COMP2521 23T3

wethou

Merging

Implementa

CIOII

Dronarties

Sorting Lists

COMP2521 23T3 Sorting Algorithms (II)

Kevin Luxa cs2521@cse.unsw.edu.au

merge sort

Divide-and-Conquer Algorithms

Culibbin

Merging

Implement

Analysi

Properties

Sorting Lists

Bottom-Un

Appendix

divide-and-conquer algorithms
split a problem into smaller sub-problems,
solve the sub-problems recursively,
and then combine the results.

Method

Splitting

Merging

Implemen

Analysis

Propertie

Sorting Lists

Bottom-U

A divide-and-conquer sorting algorithm:

split the array into two roughly equal-sized parts.
recursively sort each of the partitions.
merge the two now-sorted partitions into a sorted array.

Method

Splitting

Merging

Impleme

Analysi:

Propertie:

Sorting Lists

Merge Sort Splitting

Metno

Splitting

Merging

tion

Dronartic

Sorting List

00111115 2101

Bottom-up

How do we split the array?

- We don't physically split the array
- We simply calculate the midpoint of the array

- Then recursively sort each half by passing in appropriate indices
 - Sort between indices lo and mid
 - Sort between indices mid + 1 and hi
- \bullet This means the time complexity of splitting the array is ${\it O}(1)$

Merge Sort Merging

Snlittin

Merging Example 1

Example 2 Analysis

Analye

Propertie

Sorting Lists

Bottom-IIn

Appendix

How do we merge two sorted subarrays?

- We merge the subarrays into a temporary array
- Keep track of the smallest element that has not been merged in each subarray
- Copy the smaller of the two elements into the temporary array
 - If the elements are equal, take from the left subarray
- Repeat until all elements have been merged
- Then copy from the temporary array back to the original array

Method

Splittin

Merging

Example 1

Analysis

Analysis

....

Analysis

JUI LING LISES

Method

.

Merging Example 1

Example

Analysis

tion

Analysis

Properties

Sorting Lists

Bottom-U

Method

Splittin

Merging

Example 1

Analysis

Implemen

Δnalvsi

Propertie

Sorting Lists

Appendix

When items are equal, merge takes from the left subarray (this ensures stability)

Mediod

Splittin

Merging

Example 1

Analysis

Impleme

Analysi

Propertie

Sorting Lists

Appendix

When items are equal, merge takes from the left subarray (this ensures stability)

Method

Splitting

Merging

Example 1

Analysis

Luculous

Analysis

.

Sorting Lists

Bottom-U

Method

Splitting

Merging

Example 1

Analysis

Analysis

LIOII

Analysis

.

JUI LING LISES

50000111 0

Method

Splitting

Merging

Example 1

Analysis

Imnlem

Analysis

7 11 10 Cy 5 1

. .

Ü

Method

Splitting

Merging

Example 1

Analysis

Implon

.....

Analysis

Sorting Lists

Bottom-U

Method

Splitting

Merging

Example 1

Analysis

Allatysis

LIOII

Analysis

Sorting Lists

Method

Splitting

Merging

Example 1

Analysis

Implem

Analysis

. . .

00111115 2101

Method

Splitting

Merging

Example 1

Analysis

. . .

.....

Analysis

Datham III

Method

Splittin

Merging

Example 1

Analysis

Implen

Analysis

Propertie

Sorting Lists

Bottom-U

Method

Splitting

Merging

Example 1

Analysis

tion

Analysis

· · opercies

Surting List

Annendix

Method

Splittin

Merging

Example 1

Analysis

Imnler

Analysis

7 11 10 Cy 5 1

.

