Trees

Search

Traversa

Join

Deletior

Exercises

COMP2521 23T3 Binary Search Trees

Kevin Luxa cs2521@cse.unsw.edu.au

trees binary search trees

Trees

- BSTs
- Insertio
- Search
- Travers
- loin
- Deletio
- Exercises

Trees

BSTs

Insertio

Search

Travers

Join

Deletio

Exercises

A tree is a branched data structure consisting of a set of connected nodes where:

each node may have multiple other nodes as children (depending on the type of tree)

each node is connected to one parent except the root node

trees do not contain cycles

COMP2521

23T3

Soarch

Travers

loin

Deletion

Exercises

Source: https://www.openbookproject.net/tutorials/getdown/unix/lesson2.html

Trees Example - Organisational Structure

Source: "Data Structures and Algorithms in Java" (6th ed) by Goodrich et al.

Trees

COMP2521

23T3

- BSTS
- Insertio
- Search
- Traversa
- Join
- Deletio
- Exercises

Source: "Data Structures and Algorithms in Java" (6th ed) by Goodrich et al.

Trees Example - Decoding Morse Code

COMP2521

23T3

.....

- BSTs
- Insertio
- Search
- Traversa
- . .
- JOIII
- Deletion
- Exercises

Trees

- BSTs
- Insertio
- Search
- Traversa
- Join
- Deletio
- Exercises

Binary trees are trees where each node can have up to two child nodes, typically called the left child and right child

Binary Search Trees

Trees

COMP2521 23T3

BSTs

- Insertio
- Search
- Trave
- Ioin
- Dolotic
- .
- Exercises

A binary search tree is an ordered binary tree, where for each node:

- All values in the left subtree are less than the value in the node
- All values in the right subtree are greater than the value in the node

Binary Search Trees

COMP2521 23T3

Trees

BSTs

- Insertior
- Search
- Travers
- loin
- Deletion
- Exercises

A binary search tree is either:

- empty; or
- consists of a node with two subtrees
 - node contains a value
 - left and right subtrees are also BSTs (recursive)

Trees

BSTs

Search

IIavei

Join

Deletion

Exercises

Why use binary search trees?

Search is an extremely common operation in computing:

- selecting records in databases
- searching for pages on the web

Typically, there is a very large amount of data (very many items)

Binary Search Trees

Why?

Binary Search Trees

COMP2521 23T3

Trees

BSTs

- Insertion
- Search
- Traversa
- Lain
- JOIII
- Deletion
- Exercises

We've explored multliple approaches for searching:

- Ordered array
 - Searching/finding insertion point is $O(\log n)$ due to binary search
 - Inserting is O(n) due to the need to shift items to preserve sortedness
- Ordered linked list
 - Searching/finding insertion point is O(n) due to the nature of linked lists
 - Inserting once we have found the insertion point is O(1) as there is no need to shift

Trees

BSTs

- Soarch
- Traversa
- . .
- Join
- Deletion
- Exercises

Binary search trees are efficient to search and maintain:

- Searching in a binary search tree is similar to how binary search works
 Explained below
- A binary search tree is a linked data structure (like a linked list), so there is no need to shift elements when inserting/deleting

Binary Search Trees

Why?

Binary Search Trees

Trees

COMP2521 23T3

BSTs

- Insertior
- Search
- Travers
- .
- Join
- Deletion
- Exercises

Trees

BSTs

- Insertior
- Search
- Travers
- loin
- Join
- Deletion
- Exercises

The root node is the node with no parent node.

Binary Search Trees

Terminology

A leaf node is a node that has no child nodes.

An internal node is a node that has at least one child node.

