
COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis

Binary Search

Exercise

COMP2521 23T3
Analysis of Algorithms

Kevin Luxa
cs2521@cse.unsw.edu.au



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis

Binary Search

Exercise

Motivation

• Program runtime is critical for many applications:
• Finance, robotics, games, database systems, ...

• We may want to compare programs to decide which one to use
• We may want to determine whether a program will be ”fast enough”



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis

Binary Search

Exercise

Program Efficiency

What determines how fast a program runs?
• The operating system?
• Compilers?
• Hardware?

• E.g., CPU, GPU, cache
• Load on the machine?
• Most important: the data structures and algorithms used



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis

Binary Search

Exercise

Algorithm Efficiency

• The running time of an algorithm tends to be a function of input size
• Typically: larger input⇒ longer running time

• Small inputs: fast running time , regardless of algorithm
• Larger inputs: slower, but how much slower?



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis

Binary Search

Exercise

What to Analyse?

• Best-case performance
• Not very useful
• Usually only occurs for specific types of input

• Average-case performance
• Difficult; need to know how the program is used

• Worst-case performance
• Most important; determines how long the program could possibly run



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis

Binary Search

Exercise

How to Analyse?

Efficiency of an algorithm can be investigated in two ways:
• Empirically: Measuring the time that a program implementing the
algorithm takes to run

• Theoretically: Counting the number of basic operations performed by
the algorithm as a function of input size



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis
Measuring runtime
Demonstration
Limitations

Theoretical
Analysis

Binary Search

Exercise

Empirical Analysis

1 Write a program that implements the algorithm
2 Run the program with inputs of varying size and composition
3 Measure the runtime
4 Plot the results



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis
Measuring runtime
Demonstration
Limitations

Theoretical
Analysis

Binary Search

Exercise

Empirical Analysis
How to Measure Running Time

We can measure running time of a program using the time command.

The time command produces three times:
• real: total elapsed time
• user: CPU time spent executing program code
• sys: CPU time spent by the operating system on behalf of the program

• e.g., opening a file

Example:

$ time ./prog
real 0m0.440s
user 0m0.380s
sys 0m0.000s



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis
Measuring runtime
Demonstration
Limitations

Theoretical
Analysis

Binary Search

Exercise

Timing Execution

Absolute times will differ
between machines, between languages
…so we’re not interested in absolute time.

We are interested in the relative change
as the input size increases



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis
Measuring runtime
Demonstration
Limitations

Theoretical
Analysis

Binary Search

Exercise

Empirical Analysis

Let’s empirically analyse the following search algorithm:

// Returns the index of the given key in the array if it exists,
// or -1 otherwise
int linearSearch(int arr[], int size, int key) {

for (int i = 0; i < size; i++) {
if (arr[i] == key) {

return i;
}

}
return -1;

}



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis
Measuring runtime
Demonstration
Limitations

Theoretical
Analysis

Binary Search

Exercise

Empirical Analysis

Sample results:

Input Size Runtime
1,000,000 0.005
10,000,000 0.028

100,000,000 0.246
1,000,000,000 2.437

Conclusion: The worst-case runtime of linear search appears to grow linearly
as input size increases.



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis
Measuring runtime
Demonstration
Limitations

Theoretical
Analysis

Binary Search

Exercise

Limitations of Empirical Analysis

• Requires implementation of algorithm, which may be difficult
• Different choice of input data⇒ different results

• Choosing good inputs is extremely important
• Timing results affected by runtime environment

• E.g., load on the machine
• In order to compare two algorithms...

• Need ”comparable” implementation of each algorithm
• Must use same inputs, same hardware, same O/S, same load



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Estimating running
times
Big-Oh notation
Time complexity

Binary Search

Exercise

Theoretical Analysis

• Uses high-level description of algorithm (pseudocode)
• Can use the code if it is implemented already

• Characterises runtime as a function of input size
• Takes into account all possible inputs
• Allows us to evaluate the efficiency of the algorithm

• Independent of the hardware/software environment



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Estimating running
times
Big-Oh notation
Time complexity

Binary Search

Exercise

Pseudocode

• Pseudocode is a plain language description of the steps in an algorithm
• Uses structural conventions of a regular programming language

• if statements, loops
• Omits language-specific details

• variable declarations



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Estimating running
times
Big-Oh notation
Time complexity

Binary Search

Exercise

Pseudocode

Pseudocode for linear search:

linearSearch(A, key):
Input: array A of n integers
Output: index of key in A if it exists, otherwise -1

for i from 0 up to n - 1 do
if A[i] = key then

return i
end if

end for

return -1



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Estimating running
times
Big-Oh notation
Time complexity

Binary Search

Exercise

Primitive Operations

Every algorithm uses a core set of basic operations.

