COMP2521
2373

COMP2521 2313
Sorting Algorithms (11)

Kevin Luxa

cs2521@cse.unsw.edu.au

merge sort

O Divide-and-Conquer Algorithms

divide-and-conquer algorithms
a problem into smaller sub-problems,
solve the sub-problems ,
and then the results.

COMP2521
23T3

Method
Splitting

Merging

Implementa-

tion
Analysis
Properties
Sorting Lists
Bottom-Up

Appendix

Merge Sort

A divide-and-conquer sorting algorithm:

split the array into two roughly equal-sized parts.
recursively sort each of the partitions.
merge the two now-sorted partitions into a sorted array.

unsorted unsorted
sorted sorted

sorted

comP2s?1 Me rge Sort

Method

2l W bRl e
2[5 7] [1]s 2|6

comP2s?1 Me rge Sort
Splitting

Splitting

How do we split the array?
e We don't physically split the array
e We simply calculate the midpoint of the array
°* mid = (lo + hi) / 2
* Then recursively sort each half by passing in appropriate indices

® Sort between indices 1o and mid
® Sort between indices mid + 1 and hi

e This means the time complexity of splitting the array is O(1)

COMP2521

213 Merge Sort
Merging

Merging

How do we merge two sorted subarrays?
* We merge the subarrays into a temporary array

* Keep track of the smallest element that has not been merged in each
subarray

* Copy the smaller of the two elements into the temporary array
¢ If the elements are equal, take from the left subarray

* Repeat until all elements have been merged
* Then copy from the temporary array back to the original array

comP2s?1 Me rge Sort
Merging - Example 1

comP2s?1 Me rge Sort
Merging - Example 1

comP2s?1 Me rge Sort
Merging - Example 1

Example 1

214|5(7(1|2|3]|6

1

When items are equal, merge takes from the left subarray
(this ensures stability)

1

comP2s?1 Me rge Sort
Merging - Example 1

Example 1

4(5(7]1]|12|3|6

1

When items are equal, merge takes from the left subarray
(this ensures stability)

1

comP2s?1 Me rge Sort
Merging - Example 1

comP2s?1 Me rge Sort
Merging - Example 1

comP2s?1 Me rge Sort
Merging - Example 1

! ()

comP2s?1 Me rge Sort
Merging - Example 1

comP2s?1 Me rge Sort
Merging - Example 1

=3 O

comP2s?1 Me rge Sort
Merging - Example 1

=3 O

Merge Sort

Merging - Example 1

=3 O

comP2s?1 Me rge Sort
Merging - Example 1

=3 O

Merge Sort

Merging - Example 1

=3 O

Merge Sort

Merging - Example 1

Merge Sort

Merging - Example 1

Merge Sort

Merging - Example 1

COMP2521
23T3

Merge Sort

Merging - Example 1

Now copy back to original array

1|2

2

3

4

5

6

comP2s?1 Me rge Sort
Merging - Example 2

Example 2 5 2

comP2s?1 Me rge Sort
Merging - Example 2

Example 2 5

comP2s?1 Me rge Sort
Merging - Example 2

Example 2 5 2

comP2s?1 Me rge Sort
Merging - Example 2

Example 2 2

COMP2521
2373

Example 2

Now copy back to original array

2

5

Merge Sort

Merging - Example 2

COMP2521
2373

Merge Sort

Merging

* The time complexity of merging two sorted subarrays is O(n), where n is
the total number of elements in both subarrays
® Therefore:
* Merging two subarrays of size 1 takes 2 “steps”

* Merging two subarrays of size 2 takes 4 “steps”

* Merging two subarrays of size 4 takes 8 “steps”
[J

COMP2521 M e rge SO rt

23T3
C Implementation: Sort

Implementa-

tion
mergeSort(items[], lo, hi) {
if (Lo >= hi) return;

mid = (lo + hi) / 2;

mergeSort(items, lo, mid);
mergeSort(items, mid + 1, hi);
merge(items, lo, mid, hi);

COMP2521
23T3

Method
Splitting
Merging

Implementa-
tion

Analysis
Properties
Sorting Lists
Bottom-Up

Appendix

void merge(Item items[], int lo, int mid, int hi) {
Item xtmp = malloc((hi - lo + 1) * sizeof(Item));
int i = lo, j = mid + 1, k = 03

// Scan both segments, copying to “tmp'.
while (i <= mid && j <= hi) {
if (le(items[i], dtems[j])) {
tmp[k++] = items[i++];
} else {
tmp[k++] = items[j++];
}
}

// Copy items from unfinished segment.
while (i <= mid) tmp[k++] = items[i++];
while (j <= hi) tmp[k++] = ditems[j++];

// Copy “tmp' back to main array.

for (i = lo, k = 0; 1 <= hi; i++, k++) {
items[i] = tmp[k];

}

free(tmp);

Merge Sort

C Implementation: Merge

comP2s?1 Me rge Sort

Analysis

Analysis

i o2 il

comP2s?1 Merge Sort

Analysis
Split
n — 1 splits O(n)
Analysis (logy n levels
of splitting)
s 2]
5
|2
Merge
We have to merge O(nlogn)

nnumbers_ exactly
log, n times ‘1‘2‘2‘3‘4‘5‘5‘7‘

COMP2521

213 Merge Sort

Analysis

Analysis:

Analysis

* Merge sort splits the array into equal-sized partitions
halving at each level = log, n levels

e The same operations happen at every recursive level
® Each ‘level requires < n comparisons

Therefore:
* The time complexity of merge sort is O(nlogn)
* Best-case, average-case, and worst-case time complexities are all the same

coPasan Merge Sort
Analysis - Alternative Method

Analysis

Let T'(n) be the time taken to sort n elements.