Binary Search Trees

Terminology

Trees

COMP2521

23T3

BSTs

- Insertion
- Search
- Travers
- .
- Join
- Deletion
- Exercises

Height of a tree: Maximum path length from the root node to a leaf

- The height of an empty tree is considered to be -1
- The height of the following tree is 3

Binary Search Trees COMP2521 23T3 Terminology BSTs For a tree with *n* nodes: The maximum possible height is n-12 3 •••

Binary Search Trees

Terminology

For a tree with n nodes:

COMP2521 23T3

BSTs

The minimum possible height is $\lfloor \log_2 n \rfloor$

n	minimum height	tree
1	0	0
2-3	1	00
4-7	2	0000
	•••	•••

Trees

BSTs

- Insertion
- Search
- Traversa
- Join
- Deletion
- Exercises

Binary Search Trees

Terminology

For a given number of nodes, a tree is said to be balanced if it has (close to) minimal height, and degenerate if it has (close to) maximal height.

Trees

BSTs

- Insertion
- Search
- Traversa
- Join
- Deletion
- Exercises

Binary Search Trees

Terminology

The height *h* of a binary search tree determines the efficiency of many operations, so we will use both *n* and *h* when expressing time complexities.

Trees

BSTs

Insertion

Jearch

Inavers

Join

Deletion

Exercises

Binary trees are typically represented by node structures

• Where each node contains a value and pointers to child nodes

```
struct node {
    int item;
    struct node *left;
    struct node *right;
};
```

Binary Search Trees

Concrete Representation

Trees

BSTs

- Insertion
- Search
- Traversa
- La fac
- ,0111
- Deletion
- Exercises

Binary Search Trees

Concrete Representation

Trees

BSTs

- Insertion
- Search
- Traversa
- t a fue
-)0111
- Deletion
- Exercises

Key operations on binary search trees:

- Insert
- Search
- Traversal
- Join
- Delete

Binary Search Trees

Operations

BSTs

Insertion

Search

Traversa

Join

Deletion

Exercises

BST Insertion

Insertion

bstInsert(t, v)

Given a BST t and a value v, insert v into the BST and return the root of the updated BST

Trees

BSTs

Insertion

Search

Travers

Join

Deletion

Exercises

Insertion is straightforward:

- Start at the root
- Compare value to be inserted with value in the node
 - If value being inserted is less, descend to left child
 - If value being inserted is greater, descend to right child
- Repeat until...

you have to go left/right but current node has no left/right child

Create new node and attach to current node

BST Insertion

BSTs

Insertion

Search

Travers

Join

Deletio

COMP2521 23T3 BST Insertion Example 1 Trees Frees BSTs Frees Insertion Frees Search Insert the following into an empty tree: Join Frees Deletion Frees Exercises Frees

BST Insertion COMP2521 23T3 Example 1 Insertion Insert the following into an empty tree: 4 2 6 5 1 7 3

COMP2521 23T3 BST Insertion Example 2 Trees Example 2 Insertion Insert the following into an empty tree: Search Insert the following into an empty tree: Traversal 5 6 2 3 4 7 Deletion Exercises For the following into an empty tree: For the following into an empty tree:

BST Insertion

Example 2

Insertion

COMP2521 23T3

Search

Travers

Join

Deletion

Exercises

Insert the following into an empty tree:

5 6 2 3 4 7 1

Insert	the fo	llo	wi
	1	2	3
	Insert	Insert the fo 1	Insert the follo 1 2

BST Insertion

Example 3

Insert the following into an empty tree:

1 2 3 4 5 6 7

Trees

BSTs

Insertion

Search

Travers

Join

Deletion

Exercises

Insert the following into an empty tree:

1 2 3 4 5 6 7

BST Insertion

Example 3

BSTs

Insertion

Search

Traversa

Join

, - . . .

Deletion

xercises

BST insertion can be implemented recursively.

Cases:

- *t* is empty
 - \Rightarrow make a new node with v as the root of the new tree
- v < t->item
 ⇒ insert v into t's left subtree
- v > t->item
 - \Rightarrow insert v into t's right subtree
- v = t->item
 - \Rightarrow tree unchanged (assuming no duplicates)

EXERCISE Try writing an iterative version.