Examples:
• Assignment
• Indexing into an array
• Calling/returning from a function
• Evaluating an expression
• Increment/decrement

We call these operations primitive operations.

Assume that primitive operations take the same constant amount of time.



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Estimating running
times
Big-Oh notation
Time complexity

Binary Search

Exercise

Counting Primitive Operations

By inspecting the pseudocode, we can determine the maximum number of
primitive operations executed by an algorithm as a function of the input size.

linearSearch(A, key):
Input: array A of n integers
Output: index of key in A if it exists, otherwise -1

for i from 0 up to n - 1 do 1 + (n + 1) + n
if A[i] = key then 2n

return i
end if

end for

return -1 1
------
4n + 3

Note: Assuming that the for loop is implemented as
for (int i = 0; i < n; i++)
There is 1 assignment, n increments, and (n + 1) checks of the condition.



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Estimating running
times
Big-Oh notation
Time complexity

Binary Search

Exercise

Estimating Running Times

Linear search requires 4n + 3 primitive operations in the worst case

If the time taken by a primitive operation is c, then the worst-case running
time of linear search is c(4n + 3).

Hence, the worst-case running time of linear search is linear in n.



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Estimating running
times
Big-Oh notation
Time complexity

Binary Search

Exercise

Estimating Running Times
Lower-Order Terms

We are interested in how the running time of the algorithm changes as the
input size is scaled:
• E.g., if we double the input size, how does the running time change?

As the input size increases, lower-order terms become less significant.
• For example, suppose the running time of an algorithm is 4n + 3.
• As n increases, the lower-order term (i.e., 3) becomes less significant (i.e.,
becomes a smaller proportion of the running time)



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Estimating running
times
Big-Oh notation
Time complexity

Binary Search

Exercise

Estimating Running Times
Constant Factors

Growth rate is not affected by constant factors.

Example: Suppose the running time T(n) of an algorithm is n2.
• What happens when we double the input size?

T(2n) = (2n)2

= 4n2

= 4T(n)

When we double the input size, the running time quadruples.



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Estimating running
times
Big-Oh notation
Time complexity

Binary Search

Exercise

Estimating Running Times
Constant Factors

Example: Now suppose the running time T(n) of an algorithm is 10n2.
• Now what happens when we double the input size?

T(2n) = 10× (2n)2

= 10× 4n2

= 4× 10n2

= 4T(n)

When we double the input size, the running time also quadruples!



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Estimating running
times
Big-Oh notation
Time complexity

Binary Search

Exercise

Estimating Running Times

To summarise:
• Lower-order terms become insignificant as n increases
• Growth rate is unaffected by constant factors

This means we can ignore lower-order terms and constant factors when
characterising the growth rate of the running time of an algorithm.

Examples:
• If T(n) = 100n + 500, ignoring lower-order terms and constant factors
gives n

• If T(n) = 5n2 + 2n + 3, ignoring lower-order terms and constant factors
gives n2



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Estimating running
times
Big-Oh notation
Time complexity

Binary Search

Exercise

Estimating Running Times

This also means that for sufficiently large inputs, the algorithm that has the
running time with the highest-order term will always take longer.



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Estimating running
times
Big-Oh notation
Time complexity

Binary Search

Exercise

Estimating Running Times

Discarding lower-order terms and constant factors...
• Allows us to easily compare the efficiency of algorithms

• For example, if after discarding lower-order terms and constant factors,
algorithm A has a running time of n and algorithm B has a running time of
n2, then we can say that for sufficiently large inputs, algorithm A will
perform better.



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Estimating running
times
Big-Oh notation
Time complexity

Binary Search

Exercise

Estimating Running Times

Since growth rate is not affected by constant factors, instead of counting
primitive operations, we can simply count line executions.

