COMP2521 23T3
Sorting Algorithms (II)

Kevin Luxa
cs2521@cse.unsw.edu.au

merge sort
divide-and-conquer algorithms **split** a problem into smaller sub-problems, solve the sub-problems **recursively**, and then **combine** the results.
Merge Sort

A divide-and-conquer sorting algorithm:

split the array into two roughly equal-sized parts.
recursively sort each of the partitions.
merge the two now-sorted partitions into a sorted array.
How do we split the array?

- We don’t physically split the array
- We simply calculate the midpoint of the array
 - \(\text{mid} = (\text{lo} + \text{hi}) / 2 \)
- Then recursively sort each half by passing in appropriate indices
 - Sort between indices \(\text{lo} \) and \(\text{mid} \)
 - Sort between indices \(\text{mid} + 1 \) and \(\text{hi} \)
- This means the time complexity of splitting the array is \(O(1) \)
How do we merge two sorted subarrays?

- We merge the subarrays into a *temporary array*
- Keep track of the smallest element that has not been merged in each subarray
- Copy the smaller of the two elements into the temporary array
 - If the elements are equal, take from the left subarray
- Repeat until all elements have been merged
- Then copy from the temporary array back to the original array
When items are equal, merge takes from the left subarray (this ensures stability).

Copy back to original array:
When items are equal, merge takes from the left subarray (this ensures stability). Now copy back to original array.
When items are equal, merge takes from the left subarray
(this ensures stability)
When items are equal, merge takes from the left subarray (this ensures stability)

1 2 4 5 7 1 2 3 6
When items are equal, merge takes from the left subarray (this ensures stability).

Now copy back to original array.
When items are equal, merge takes from the left subarray (this ensures stability). Now copy back to original array.
When items are equal, merge takes from the left subarray (this ensures stability). Now copy back to original array.
When items are equal, merge takes from the left subarray (this ensures stability)

Now copy back to original array
When items are equal, merge takes from the left subarray (this ensures stability)
When items are equal, merge takes from the left subarray (this ensures stability)

Now copy back to original array
Merge Sort

Merging - Example 1

When items are equal, merge takes from the left subarray (this ensures stability)

Now copy back to original array
When items are equal, merge takes from the left subarray (this ensures stability)

Now copy back to original array

1 2 2 3 4
When items are equal, merge takes from the left subarray (this ensures stability)
When items are equal, merge takes from the left subarray (this ensures stability)

Now copy back to original array

1 2 2 3 4 5
When items are equal, merge takes from the left subarray (this ensures stability).
When items are equal, merge takes from the left subarray (this ensures stability)

Now copy back to original array
Method
Splitting
Merging
Example 1
Example 2
Analysis
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up
Appendix

Merge Sort
Merging - Example 1

When items are equal, merge takes from the left subarray (this ensures stability).

Now copy back to original array.
Merge Sort

Merging - Example 2

5 2

Now copy back to original array

2 5
Now copy back to original array.

5

2
Now copy back to original array.
Merge Sort
Merging - Example 2

Now copy back to original array

5 2

2
Now copy back to original array
• The time complexity of merging two sorted subarrays is $O(n)$, where n is the total number of elements in both subarrays

• Therefore:
 • Merging two subarrays of size 1 takes 2 “steps”
 • Merging two subarrays of size 2 takes 4 “steps”
 • Merging two subarrays of size 4 takes 8 “steps”
 • ...

Merge Sort
Merging
void mergeSort(Item items[], int lo, int hi) {
 if (lo >= hi) return;
 int mid = (lo + hi) / 2;
 mergeSort(items, lo, mid);
 mergeSort(items, mid + 1, hi);
 merge(items, lo, mid, hi);
}
void merge(Item items[], int lo, int mid, int hi) {
 Item *tmp = malloc((hi - lo + 1) * sizeof(Item));
 int i = lo, j = mid + 1, k = 0;

 // Scan both segments, copying to `tmp'.
 while (i <= mid && j <= hi) {
 if (le(items[i], items[j])) {
 tmp[k++] = items[i++];
 } else {
 tmp[k++] = items[j++];
 }
 }

 // Copy items from unfinished segment.
 while (i <= mid) tmp[k++] = items[i++];
 while (j <= hi) tmp[k++] = items[j++];

 // Copy `tmp' back to main array.
 for (i = lo, k = 0; i <= hi; i++, k++) {
 items[i] = tmp[k];
 }

 free(tmp);
}
Merge Sort
Analysis

Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up
Appendix

Splitting
Merging
Implementa-
Analysis

Properties
Sorting Lists
Bottom-Up
Appendix

Analysis

Merge Sort
Analysis

Split
\(n - 1 \) splits (\(\log_2 n \) levels of splitting)

Merge
We have to merge \(n \) numbers exactly \(\log_2 n \) times

\[O(n) \]
\[O(n \log n) \]
Merge Sort
Analysis

Split

\(n - 1 \) splits
(\(\log_2 n \) levels of splitting)

Merge

We have to merge \(n \) numbers exactly \(\log_2 n \) times

\(O(n) \)

\(O(n \log n) \)
Analysis:

- Merge sort splits the array into equal-sized partitions halving at each level ⇒ $\log_2 n$ levels
- The same operations happen at every recursive level
- Each ‘level’ requires $\leq n$ comparisons

Therefore:

- The time complexity of merge sort is $O(n \log n)$
 - Best-case, average-case, and worst-case time complexities are all the same
Note: Not required knowledge in COMP2521!