Trees

BSTs

Insertion

Search Traversal Ioin Deletion

bstInsert(t, v):
 Inputs: tree t, value v
 Output: t with v inserted
 if t is empty:
 return new node containing v
 else if v < t->item:
 t->left = bstInsert(t->left, v)

```
else if v > t->item:
```

```
t->right = bstInsert(t->right, v)
```

return t

BST Insertion

Pseudocode

Trees

BSTs

Insertion

Search

Iravei

Join

Deletion

xercises

Analysis:

- At most one node is examined on each level
- Number of operations performed per node is constant
- Therefore, the worst-case time complexity of insertion is ${\cal O}(h)$ where h is the height of the BST

BST Insertion

Analysis

BSTs

Insertio

Search

Traversa

Join

Deletion

Exercises

Search

bstSearch(t, v)

Given a BST t and a value v, return true if v is in the BST and false otherwise

BSTs

Insertion

Search

Traversal

Join

Deletic

Tuereieee

BST search can be implemented recursively.

Cases:

- t is empty: \Rightarrow return false
- v < t->item
 ⇒ search for v in t's left subtree
- v > t->item
 - \Rightarrow search for v in t's right subtree
- $v = t \rightarrow item$ \Rightarrow return true

EXERCISE Try writing an iterative version.

BST Search

Trees

BSTs

Insertion

Search

Traversa

loin

Deletio

Exercises

Search for 4 and 7 in the following BST:

BST Search

Example

BST Search

Pseudocode

Search

Traversal oin Deletion

```
bstSearch(t, v):
    Inputs: tree t, value v
    Output: true if v is in t
            false otherwise
    if t is empty:
        return false
    else if v < t->item:
        return bstSearch(t->left, v)
    else if v > t->item:
        return bstSearch(t->right, v)
    else:
        return true
```

Trees

Search

Traversa

loin

. .

Deletion

xercises

Analysis:

- At most one node is examined on each level
- Number of operations performed per node is constant
- Therefore, the worst-case time complexity of search is ${\cal O}(h)$ where h is the height of the BST

BST Search

Analysis

- Trees
- BSTs
- Insertio
- Search
- Traversal
- Ioin
- Deletior
- Exercises

To traverse a linked list, we simply traverse from start to end.

There are 4 common ways to traverse a binary tree:

- Pre-order (NLR): visit root, then traverse left subtree, then traverse right subtree
- In-order (LNR):

traverse left subtree, then visit root, then traverse right subtree

3 Post-order (LRN):

traverse left subtree, then traverse right subtree, then visit root

4 Level-order:

visit root, then its children, then their children, and so on

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

preorder(t):
 Inputs: tree t

if t is empty:
 return

inorder(t):
 Inputs: tree t

Pseudocode:

if t is empty:
 return

visit(t)
preorder(t->left)
preorder(t->right)

inorder(t->left)
visit(t)
inorder(t->right)

postorder(t):
 Inputs: tree t

if t is empty:
 return

postorder(t->left)
postorder(t->right)
visit(t)

Tree Traversal

Pseudocode

Note:

Level-order traversal is difficult to implement recursively. It is typically implemented using a queue.

Tree Traversal

Example: Binary Search Tree

Pre-order	20 10 5 2 14 12 17 30 24 29 32 31	l
In-order	2 5 10 12 14 17 20 24 29 30 31 32)
Post-order	2 5 12 17 14 10 29 24 31 32 30 20)
Level-order	20 10 30 5 14 24 32 2 12 17 29 31	

COMP2521 23T3

Trees

0010

msert

Search

Traversal

Join

Deletior

Tree Traversal

Example: Expression Tree

Pre-order	+	*	1	3	-	*	5	7	9	
In-order	1	*	3	+	5	*	7	-	9	
Post-order	1	3	*	5	7	*	9	-	+	

COMP2521 23T3

Trees

BSTs

Insertio

Search

Traversal

Join

Deletior

Tree Traversal

Applications

Pre-order traversal:

- Useful for reconstructing a tree
- In-order traversal:
- Useful for traversing a BST in ascending order Post-order traversal:
 - Useful for evaluating an expression tree
 - Useful for freeing a tree

