
COMP2521
Data Structures & Algorithms

Week 2.2
Abstract Data Types (ADTs)

1

In this lecture

Why?

ADTs are a fundamental concept of writing robust
software, and of being able to work with other people

What?

ADT definition
ADT usage
ADT implementation

 Set ADTs
array
sorted array
linked list

2

ADTs

Data type:
Set of values (atomic or structured)
Collection of operations on those values

What is a data type?

int
set of value(s): an integer
operations: addition, subtraction, multiplication, etc.

array:
set of values(s): a repeat of any data type (e.g. int)
operations: index lookup, index assignment, etc.

3

Abstraction

Abstraction: Hiding details of a how a system is built in
favour of focusing on the high level behaviours, or inputs
and outputs, of the system

Examples?
C abstracts away assembly/MIPS code.
Python abstract away pointer arithmetic and memory
allocation.
Web browsers abstract away the underlying hardware
that they're run on.

4

Abstract Data Type

ADT is a description of a data type that focuses on it's high level
behaviour, without regard for how it is implemented underneath.

This means:

There is a separation of interface from implementations
Users of the ADT see only the interface
Builds of the ADT provide an implementation
Both parties need to agree on the ADTs interface
Interface allows people to agree at the start, and work
separately.

5

Programming by Contract

When we define our interface, we also need to include
information about:

Pre-conditions: What conditions hold at the start of the
function call
Post-conditions: What conditions will hold at the end of
the function

Add them via comments
Can sanity check with asserts

6

Abstract Data Type

Step 1: Determine the interface of your ADT in a .h file
Step 2: The "developer" builds a concrete implementation for
the adt in a .c file
Step 3: The "user" uses the abstract data type in their program

They have to compile with it, even though they might not
understand how it is built underneath

7

Set data type: collection of unique
integer values.

What will we figure out first?
What behaviour does this ADT
need? (interface)
How are we going to code for it?
(implementation)

Set ADTs (Step 1)

8

create an empty collection
insert one item into the collection
remove one item from the collection
find an item in the collection
check the size of the collection
drop the entire collection
display the collection
check if unions or intersects with another set

Set ADTs (Step 1)

Let's brainstorm the behaviour of the "Set" ADT!

9

Now we start to write this as C code!
Notice that we aren't implementing anything yet?

Set ADTs (Step 1)

Set SetCreate() // create a new set
void SetInsert(Set, int) // add number into set
void SetDelete(Set, int) // remove number from set
int SetMember(Set, int) // set membership test
int SetCard(Set) // size of set
Set SetUnion(Set, Set) // union
Set SetIntersect(Set, Set) // intersection
void SetDestroy(Set) // destroy a created set

1
2
3
4
5
6
7
8

10

Set ADTs (Step 1)

#ifndef SET_H
#define SET_H

#include <stdio.h>
#include <stdbool.h>

typedef struct SetRep *Set;

// ADT functions go here

#endif

1
2
3
4
5
6
7
8
9

10
11

Three key principles of ADTs in C:
When we write .h files, we use header
guards to prevent re-definition
The "Set" (or equivalent) is usually a
pointer of some sort
That pointer is usually the first argument
in every ADT function

Notice how we haven't defined "struct
SetRep"? That's not our job. Set.h

11

Set ADTs (Step 1)
// Set.h ... interface to Set ADT

#ifndef SET_H
#define SET_H

#include <stdio.h>
#include <stdbool.h>

typedef struct SetRep *Set;

Set SetCreate(); // create new empty set
void SetDestroy(Set); // free memory used by set
void SetInsert(Set,int); // add value into set
void SetDelete(Set,int); // remove value from set
bool SetMember(Set,int); // set membership
Set SetUnion(Set,Set); // union
Set SetIntersect(Set,Set); // intersection
int SetCard(Set); // cardinality

// others
Set SetCopy(Set); // make a copy of a set
void ShowSet(Set); // display set on stdout

#endif

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Completed Set.h

But what's missing?

Programming by
contract

12

Pre and post conditions (i.e., comments) now added.
Helps both developers and users manage expectations

Set ADTs (Step 1)

// create new empty set
// pre:
// post: Valid set returned, set is empty
Set SetCreate();

// add value into set
// pre: Valid set provided
// post: New element "n" is now in set s
void SetInsert(Set s, int n);

// pre: Valid set provided for s1 and s2
// post: ∀ n ∈ res, n ∈ s1 or n ∈ s2
Set SetUnion(Set s1, Set s2);

// cardinality
// pre: Valid set provided for s
// post: Response is the number of elements in the set
int SetCard(Set s);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

13

Set Usage (Step 3)

How do we actually work with a set though?
We write our "main" file, and compile it with the set library that
the ADT developer has implemented.
While we need their .c file to build with, we never need to look
at it or make sense of it, because we have the ADT (i.e., .h file)
In fact, we could even just work with the .o file!

my_set.c

Set.c

my_set.o

Set.o

./my_setSet.h

14

Set Usage (Step 3)

#include "Set.h"

#include <stdio.h>

int main() {
 Set s = SetCreate();
 // Could use Scanf instaed
 for (int i = 1; i < 26; i += 2) {
 SetInsert(s,i);
 }
 SetShow(s);
 printf("\n");
}

1
2
3
4
5
6
7
8
9
10
11
12
13

testSet1.c

15

It's time to implement the set! The "user" of our set doesn't
need to worry about this.