This is because each line of code contains only a constant number of
primitive operations.

linearSearch(A, key):
Input: array A of n integers
Output: index of key in A if it exists, otherwise -1

for i from 0 up to n - 1 do n
if A[i] = key then n

return i
end if

end for

return -1 1
------
2n + 1



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Estimating running
times
Big-Oh notation
Time complexity

Binary Search

Exercise

Big-Oh Notation

Big-Oh is a notation used to describe the asymptotic relationship between
functions.

Formally:
Given functions f (n) and g(n), we say that f (n) is O(g(n)) if:
• There are positive constants c and n0 such that:

• f (n) ≤ c · g(n) for all n ≥ n0

Informally:
Given functions f (n) and g(n), we say that f (n) is O(g(n)) if for sufficiently
large n, f (n) is bounded above by some multiple of g(n).



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Estimating running
times
Big-Oh notation
Time complexity

Binary Search

Exercise

Big-Oh Notation
Example 1



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Estimating running
times
Big-Oh notation
Time complexity

Binary Search

Exercise

Big-Oh Notation
Example 2

Consider the functions f (n) = 2n + 10 and g(n) = n.
We want to show that f (n) is O(g(n)), i.e., that 2n + 10 is O(n).

We need to find some c such
that for sufficiently large n,
2n + 10 ≤ c · n.

Yes! For c = 3, 2n + 10 ≤ 3n
when n ≥ 10.



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Estimating running
times
Big-Oh notation
Time complexity

Binary Search

Exercise

Big-Oh Notation
Example 3

Consider the functions f (n) = n2 and g(n) = n.
We want to show that f (n) is O(g(n)), i.e., that n2 is O(n).

We need to find some c such
that for sufficiently large n,
n2 ≤ c · n.

Impossible!



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Estimating running
times
Big-Oh notation
Time complexity

Binary Search

Exercise

Time Complexity

Time complexity is the amount of time taken by an algorithm to run, as a
function of the input.

In this course, we usually express time complexity using big-Oh notation. For
example, linear search is O(n) in the worst case.



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Estimating running
times
Big-Oh notation
Time complexity

Binary Search

Exercise

Time Complexity

To determine the worst-case time complexity of an algorithm:
• Determine the number of primitive operations/line executions
performed in the worst case in terms of the input size

• Discard lower-order terms and constant factors
• The worst-case time complexity is then the big-Oh of the term that
remains



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Estimating running
times
Big-Oh notation
Time complexity

Binary Search

Exercise

Common Functions

Commonly encountered functions in algorithm analysis:
• Constant: 1
• Logarithmic: log n
• Linear: n
• N-Log-N: n log n
• Quadratic: n2

• Cubic: n3

• Exponential: 2n

• Factorial: n!



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Estimating running
times
Big-Oh notation
Time complexity

Binary Search

Exercise

Common Functions



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis
Pseudocode
Primitive operations
Estimating running
times
Big-Oh notation
Time complexity

Binary Search

Exercise

Relatives of Big-Oh
All The Mathematics!

f (n) is O(g(n))
if f (n) is asymptotically less than or equal to g(n)

f (n) is Ω(g(n))
if f (n) is asymptotically greater than or equal to g(n)

f (n) is Θ(g(n))
if f (n) is asymptotically equal to g(n)

Given f (n) and g(n), we say f (n) isO(g(n))
if we have positive constants c and n0 such that

∀n ≥ n0, f (n) ≤ c · g(n)



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis

Binary Search

Exercise

Back to Linear Search

Linear search requires 4n + 3 primitive operations in the worst case.

Therefore, linear search is O(n) in the worst case.



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis

Binary Search

Exercise

Searching in a Sorted Array

Is there a faster algorithm for searching an array?

Yes... if the array is sorted.