Rottom-II

Method

Splitting

Merging

Example 1

Analysis

Luculou

Analysis

Jui tilig List

Method

Splitting

Merging

Example 1

Analysis

Implom

Analysis

Droport

Sorting Lists

Bottom-U

Merging

Example 1

Now copy back to original array

Method

Splitting

Merging Example 1

Example 2

Implementa

Analysis

Properties

Sorting Lists

Bottom-Up

Method

Splitting

Merging Example 1

Example 2

Implementa

Analysis

Properties

Sorting Lists

Bottom-Up

Method

Merging

Example 2

Implements

Analysis

Dronarties

Sorting Lists

Bottom-Up

G 11...1

Merging Example 1

Example 2

Implementa

Analysis

Properties

Sorting Lists

Bottom-Up

Methou

Merging

Example 2

Implementa

Analysis

Properties

Sorting Lists

Bottom-Up

Appendix

Now copy back to original array

Merge Sort Merging

Analysis

• The time complexity of merging two sorted subarrays is O(n), where n is the total number of elements in both subarrays

- Therefore:
 - Merging two subarrays of size 1 takes 2 "steps"
 - Merging two subarrays of size 2 takes 4 "steps"
 - Merging two subarrays of size 4 takes 8 "steps"

Method

Mergin

Implementation

Properties

Sorting Lists

Bottom-Up

```
if (lo >= hi) return;
int mid = (lo + hi) / 2;
mergeSort(items, lo, mid);
mergeSort(items, mid + 1, hi);
merge(items, lo, mid, hi);
```

void mergeSort(Item items[], int lo, int hi) {

```
COMP2521
23T3
```

Merge Sort C Implementation: Merge

```
Merging
Implementa-
```

tion

```
Analysis
Properties
```

```
Sorting Lists
Bottom-Up
```

```
Appendix
```

```
int i = lo, j = mid + 1, k = 0;
// Scan both segments, copying to `tmp'.
while (i <= mid && j <= hi) {</pre>
    if (le(items[i], items[j])) {
        tmp[k++] = items[i++];
    } else {
        tmp[k++] = items[i++];
    }
// Copy items from unfinished segment.
while (i <= mid) tmp[k++] = items[i++];</pre>
while (i <= hi) tmp[k++] = items[i++];</pre>
// Copy `tmp' back to main array.
for (i = lo, k = 0; i <= hi; i++, k++) {
    items[i] = tmp[k];
}
free(tmp):
```

void merge(Item items[], int lo, int mid, int hi) {
 Item *tmp = malloc((hi - lo + 1) * sizeof(Item));

Merge Sort Analysis

Meruoa

Merging

Implement

Analysis

Propertie:

Sorting Lists

Bottom-Up

Merge Sort Analysis

Merging

Luculou

tion

Analysis

Propertie

Sorting List

Bottom-Up

Merge Sort Analysis

Methou

Mergin

Implemention

Analysis

Propertie

Sorting List

Annondiv

Analysis:

- Merge sort splits the array into equal-sized partitions halving at each level $\Rightarrow \log_2 n$ levels
- The same operations happen at every recursive level
- Each 'level' requires $\leq n$ comparisons

Therefore:

- The time complexity of merge sort is $O(n \log n)$
 - Best-case, average-case, and worst-case time complexities are all the same

Mediloc

Mergins

Implement

Analysis

ropercies

JUILING LISES

A 15

Note: Not required knowledge in COMP2521!

Let T(n) be the time taken to sort n elements.

Splitting arrays into two halves takes constant time. Merging two sorted arrays takes n steps.

So we have that:

$$T(n) = 2T(n/2) + n$$

Then the Master Theorem (see COMP3121) can be used to show that the time complexity is $O(n \log n)$.

COMP2521 23T3

Merge Sort Properties

Culitation

Merging

Implemention

Analysi

Properties

Sorting Lists

Bottom-Up

Appendix

Stable

Due to taking from left subarray if items are equal during merge

Non-adaptive

 $O(n \log n)$ best case, average case, worst case

Not in-place

Merge uses a temporary array of size up to nNote: Merge sort also uses $O(\log n)$ stack space

Merge Sort on Lists

Splitting

Merging

tion

...,..

Порегись

Sorting Lists

Bottom-ob

It is possible to apply merge sort on linked lists.