Level-order traversal:

• Useful for printing a tree

COMP2521 23T3

Trees

Search

Traversal

Join

Deletio

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Analysis:

- Each node is visited once
- Hence, time complexity of tree traversal is O(n), where n is the number of nodes

Tree Traversal

Analysis

Join

Join

bstJoin(t1, t2)

Given two BSTs t_1 and t_2 where $\max(t_1) < \min(t_2)$ return a BST containing all items from t_1 and t_2

BSTs

- Insertio
- Search
- Traversa

Join

- Deletion
- Exercises

Method:

- **1** Find the minimum node min in t_2
- **2** Replace *min* by its right subtree (if it exists)
- 3 Elevate min to be the new root of t_1 and t_2

BST Join

BST Join Pseudocode

BSTs Insert

Travoro

Join

Deletion

```
bstJoin(t_1, t_2):
    Inputs: trees t_1, t_2
    Output: t_1 and t_2 joined together
    if t_1 is empty:
         return t_2
    else if t<sub>2</sub> is empty:
         return t<sub>1</sub>
    else:
         curr = t_2
         parent = NULL
         while curr->left \neq NULL:
              parent = curr
              curr = curr->left
         if parent \neq NULL:
              parent->left = curr->right
              curr->right = t_2
         curr->left = t_1
         return curr
```

Trees

Insertior

Search

Traversal

Join

Deletion

xercises

Analysis:

- The join algorithm simply finds the minimum node in t_2
- Thus, at most one node is visited per level of t_2
- Therefore, the worst-case time complexity of join is $O(h_2)$ where h_2 is the height of t_2

BST Join

Analysis

BSTs

Insertic

Search

Traversa

Join

Deletion

Exercises

BST Deletion

Deletion

bstDelete(t, v)

Given a BST t and a value vdelete v from the BST and return the root of the updated BST BSTs

- Insertion
- Search
- Traversal
- Join
- Deletion
- Exercises

BST deletion can be implemented recursively.

Cases:

- t is empty:
 ⇒ result is empty
- v < t->item
 - \Rightarrow delete v from t's left subtree
- v > t->item
 ⇒ delete v from t's right subtree
- v = t->item
 - \Rightarrow three sub-cases:
 - t is a leaf
 - \Rightarrow result is empty tree
 - t has one subtree
 - \Rightarrow replace with subtree
 - t has two subtrees
 - \Rightarrow join the two subtrees

Trees

to a solution

Search

Traversa

Join

Deletion

Exercises

If the node being deleted is a leaf, then the result is an empty tree

BST Deletion

Zero subtrees

Trees

. ..

Search

Traversa

Join

Deletion

Exercises

bstDelete(t, v): Inputs: tree t, value v Output: t with v deleted if t is empty: return empty tree else if v < t->item: t->left = bstDelete(t->left, v) else if v > t->item: t->right = bstDelete(t->right, v) else: if t->left is empty: new = t->right else if t->right is empty:

else if t=>right is empty. new = t=>left else: new = bstJoin(t=>left, t=>right)

free(t)t = new

return t

BST Deletion

Pseudocode

BST Deletion

Analysis

Analysis:

• The deletion algorithm traverses down just one branch

- First, the item being deleted is found
- If the item exists and has two subtrees, its successor is found
- Thus, at most one node is visited per level
- Therefore, the worst-case time complexity of deletion is ${\cal O}(h)$ where h is the height of the BST

COMP2521 23T3

DETe

Insertio

Search

Traversal

Join

Deletion

- Trees
- the second second
- Search
- Travers
- Ioin
- Deleti
- Exercises

- bstFree free a tree
- bstSize return the size of a tree
- bstHeight return the height of a tree
- bstPrune

given values lo and hi, remove all values outside the range [lo, hi]

Trees

BSTs

Inserti

Search

Traversa

Join

Deletior

Exercises

https://forms.office.com/r/aPF09YHZ3X

Feedback