COMP2521
2373

COMP2521 2313
Sorting Algorithms (111)

Kevin Luxa

cs2521@cse.unsw.edu.au

quick sort

Compasz Qu ick Sort

Motivation

Merge sort uses a trivial split operation;
all the heavy lifting is in the merge operation.

Can we split the collection in a more intelligent way,
so combining the results is easier?

...e.g., making sure all elements in one part
are less than elements in the second part?

COMP2521
23T3

Method
Partitioning

Implementa-
tion

Analysis
Properties
Issues
Median-of-
Three

Partitioning

Randomised
Partitioning

Improve-
ments

Sorting Lists

Quick sort!

Invented by Tony Hoare

Quick Sort

Compasz Qu ick Sort

Method

Method:

© Choose an item to be a pivot
© Rearrange (partition) the array so that

* All elements to the left of the pivot are less than (or equal to) the pivot
* All elements to the right of the pivot are greater than (or equal to) the pivot

© Recursively sort each of the partitions

COMP2521
23T3

Method
Partitioning

Implementa-
tion

Analysis
Properties
Issues
Median-of-
Three
Partitioning

Randomised
Partitioning

Improve-
ments

Sorting Lists

lo

Quick Sort

hi

partition l

< X, unsorted

> X, unsorted

l quicksort

quicksort i

< X, sorted

> x, sorted

COMP2521

s Partitioning

Partitioning

How do we partition an array?
* Assume the pivot is stored at index lo
Create index 1 to start of array (Lo + 1)

Create index r to end of array (h1)
Until 1 and r meet:

® Increment 1 until a[1] is greater than pivot
® Decrement r until a[r] is less than pivot
® Swap items at indices L and r

Swap the pivot with index Lor 1 - 1 (depending on the item at index 1)

COMP2521 Pa rtitioning
23T3

Example

comP2s?1 Partitionin g

Example

Increment left index while element is < pivot

4(2(7]|3]|6(1(2

5
1

comP2s?1 Partitionin g

Example

Example

Increment left index while element is < pivot

4|2 316(1(2

5
1

comP2s?1 Partitionin g

Example

Example

Decrement right index while element is > pivot

4|2 316(1(2]5

comP2s?1 Partitionin g

Example

Example

Decrement right index while element is > pivot

4|2 316(1 5

COMP2521
23T3

Swap the two elements

Partitioning

Example

3

6

1

COMP2521
23T3

Swap the two elements

Partitioning

Example

2

3

6

1

1

—> ~

COMP2521
23T3

Repeat until the indices meet

Partitioning

Example

2

3

6

1

—> ~

COMP2521
23T3

Repeat until the indices meet

Partitioning

Example

2

3

6

1

—> ~

COMP2521
23T3

Repeat until the indices meet

Partitioning

Example

2

3

1

—> ~

COMP2521
23T3

Repeat until the indices meet

Partitioning

Example

2

3

1

COMP2521
23T3

Example

Repeat until the indices meet

Partitioning

Example

2

3

COMP2521
23T3

Repeat until the indices meet

Partitioning

Example

2

3

1|6
(I

COMP2521
23T3

Repeat until the indices meet

Partitioning

Example

2

3

1

6

1

COMP2521
23T3

Repeat until the indices meet

Partitioning

Example

2

3

1

6

COMP2521
23T3

Example

Swap the pivot into the middle (be careful!)

Partitioning

Example

2

2

3

6

~

COMP2521
23T3

Swap the pivot into the middle (be careful!)

Partitioning

Example

2

2

3

4

6

~

COMP2521 Pa rtitioning
23T3

Example

COMP2521
2373

Partitioning

Analysis

e Partitioning is O(n), where n is the number of elements being
partitioned

® About n comparisons are performed, at most % swaps are performed

COMP2521
2373

Implementa-
tion

Quick Sort

C Implementation: Sort

naiveQuickSort(items[], lo, hi) {
if (lo >= hi) return;

pivotIndex = partition(items, lo, hi);
naiveQuickSort(items, lo, pivotIndex - 1);
naiveQuickSort(items, pivotIndex + 1, hi);

COMP2521
2373

Implementa-

tion

Quick Sort

C Implementation: Partition

partition(items[], lo, hi) {
pivot = items[lo];

1 =T1o + 1;
r = hi;

while (true) {
while (1 < r && le(items[l], pivot)) 1++;
while (1 < r && ge(items[r], pivot)) r—-;
if (1 == r) break;
swap(items, 1, r);

}

if (lt(pivot, 1ditems[1l])) 1--;
swap(items, lo, 1);
return 1;

COMP2521
23T3

Analysis

Best case: O(nlogn)
® Choice of pivot gives two equal-sized partitions

e Same happens at every recursive call
® Resulting in log, n recursive levels

e Each “level” requires approximately n» comparisons

Quick Sort

Analysis

<z

>z

recursively sort

/
’
/

recursively sort

\
\
\

Compasz Qu ick Sort

Analysis

Worst case: O(n?)
e Always choose lowest/highest value for pivot

Analysis e Resulting in partitions of size 0 and n — 1
® Resulting in n recursive levels

e Each “level” requires one less comparison than the level above

Compasz Qu ick Sort

Analysis

Analysis

Average case: O(nlogn)

e If array is randomly ordered, chance of repeatedly choosing a bad pivot
is very low

® Can also show empirically by generating random sequences and sorting
them

Compasz Qu ick Sort

Properties

Properties Unstable
Due to long-range swaps

Non-adaptive
O(nlogn) average case, sorted input does not improve this

In-place
Partitioning is done in-place
Stack depth is O(n) worst-case, O(log n) average

compas1 Issues with Quick Sort

2373

Choice of pivot can have a significant effect:
e |deal pivot is the median value
Issues e Always choosing largest/smallest = worst case

Therefore, always picking the first or last element as pivot is not a good idea:
e Existing order is a worst case
e Existing reverse order is a worst case
e Will result in partitions of size n — 1 and 0
* This pivot selection strategy is called naive quick sort

O Quick Sort with Median-of-Three Partitioning

Pick three values: left-most, middle, right-most.
Pick the median of these three values as our pivot.

