
COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

COMP2521 23T3
Binary Search Trees

Kevin Luxa
cs2521@cse.unsw.edu.au

trees
binary search trees



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Trees



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Trees

A tree is a branched data structure
consisting of a set of connected nodes where:

each node may have multiple other nodes as children
(depending on the type of tree)

each node is connected to one parent except the root node

trees do not contain cycles



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Trees
Example - File System Tree

Source: https://www.openbookproject.net/tutorials/getdown/unix/lesson2.html



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Trees
Example - Organisational Structure

Source: ”Data Structures and Algorithms in Java” (6th ed) by Goodrich et al.



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Trees
Example - Decision Tree

Source: ”Data Structures and Algorithms in Java” (6th ed) by Goodrich et al.



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Trees
Example - Decoding Morse Code



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Binary Trees

Binary trees are trees where
each node can have up to two child nodes,
typically called the left child and right child



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Binary Search Trees

A binary search tree is an ordered binary tree, where for each node:
• All values in the left subtree are less than the value in the node
• All values in the right subtree are greater than the value in the node



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Binary Search Trees

A binary search tree is either:
• empty; or
• consists of a node with two subtrees

• node contains a value
• left and right subtrees are also BSTs (recursive)



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Binary Search Trees
Why?

Why use binary search trees?

Search is an extremely common operation in computing:
• selecting records in databases
• searching for pages on the web

Typically, there is a very large amount of data (very many items)



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Binary Search Trees
Why?

We’ve explored multliple approaches for searching:
• Ordered array

• Searching/finding insertion point is O(log n) due to binary search
• Inserting is O(n) due to the need to shift items to preserve sortedness

• Ordered linked list
• Searching/finding insertion point is O(n) due to the nature of linked lists
• Inserting once we have found the insertion point is O(1) as there is no
need to shift



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Binary Search Trees
Why?

Binary search trees are efficient to search and maintain:
• Searching in a binary search tree is similar to how binary search works

• Explained below
• A binary search tree is a linked data structure (like a linked list), so there
is no need to shift elements when inserting/deleting



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Binary Search Trees

2 5 10 12 14 17 20 24 29 30 31 32

20

10

5

2

14

12 17

30

24

29

32

31



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Binary Search Trees
Terminology

The root node is the node with no parent node.

A leaf node is a node that has no child nodes.

An internal node is a node that has at least one child node.



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Binary Search Trees
Terminology

Height of a tree: Maximum path length from the root node to a leaf
• The height of an empty tree is considered to be -1
• The height of the following tree is 3

5

2

1 3

4

8

6 9



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Binary Search Trees
Terminology

For a tree with n nodes:

The maximum possible height is n − 1

1

2

3

…

n



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Binary Search Trees
Terminology

For a tree with n nodes:

The minimum possible height is blog2 nc

n minimum height tree

1 0

2-3 1

4-7 2

… … …



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Binary Search Trees
Terminology

For a given number of nodes, a tree is said to be
balanced if it has (close to) minimal height, and
degenerate if it has (close to) maximal height.



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Binary Search Trees
Terminology

The height h of a binary search tree
determines the efficiency of many operations,

so we will use both n and h when expressing time complexities.



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Binary Search Trees
Concrete Representation

Binary trees are typically represented by node structures
• Where each node contains a value and pointers to child nodes

struct node {
int item;
struct node *left;
struct node *right;

};



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Binary Search Trees
Concrete Representation

4

2

1 3

6

5 7

4

2 6

1 3 5 7



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Binary Search Trees
Operations

Key operations on binary search trees:
• Insert
• Search
• Traversal
• Join
• Delete



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Insertion

Insertion

bstInsert(t, v)

Given a BST t and a value v,
insert v into the BST

and return the root of the updated BST



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Insertion

Insertion is straightforward:
• Start at the root
• Compare value to be inserted with value in the node

• If value being inserted is less, descend to left child
• If value being inserted is greater, descend to right child

• Repeat until...
you have to go left/right but current node has no left/right child

• Create new node and attach to current node



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Insertion



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Insertion
Example 1

Insert the following into an empty tree:

4 2 6 5 1 7 3

4

2

1 3

6

5 7



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Insertion
Example 1

Insert the following into an empty tree:

4 2 6 5 1 7 3

4

2

1 3

6

5 7



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Insertion
Example 2

Insert the following into an empty tree:

5 6 2 3 4 7 1

5

2

1 3

4

6

7



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Insertion
Example 2

Insert the following into an empty tree:

5 6 2 3 4 7 1

5

2

1 3

4

6

7



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Insertion
Example 3

Insert the following into an empty tree:

1 2 3 4 5 6 7

1

2

3

4

5

6

7



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Insertion
Example 3

Insert the following into an empty tree:

1 2 3 4 5 6 7

1

2

3

4

5

6

7



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Insertion

BST insertion can be implemented recursively.

Cases:
• t is empty
⇒ make a new node with v as the root of the new tree

• v < t->item
⇒ insert v into t’s left subtree

• v > t->item
⇒ insert v into t’s right subtree

• v = t->item
⇒ tree unchanged (assuming no duplicates)

exercise Try writing an iterative version.



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Insertion
Pseudocode

bstInsert(t, v):
Inputs: tree t, value v
Output: t with v inserted

if t is empty:
return new node containing v

else if v < t->item:
t->left = bstInsert(t->left, v)

else if v > t->item:
t->right = bstInsert(t->right, v)

return t



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Insertion
Analysis

Analysis:
• At most one node is examined on each level
• Number of operations performed per node is constant
• Therefore, the worst-case time complexity of insertion is O(h) where h is
the height of the BST



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Search

Search

bstSearch(t, v)

Given a BST t and a value v,
return true if v is in the BST and false otherwise



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Search

BST search can be implemented recursively.

Cases:
• t is empty:
⇒ return false

• v < t->item
⇒ search for v in t’s left subtree

• v > t->item
⇒ search for v in t’s right subtree

• v = t->item
⇒ return true

exercise Try writing an iterative version.



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Search
Example

Search for 4 and 7 in the following BST:

6

2

1 3

5

8

7 9



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Search
Pseudocode

bstSearch(t, v):
Inputs: tree t, value v
Output: true if v is in t

false otherwise

if t is empty:
return false

else if v < t->item:
return bstSearch(t->left, v)

else if v > t->item:
return bstSearch(t->right, v)

else:
return true



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Search
Analysis

Analysis:
• At most one node is examined on each level
• Number of operations performed per node is constant
• Therefore, the worst-case time complexity of search is O(h) where h is
the height of the BST



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Tree Traversal

To traverse a linked list, we simply traverse from start to end.

There are 4 common ways to traverse a binary tree:
1 Pre-order (NLR):
visit root, then traverse left subtree, then traverse right subtree

2 In-order (LNR):
traverse left subtree, then visit root, then traverse right subtree

3 Post-order (LRN):
traverse left subtree, then traverse right subtree, then visit root

4 Level-order:
visit root, then its children, then their children, and so on



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Tree Traversal
Pseudocode

Pseudocode:

preorder(t):
Inputs: tree t

if t is empty:
return

visit(t)
preorder(t->left)
preorder(t->right)

inorder(t):
Inputs: tree t

if t is empty:
return

inorder(t->left)
visit(t)
inorder(t->right)

postorder(t):
Inputs: tree t

if t is empty:
return

postorder(t->left)
postorder(t->right)
visit(t)

Note:
Level-order traversal is difficult to implement recursively.

It is typically implemented using a queue.



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Tree Traversal
Example: Binary Search Tree

20

10

5

2

14

12 17

30

24

29

32

31

Pre-order 20 10 5 2 14 12 17 30 24 29 32 31
In-order 2 5 10 12 14 17 20 24 29 30 31 32
Post-order 2 5 12 17 14 10 29 24 31 32 30 20
Level-order 20 10 30 5 14 24 32 2 12 17 29 31



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Tree Traversal
Example: Expression Tree

Expression tree for 1 * 3 + (5 * 7 - 9)

+

*

1 3

-

*

5 7

9

Pre-order + * 1 3 - * 5 7 9
In-order 1 * 3 + 5 * 7 - 9
Post-order 1 3 * 5 7 * 9 - +