Splitting arrays into two halves takes constant time.
Merging two sorted arrays takes n steps.

So we have that:
T(n)=2T(n/2)+n

Then the Master Theorem (see COMP3121) can be used to
show that the time complexity is O(nlogn).

comP2s?1 Me rge Sort

Properties

Stable
Properties Due to taking from left subarray if items are equal during merge

Non-adaptive
O(nlogn) best case, average case, worst case

Not in-place
Merge uses a temporary array of size up to n
Note: Merge sort also uses O(log n) stack space

Se Merge Sort on Lists

Method

S:m?ng It is possible to apply merge sort on linked lists.

Merging

Implementaf a R

tion

Properties b
Sorting Lists a < b |
Bottom-Up \\l %_‘ F_’__)
Appendix |_.| |_.| |_. | |_.| |_.| |

mergesort(a) b mergesort(b)

B O B B B

merge(a,b)

o} L]

O Bottom-Up Merge Sort

An approach that works non-recursively!

® on each pass, our array contains sorted runs of length m.
initially, n sorted runs of length 1.
The first pass merges adjacent elements into runs of length 2.

Bottom-Up

The second pass merges adjacent elements into runs of length 4.
e ... continue until we have a single sorted run of length n.

Can be used for external sorting;
e.g., sorting disk-file contents

COMP2521
23T3

Method
Splitting
Merging

Implementa-

tion
Analysis
Properties
Sorting Lists

Bottom-Up

Implementation

Appendix

Original

After 1st pass
sorted slices of length 2

After 2nd pass
sorted slices of length 4

After 3rd pass
sorted slices of length 8

After 4th pass
sorted slice of length 16

[0]

(]

Bottom-Up Merge Sort

Example
[15]
A|R
A|R
PR
R | X
T | X

COMP2521
2373

Implementation

Bottom-Up Merge Sort

C Implementation

#define MIN(a, b) ((a) < (b) ? (a) : (b))

mergeSortBottomUp (items[], lo, hi) {
for (m=1; m <= lo - hi; m x= 2) {
for (i=T1o; i <=hi-mj i +=2 xm) {

end = MIN(i + 2 *xm - 1, hi);
merge(items, i, i + m - 1, end);

cogn;%m Feedback

https://forms.office.com/r/aPFO9YHZ3X

Implementation

https://forms.office.com/r/aPF09YHZ3X

Appendix

comP2s?1 Me rge Sort

Demo (1)

Merge Sort Demo

comP2s?1 Me rge Sort

Demo (1)

Merge Sort Demo

comP2s?1 Me rge Sort

Demo (1)

Merge Sort Demo

comP2s?1 Me rge Sort

Demo (1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

Merge Sort Demo

comP2s?1 Me rge Sort
Demo (I1)

4 1 7 3 8 6 5 2
114 3|7 6|8 215
1131417 2]15]|6]8

comP2s?1 Me rge Sort
Demo (I1)

4 1 7 3 8 6 5 2
114 3|7 6|8 215
113147 215]|6]8

comP2s?1 Me rge Sort
Demo (I1)

4 1 7 3 8 6 5 2
114 3|7 6|8 215
11347 2]15]|6]8

comP2s?1 Me rge Sort
Demo (I1)

4 1 7 3 8 6 5 2
114 3|7 6|8 215
1|314]7 2]15]|6]8

comP2s?1 Me rge Sort
Demo (I1)

4 1 7 3 8 6 5 2
114 3|7 6|8 215
1131417 2]15]|6]8

comP2s?1 Me rge Sort
Demo (I1)

4 1 7 3 8 6 5 2
114 3|7 6|8 215
1131417 2151618

comP2s?1 Me rge Sort
Demo (I1)

4 1 7 3 8 6 5 2
114 3|7 6|8 215
1314|717 2]15]|6]8

comP2s?1 Me rge Sort
Demo (I1)

4 1 7 3 8 6 5 2
114 3|7 6|8 215
113147 2]15]61]8

comP2s?1 Me rge Sort
Demo (I1)

4 1 7 3 8 6 5 2
114 3|7 6|8 215
113147 2]15]|6]8

	Method
	Splitting
	Merging
	Example 1
	Example 2
	Analysis

	Implementation
	Analysis
	Properties
	Sorting Lists
	Bottom-Up
	Implementation

	Appendix
	Merge Sort Demo