Let $T(n)$ be the time taken to sort n elements.

Splitting arrays into two halves takes constant time. Merging two sorted arrays takes n steps.

So we have that:

$$T(n) = 2T(n/2) + n$$

Then the Master Theorem (see COMP3121) can be used to show that the time complexity is $O(n \log n)$.
Stable
Due to taking from left subarray if items are equal during merge

Non-adaptive
$O(n \log n)$ best case, average case, worst case

Not in-place
Merge uses a temporary array of size up to n
Note: Merge sort also uses $O(\log n)$ stack space
It is possible to apply merge sort on linked lists.

merge(a, b)

result
An approach that works non-recursively!

- on each pass, our array contains sorted runs of length m.
- initially, n sorted runs of length 1.
- The first pass merges adjacent elements into runs of length 2.
- The second pass merges adjacent elements into runs of length 4.
- ... continue until we have a single sorted run of length n.

Can be used for external sorting; e.g., sorting disk-file contents
Bottom-Up Merge Sort

Example

Original: ASORTINGEXEMPLAR

After 1st pass:
- Sorted slices of length 2:
 - ASORITGNEXEMPLAR

After 2nd pass:
- Sorted slices of length 4:
 - AORSGINTEEMXALPR

After 3rd pass:
- Sorted slices of length 8:
 - AGINORSTAEELMMPRX

After 4th pass:
- Sorted slice of length 16:
 - AAEEGILMNOPRRSTTX
```c
#define MIN(a, b) ((a) < (b) ? (a) : (b))

void mergeSortBottomUp(Item items[], int lo, int hi) {
    for (int m = 1; m <= lo - hi; m *= 2) {
        for (int i = lo; i <= hi - m; i += 2 * m) {
            int end = MIN(i + 2 * m - 1, hi);
            merge(items, i, i + m - 1, end);
        }
    }
}
```
https://forms.office.com/r/aPF09YHZ3X
Appendix
Merge Sort Demo (I)
Merge Sort

Demo (I)
Merge Sort Demo (I)
Merge Sort Demo (II)

4 1 7 3 8 6 5 2
Merge Sort Demo (II)
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up
Appendix
Merge Sort Demo

Merge Sort Demo (II)
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up
Appendix

Merge Sort Demo

Merge Sort Demo (II)
Merge Sort Demo (II)

Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up
Appendix
Merge Sort Demo

Diagram of Merge Sort process.
Merge Sort Demo (II)

Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up
Appendix

Merge Sort Demo

4 1 7 3 8 6 5 2

1 4 3 7
Merge Sort Demo (II)

Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up
Appendix
Merge Sort Demo

4 1 7 3
8 6
5 2

1 4 3 7

1 4 3 7
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up
Appendix
Merge Sort Demo
Merge Sort Demo (II)

Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up
Appendix
Merge Sort Demo
Merge Sort
Demo (II)

Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up
Appendix

Merge Sort Demo
Merge Sort Demo (II)
Merge Sort Demo (II)
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up
Appendix
Merge Sort Demo

Merge Sort Demo (II)
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up
Appendix
Merge Sort Demo

Merge Sort Demo (II)
Merge Sort Demo (II)
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up
Appendix
Merge Sort Demo

Merge Sort Demo (II)
Merge Sort Demo (II)

4 1 7 3

8 6

5 2

1 4 3 7

6 8 2 5

1 3 4 7

2
Merge Sort Demo (II)
Merge Sort Demo (II)
Merge Sort Demo (II)
Merge Sort
Demo (II)

Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up
Appendix
Merge Sort Demo

Diagram showing the process of Merge Sort with two lists being merged and sorted.
Merge Sort Demo (II)

Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up
Appendix
Merge Sort Demo

1 2 3 4 5 6 7 8

4 1
7 3
8 6
5 2

1 4
3 7
6 8
2 5

1 3 4 7
2 5 6 8
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up
Appendix
Merge Sort Demo (II)

Merge Sort Demo

1 4 7 3 8 6 5 2

1 4 3 7 6 8 2 5

1 3 4 7 2 5 6 8

1 2 3 4 5 6
Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up
Appendix
Merge Sort Demo
Demo (II)

Merge Sort

Demo (II)

4 1 7 3
8 6
5 2

1 4 3 7
6 8 2 5

1 3 4 7
2 5 6 8

1 2 3 4 5 6 7
Merge Sort Demo (II)

Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up
Appendix
Merge Sort Demo
Merge Sort Demo (II)

Method
Splitting
Merging
Implementation
Analysis
Properties
Sorting Lists
Bottom-Up
Appendix
Merge Sort Demo

Initial Array:

4 1 7 3 8 6 5 2

Steps:

1 4 3 7

6 8 2 5

1 3 4 7

2 5 6 8

1 2 3 4 5 6 7 8