Method

Splittir

Merging

Implemen

Analysi

Properties

Sorting Lists

Bottom-Up
Implementation

implementatio

An approach that works non-recursively!

- on each pass, our array contains sorted *runs* of length m.
- initially, *n* sorted runs of length 1.
- The first pass merges adjacent elements into runs of length 2.
- The second pass merges adjacent elements into runs of length 4.
- ullet ... continue until we have a single sorted run of length n.

Can be used for external sorting; e.g., sorting disk-file contents

COMP2521 Bottom-Up Merge Sort 23T3 Example [0] [1] [2] [15] Merging Original Ε Ε О After 1st pass sorted slices of length 2 Bottom-Up After 2nd pass Ε R sorted slices of length 4 After 3rd pass sorted slices of length 8 After 4th pass sorted slice of length 16

Bottom-Up Merge Sort C Implementation

```
Splittin
```

Implom

Analysi

Propertie

Sorting Lists

Implementation

Implementation

```
#define MIN(a, b) ((a) < (b) ? (a) : (b))
void mergeSortBottomUp(Item items[], int lo, int hi) {
    for (int m = 1; m <= lo - hi; m *= 2) {
        for (int i = lo; i <= hi - m; i += 2 * m) {
            int end = MIN(i + 2 * m - 1, hi);
            merge(items, i, i + m - 1, end);
```

Metho

Splittir

Merging

Impleme

Analys

Propertie

Sorting Lists

Implementation

Appendix

https://forms.office.com/r/aPF09YHZ3X

COMP2521 23T3

Method

Splittin

Merging

tion

Analysis

Properties

Sorting Li

Rottom-IIn

Appendix

Merge Sort Demo

Appendix

4 1 7 3 8 6 5 2

Merge Sort

Demo (I)

Merge Sort

Demo (II)

4 1 7 3 8 6 5 2

Merge Sort

Demo (II)

Merge Sort

Demo (II)

Merge Sort Demo (II)

Demo (II)

Merge Sort

Merge Sort Demo (II)

Merge Sort Demo (II)

Splitting

Merging

tion

Analysis

Sorting List

3011115 21303

Appendix

Splitting

Merging

tion

Analysi

Troperties

Sorting Lists

Appendix

Appendix Merge Sort Demo 1

8

6

5

TE

2 5

Splitting

Merging

Analysis

Propertie:

Sorting Lists

Bottom-nb

Appendix Merge Sort Dem

Splitting

Merging

tion

Anatysis

Corting Lie

3011115 21303

Appendix

Splitting

Merging

tion

Dronartia

Sorting Lists

Bottom-Up

Appendix

Merging

Splitting

Merging Implemer

Analysi

Propertie:

Sorting Lists

Appendix

Merge Sort Demo

1 4 3

6 | 8

Splitting

Merging

Implemer tion

Analysis

Properties

Sorting Lists

Annondin

Appendix Marria Sort Dam

Merging

Merging

Splitting

Merging

Impleme

Analysis

. .

0011115 2.50

Appendix

Merging

Method

Merging

Implemen

Analysi

Properties

Sorting Lists

Appendix

Colitting

Merging

Implemen

Analysi

Propertie

Sorting Lists

Dotton IIn

Appendix

Colitting

Merging

Impleme

Analysis

rioperties

Sorting Lists

Annondiv

Appendix

Merging

Colitting

Merging

Implemention

Analysis

Properties

Sorting Lists

Appendix

Method

Merging

Implemen

Analysis

Properties

Sorting Lists

A no no no disc

Appendix

Method

Merging

Implome

Analysi

Properties

Sorting Lists

BULLUIII-UP

Appendix

Method

Merging

Implemer

Analysi

Properties

Sorting Lists

Appendix

Merge Sort

Splitting

Merging

Impleme

Analysi

rioperties

Sorting Lists

.

Appendix

Merge Sort

Splitting

Merging

Implemen

Analysi

Properties

Sorting Lists

DOLLOIII-OP

Appendix

