1 (empty tree).

Thus, the height of 5 is max(0,−1) + 1 = 1.

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Maintaining Height Data - Insertions

6 ?

2 ?

1 0 5 1

4 0

9 1

8 0

The heights of 2’s children are 0 and 1.

Thus, the height of 2 is max(0, 1) + 1 = 2.

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Maintaining Height Data - Insertions

6 ?

2 2

1 0 5 1

4 0

9 1

8 0

The heights of 6’s children are 2 and 1.

Thus, the height of 6 is max(2, 1) + 1 = 3.

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Maintaining Height Data - Insertions

6 3

2 2

1 0 5 1

4 0

9 1

8 0

Done.

Note that recomputing the height of each node was done in O(1) time.

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Maintaining Height Data - Rotations

Whenever a rotation is performed…
…heights of original root and new root may be affected

n1

n2

A B

C

n2

A n1

B C

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Maintaining Height Data - Rotations

Example: Perform a right rotation at 7

7 3

4 2

2 1

1 0

6 0

9 0

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Maintaining Height Data - Rotations

4 ?

2 1

0 0

7 ?

6 0 9 0

Recompute height of original root
then recompute height of new root

using the heights stored in their children.

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Maintaining Height Data - Rotations

4 ?

2 1

0 0

7 ?

6 0 9 0

The height of 7’s children are 0 and 0.

Thus, the height of 7 is max(0, 0) + 1 = 1.

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Maintaining Height Data - Rotations

4 ?

2 1

0 0

7 1

6 0 9 0

The height of 4’s children are 1 and 1.

Thus, the height of 4 is max(1, 1) + 1 = 2.

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Maintaining Height Data - Rotations

4 2

2 1

0 0

7 1

6 0 9 0

Done.

Every rotation, two height updates are performed, each in O(1) time.

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Insertion
Analysis

Analysis:
• An AVL tree is always height balanced

• So height of an AVL tree is O(log n)
• Checking/fixing balance and maintaining height data is O(1)

• So checking/fixing balance adds O(1) extra work for each node on
insertion path

• Therefore, worst-case time complexity of AVL tree insertion is O(log n)

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Tree Search

Exactly the same as for regular BSTs.

Worst-case time complexity is O(log n), since AVL trees are height-balanced

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

AVL Trees
Final Remarks

• AVL trees are always height-balanced
• Worst-case time complexity of O(log n) for insertion, search, deletion
• AVL trees are not necessarily weight-balanced, for example:

COMP2521
23T3

Balance

Balancing
Operations

Balancing
Methods

AVL Trees
Insertion
Search

Feedback

https://forms.office.com/r/aPF09YHZ3X

https://forms.office.com/r/aPF09YHZ3X

	Balance
	Examples

	Balancing Operations
	Rotations
	Partition

	Balancing Methods
	Global Rebalancing
	Root Insertion
	Randomised Insertion

	AVL Trees
	Insertion
	Search