We will implement 3 different types of sets:

1. That uses an unsorted array
2. That uses a sorted array
3. That uses a linked list

Set Implementation (Step 2)

16

Set Implementation (unsorted array)

#define MAX_ELEMS 10000

// concrete data structure
struct SetRep {
 int elems[MAX_ELEMS];
 int nelems;
};

Set SetCreate(int) { ... }
void SetInsert(Set, int) { ... }
void SetDelete(Set, int) { ... }
int SetMember(Set, int) { ... }
int SetCard(Set) { ... }
Set SetUnion(Set, Set) { ... }
Set SetIntersect(Set, Set) { ... }
void SetDestroy(Set) { ... }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Set-array.c

We can represent this set using an array (unsorted).
This means we do have to do upper and lower bounds checks because
there will be a theoretical limit on the size of the set.

17

A sample of the implemented set

Set Implementation (unsorted array)

// create new empty set
Set SetCreate()
{
 Set s = malloc(sizeof(struct SetRep));
 if (s == NULL) {
 fprintf(stderr, "Insufficient memory\n");
 exit(1);
 }
 s->nelems = 0;
 // assert(isValid(s));
 return s;
}

// set membership test
int SetMember(Set s, int n)
{
 // assert(isValid(s));
 int i;
 for (i = 0; i < s->nelems; i++) {
 if (s->elems[i] == n) {
 return TRUE;
 }
 }
 return FALSE;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

18

Set Implementation (unsorted array)

Data Structure insert
(time)

delete
(time)

member
(time)

union or intersection
(time)

storage
(space)

unsorted array O(n) O(n) O(n) O(n * m) O(E)

Let's look at the time and space complexities:
n: Number of elements in the set
m: Number of elements in another set
E: Maximum number of items able to be in set

19

Same data structure as for unsorted array.
Differences:

membership test -> can use binary search
insertion -> binary search and then shift up and insert
deletion -> binary search and then shift down

Set Implementation (sorted array)

20

Set Implementation (sorted array)

Data Structure insert
(time)

delete
(time)

member
(time)

union or
intersection
(time)

storage
(space)

unsorted array O(n) O(n) O(n) O(n * m) O(E)
sorted array O(log(n) +n)

=O(n)
O(log(n) +n)
=O(n)

O(log(n)) O(n * m) O(E)

21

Set Implementation (linked list)

typedef struct Node {
 int value;
 struct Node *next;
} Node;

struct SetRep {
 Node *elems; // pointer to first node
 int nelems; // number of nodes
};

Set SetCreate() { ... }
void SetInsert(Set, int) { ... }
void SetDelete(Set, int) { ... }
int SetMember(Set, int) { ... }
int SetCard(Set) { ... }
Set SetUnion(Set, Set) { ... }
Set SetIntersect(Set, Set) { ... }
void SetDestroy(Set) { ... }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Set-list.c
22

Set Implementation (linked list)

// create new empty set
Set newSet()
{
 Set s = malloc(sizeof(struct SetRep));
 if (s == NULL) {...}
 s->nelems = 0;
 s->elems = s->last = NULL;
 return s;
}

// set membership test
int SetMember(Set s, int n)
{
 // assert(isValid(s));
 Node *cur = s->elems;
 while (cur != NULL) {
 if (cur->value == n) return true;
 cur = cur->next;
 }
 return false;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

23

Set Implementation (linked list)

Data Structure insert
(time)

delete
(time)

member
(time)

union or
intersection
(time)

storage
(space)

unsorted array O(n) O(n) O(n) O(n * m) O(E)
sorted array O(log(n) + n)

=O(n)
O(log(n) + n)
=O(n)

O(log(n))
=O(n)

O(n * m) O(E)

unsorted linked list O(n + 1)
=O(n)

O(n + 1)
=O(n)

O(n) O(n * m) O(n)

sorted linked list O(n + 1)
=O(n)

O(n + 1)
=O(n)

O(n) O(n * m) O(n)

24

Direct access - issues?

What happens if we try to access elements of the
implementation directly?
We might receive a "dereferencing pointer to
incomplete type" error

25

ADT Summary

ADT interface:
A user-view of the data structure
Functions for all operations
Explanations of those operations
Any guarantees it provides ("Contract")

ADT implementation:
Concrete definition of the data structures

List, tree, graph, array, etc.
Definition of functions that operate on the data
structure

26

Why abstract the data structure?
Allows future iterations to remove or upgrade a data
structure
Allows things like lists to actually have more intelligent
implementations underneath

ADT Summary

27