Let’s start in the middle.
• If key == a[N/2], we found key; we’re done!
• Otherwise, we split the array:
… if key < a[N/2], we search the left half (a[0] to a[(N/2)− 1)])
… if key > a[N/2], we search the right half (a[(N/2) + 1)] to a[N − 1])



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis

Binary Search

Exercise

Binary Search

Binary search is a more efficient search algorithm for sorted arrays:

int binarySearch(int arr[], int size, int key) {
int lo = 0;
int hi = size - 1;

while (lo <= hi) {
int mid = (lo + hi) / 2;

if (key < arr[mid]) {
hi = mid - 1;

} else if (key > arr[mid]) {
lo = mid + 1;

} else {
return mid;

}
}
return -1;

}



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis

Binary Search

Exercise

Binary Search
Successful search for 6:

[0]
2

[1]
3

[2]
5

[3]
6

[4]
8

[5]
9

[0]
2

[1]
3

[2]
5

[3]
6

[4]
8

[5]
9

[0]
2

[1]
3

[2]
5

[3]
6

[4]
8

[5]
9

5 < 6

8 > 6

lo mid hi

lo mid hi

lo
mid
hi



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis

Binary Search

Exercise

Binary Search
Unsuccessful search for 7:

[0]
2

[1]
3

[2]
5

[3]
6

[4]
8

[5]
9

[0]
2

[1]
3

[2]
5

[3]
6

[4]
8

[5]
9

[0]
2

[1]
3

[2]
5

[3]
6

[4]
8

[5]
9

[0]
2

[1]
3

[2]
5

[3]
6

[4]
8

[5]
9

5 < 7

8 > 7

6 < 7

lo mid hi

lo mid hi

lo
mid
hi

lohi



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis

Binary Search

Exercise

Binary Search
Analysis

How many iterations of the loop?
• Best case: 1 iteration

• Item is found right away
• Worst case: log2 n iterations

• Item does not exist
• Every iteration, the size of the subarray being searched is halved

Thus, binary search is O(log2 n) or simply O(log n)



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis

Binary Search

Exercise

Predicting Time

If I know my algorithm is quadratic (i.e., O(n2)),
and I know that for a dataset of 1000 items,
it takes 1.2 seconds to run …
• how long for 2000?

4.8 seconds

• how long for 10,000?

120 seconds (2 mins)

• how long for 100,000?

12000 seconds (3.3 hours)

• how long for 1,000,000?

1200000 seconds (13.9 days)



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis

Binary Search

Exercise

Predicting Time

If I know my algorithm is quadratic (i.e., O(n2)),
and I know that for a dataset of 1000 items,
it takes 1.2 seconds to run …
• how long for 2000? 4.8 seconds
• how long for 10,000?

120 seconds (2 mins)

• how long for 100,000?

12000 seconds (3.3 hours)

• how long for 1,000,000?

1200000 seconds (13.9 days)



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis

Binary Search

Exercise

Predicting Time

If I know my algorithm is quadratic (i.e., O(n2)),
and I know that for a dataset of 1000 items,
it takes 1.2 seconds to run …
• how long for 2000? 4.8 seconds
• how long for 10,000? 120 seconds (2 mins)
• how long for 100,000?

12000 seconds (3.3 hours)

• how long for 1,000,000?

1200000 seconds (13.9 days)



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis

Binary Search

Exercise

Predicting Time

If I know my algorithm is quadratic (i.e., O(n2)),
and I know that for a dataset of 1000 items,
it takes 1.2 seconds to run …
• how long for 2000? 4.8 seconds
• how long for 10,000? 120 seconds (2 mins)
• how long for 100,000? 12000 seconds (3.3 hours)
• how long for 1,000,000?

1200000 seconds (13.9 days)



COMP2521
23T3

Motivation

Efficiency

Empirical
Analysis

Theoretical
Analysis

Binary Search

Exercise

Predicting Time

If I know my algorithm is quadratic (i.e., O(n2)),
and I know that for a dataset of 1000 items,
it takes 1.2 seconds to run …
• how long for 2000? 4.8 seconds
• how long for 10,000? 120 seconds (2 mins)
• how long for 100,000? 12000 seconds (3.3 hours)
• how long for 1,000,000? 1200000 seconds (13.9 days)


	Motivation
	Efficiency
	Empirical Analysis
	Measuring runtime
	Demonstration
	Limitations

	Theoretical Analysis
	Pseudocode
	Primitive operations
	Estimating running times
	Big-Oh notation
	Time complexity

	Binary Search
	Exercise