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Tree Traversal
Applications

Pre-order traversal:
• Useful for reconstructing a tree

In-order traversal:
• Useful for traversing a BST in ascending order

Post-order traversal:
• Useful for evaluating an expression tree
• Useful for freeing a tree

Level-order traversal:
• Useful for printing a tree



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Tree Traversal
Analysis

Analysis:
• Each node is visited once
• Hence, time complexity of tree traversal is O(n), where n is the number
of nodes



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Join

Join

bstJoin(t1, t2)

Given two BSTs t1 and t2
where max (t1) < min (t2)

return a BST containing all items from t1 and t2



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Join

Method:
1 Find the minimum node min in t2
2 Replace min by its right subtree (if it exists)
3 Elevate min to be the new root of t1 and t2

t1 t2

join(t1, t2)

t1 t′2



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Join
Example 1

t1

10

5 14

t2

30

24

29

26

32

join(t1, t2)

24

10

5 14

30

29

26

32



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Join
Example 2

t1

10

5 14

t2

24

29

30

32

join(t1, t2)

24

10

5 14

29

30

32



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Join
Pseudocode

bstJoin(t1, t2):
Inputs: trees t1, t2
Output: t1 and t2 joined together

if t1 is empty:
return t2

else if t2 is empty:
return t1

else:
curr = t2
parent = NULL
while curr->left 6= NULL:

parent = curr
curr = curr->left

if parent 6= NULL:
parent->left = curr->right
curr->right = t2

curr->left = t1
return curr



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Join
Analysis

Analysis:
• The join algorithm simply finds the minimum node in t2
• Thus, at most one node is visited per level of t2
• Therefore, the worst-case time complexity of join is O(h2) where h2 is the
height of t2



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Deletion

Deletion

bstDelete(t, v)

Given a BST t and a value v
delete v from the BST

and return the root of the updated BST



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Deletion

BST deletion can be implemented recursively.

Cases:
• t is empty:
⇒ result is empty

• v < t->item
⇒ delete v from t’s left subtree

• v > t->item
⇒ delete v from t’s right subtree

• v = t->item
⇒ three sub-cases:

• t is a leaf
⇒ result is empty tree

• t has one subtree
⇒ replace with subtree

• t has two subtrees
⇒ join the two subtrees



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Deletion
Zero subtrees

If the node being deleted is a leaf, then the result is an empty tree

5 delete 5 NULL

9

4

1 6

15

11

12

18

delete 6

9

4

1

15

11

12

18



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Deletion
One subtree

Node to be deleted has one subtree

9

4

1 6

15

11

12

18

delete 11

9

4

1 6

15

12 18



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Deletion
Two subtrees

Node to be deleted has two subtrees

9

4

1 6

15

11

12

18

delete 9

11

4

1 6

15

12 18



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Deletion
Pseudocode

bstDelete(t, v):
Inputs: tree t, value v
Output: t with v deleted

if t is empty:
return empty tree

else if v < t->item:
t->left = bstDelete(t->left, v)

else if v > t->item:
t->right = bstDelete(t->right, v)

else:
if t->left is empty:

new = t->right
else if t->right is empty:

new = t->left
else:

new = bstJoin(t->left, t->right)

free(t)
t = new

return t



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Deletion
Analysis

Analysis:
• The deletion algorithm traverses down just one branch

• First, the item being deleted is found
• If the item exists and has two subtrees, its successor is found

• Thus, at most one node is visited per level
• Therefore, the worst-case time complexity of deletion is O(h) where h is
the height of the BST



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

BST Exercises

• bstFree
free a tree

• bstSize
return the size of a tree

• bstHeight
return the height of a tree

• bstPrune
given values lo and hi, remove all values outside the range [lo, hi]



COMP2521
23T3

Trees

BSTs

Insertion

Search

Traversal

Join

Deletion

Exercises

Feedback

https://forms.office.com/r/aPF09YHZ3X

https://forms.office.com/r/aPF09YHZ3X

	Trees
	BSTs
	Insertion
	Search
	Traversal
	Join
	Deletion
	Exercises