TIPS Ordered data is no longer a worst-case scenario.

Th , S

Pertitioning In general, doesn't e.llmlnate the worst-case ...
... but makes it much less likely.

__HNEEEE EEEEEE
I I I

lo (lo+ hi)/2 hi

COMP2521
23T3

Method

Partitioning

Implementa-

tion
Analysis
Properties
Issues
Median-of-
Three
Partitioning

Randomised
Partitioning

Improve-
ments

Sorting Lists

Quick Sort with Median-of-Three Partitioning

_ EEEEEE EEEEEE
| | |

lo (lo+ hi)/2 hi

@ Sort a[lo],a[(lo + hi)/2],a[hi], such that a[lo] < a[(lo + hi)/2] < alhi]
@ Swap allo] and a[(lo + hi)/2]
© Partition on a[lo] to a[hi]

O Quick Sort with Median-of-Three Partitioning

C Implementation

median0fThreeQuickSort(items[], lo, hi) {
if (Lo >= hi) return;
medianO0fThree(items, lo, hi);
pivotIndex = partition(items, lo, hi);
medianOfThreeQuickSort(items, lo, pivotIndex - 1);

ﬁfb"ﬂﬂ medianOfThreeQuickSort(items, pivotIndex + 1, hi);
ree

Partitioning }

medianOfThree(all, 1o, hi) {
mid = (lo + hi) / 2;

if (gt(al[lo]l, a[mid])) swap(a, lo, mid);
if (gt(almid], al[hi])) swap(a, mid, hi);
if (gt(a[lo], a[mid])) swap(a, lo, mid);
// now, we have a[lo] <= a[mid] <= al[hi]
// swap a[mid] to a[lo] to use as pivot
swap(a, lo, mid);

O Quick Sort with Randomised Partitioning

Idea: Pick a random value for the pivot

This makes it nearly impossible to
Randomised systematically generate inputs that would lead to
O(n?) performance

COMP2521
2373

Randomised
Partitioning

Quick Sort with Randomised Partitioning

C Implementation

randomisedQuickSort(items[], 1o, hi) {
if (Lo >= hi) return;
swap(items, lo, randint(lo, hi));
pivotIndex = partition(items, lo, hi);
randomisedQuickSort(items, lo, pivotIndex - 1);
randomisedQuickSort(items, pivotIndex + 1, hi);

randint(1o, hi) {
i =rand() % (hi - 1o + 1);
return lo + 1;

Note: rand () is a pseudo-random number generator provided by <stdlib.h>.

The generator should be initialised with srand ().

O Insertion Sort Improvement

For small sequences (when n < 5, say),
quick sort is
because of the recursion overhead.

Solution: Handle small partitions with insertion sort

Insertion Sort

compas21 Insertion Sort Improvement

23T3
C Implementation - Version 1

#define THRESHOLD 5

quickSort(items[], 1o, hi) {
if (hi - lo < THRESHOLD) {
insertionSort(items, lo, hi);
return;

}

medianO0fThree(items, lo, hi);

LEICETE pivotIndex = partition(items, lo, hi);
quickSort(items, lo, pivotIndex - 1);
quickSort(items, pivotIndex + 1, hi);

Se Insertion Sort Improvement

C Implementation - Version 2

#define THRESHOLD 5

quickSort(items[], lo, hi) {
doQuickSort(items, lo, hi);
insertionSort(items, lo, hi);

doQuickSort(items[], lo, hi) {
if (hi - 1o < THRESHOLD) return;
eronser medianOfThree(items, lo, hi);
pivotIndex = partition(items, lo, hi);
doQuickSort(items, lo, pivotIndex - 1);
doQuickSort(items, pivotIndex + 1, hi);

S Quick Sort on Lists

It is possible to quick sort a linked list:
© Pick first element as pivot

* Note that this means ordered data is a worst case again
¢ Instead, can use median-of-three or random pivot

@ Create two empty linked lists A and B
© For each element in original list (excluding pivot):

* If element is less than (or equal to) pivot, add it to 4
¢ |f element is greater than pivot, add it to B

O Recursively sort A and B
© Form sorted linked list using sorted A, the pivot, and then sorted B

Sorting Lists

O Quick Sort vs Merge Sort

Design of modern cpus mean,
for sorting arrays in RAM
quick sort generally outperforms merge sort.

Quick sort is more ‘cache friendly’:
good locality of access on arrays.

On the other hand, merge sort is
Sorting Lists readily stable, readily parallel,
a good choice for sorting linked lists

cogn;%m Feedback

https://forms.office.com/r/aPFO9YHZ3X

Sorting Lists

https://forms.office.com/r/aPF09YHZ3X

	Method
	Partitioning
	Example
	Analysis

	Implementation
	Analysis
	Properties
	Issues
	Median-of-Three Partitioning
	Randomised Partitioning
	Improvements
	Insertion Sort

	Sorting Lists

