Microservice Architecture

These lecture slides are from the book "Head First Software Architecture", by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

Introduction to Microservices

- ❖ Microservices are single-purpose, independently deployed units.
- ❖ Ideal for environments requiring frequent changes and scalability.

Examples:

- Netflix's streaming services
- Amazon's product catalogue.

Defining Microservices

❖ Performs one specific function exceptionally well.

Examples:

- Dedicated microservice like "Monitor Heart Rate."
- o "Authenticate User" service, "Generate Invoice" service.
- "User Profile Management" service.
- "Shopping Cart" service.
- "Notification and Alert" service.
- "Recommendation Engine" service (e.g., Netflix recommendations).

This is quite a small service because it only performs a single function—let's call it a "micro"—service.

Exercise: Define Microservices

Identify single-purpose microservices below:

- ☐ Add a movie to your personal "to watch" list
- Pay for an order using your credit card
- ☐ Generate sales-forecasting and financial-performance reports
- ☐ Submit and process a loan application to get that new car you've always wanted
- ☐ Determining the shipping cost for an online order

Key Characteristics of Microservices

- Own their own data (Physical bounded contexts).
- Direct data access restricted to owning microservice.

Examples:

- Order service maintains its own order history database.
- Inventory service owns and manages product availability data.
- Payment service manages transaction records independently.
- User Authentication service securely stores user credentials separately.

Determining Granularity

- Granularity: The scope of a microservice's responsibility.
- Avoid too fine-grained ("Grains of Sand" antipattern).

Examples:

- Single microservice handling payment transactions.
- A microservice dedicated to shipping and tracking orders.
- Product review and rating as a distinct service separate from product information.
- User notification service isolated from user profile management

Granularity Disintegrators

(Reasons to Make Services Smaller)

Cohesion: Functions within a service should be closely related.

Payment processing separate from user authentication.

Fault Tolerance: Separating unstable functions for better reliability.

Isolating an unstable email notification service.

Access Control: Easier management of sensitive data.

Isolating financial data access.

Code Volatility: Isolating frequently changing parts.

User interface components separated from stable backend logic.

Scalability: Independent scaling for high-demand components.

High-traffic "search" feature isolated for scaling.

Granularity Integrators

(Reasons to Make Services Larger)

- Database Transactions: Easier to manage single commit/rollback operations.
 - Order creation and inventory deduction in one service.
- ❖ Data Dependencies: Maintain tightly coupled data together.
 - User profiles and preferences managed together.
- Workflow Efficiency: Reduce excessive inter-service communication.
 - Checkout service combining cart, pricing, and payment functionalities.

It's about a right balance!

Sharing Functionality

- Shared Services: Standalone microservices accessed remotely.
 - Authentication service used by multiple microservices.
 - Shared alert functionality in *MonitorMe* medical alerts

Sharing Functionality

- Shared Libraries: Embedded at compile-time, deployed with each service.
 - Logging and error handling libraries.

Shared Services vs. Shared Libraries

- Services: Agile, suitable for diverse environments, slower, less fault-tolerant.
 - Central user authentication service.

- Libraries: Faster, scalable, robust, but challenging dependency management.
 - JSON parsing libraries used across multiple microservices.

Exercise

Should the alert functionality in *MonitorMe* be a shared library or a shared service?

Justify your decision.

Option 1: Shared service Option 2: Shared library Monitor Blood Monitor Blood Monitor Pressure Pressure Temperature **Blood Pressure Blood Pressure** Temperature Alert Staff Alert Alert Alert Monitor Temperature Something's wrong with the patient! Temperature

UNSW

Workflow Management: Orchestration

- Central orchestration manages workflow, akin to a symphony conductor.
 - Pros: Centralized management, clear state/error handling.
 - Cons: Bottlenecks, high coupling, performance concerns.

Example:

 Centralised order processing orchestrating payment, inventory, and shipment services.

Workflow Management: Choreography

- Peer-to-peer service communication, like coordinated dance.
 - Pros: Scalable, loosely coupled, high responsiveness.
 - Cons: Complex error and state management.

Example:

 Event-driven updates between cart, inventory, and shipping services in an ecommerce site.

Exercise

Advantages of Microservices

- Maintainability, Testability, Deployability, Evolvability.
- Exceptional scalability and fault tolerance.

- **Examples:**
 - Continuous deployment at Spotify
 - Scalable services at Netflix

Limitations of Microservices

- Complexity, especially in workflow management.
- Performance issues due to inter-service communications.

Example:

 Increased latency in highly interactive systems like gaming or real-time analytics platforms.

Balancing Microservices Architecture

- Decision criteria:
 - Business agility
 - Complexity handling
 - Team structure
- Optimal balance between granular control and practical maintainability.
- ***** Example:
 - Amazon's product catalog services balancing granularity and maintainability.

Case Study - StayHealthy MonitorMe

- Successful real-world implementation of microservices.
- Insights: Balance granularity, effectively manage shared resources.
- Continuous focus on agility and operational stability.

Example:

Reliable and scalable health monitoring system for critical patient data.

Microservices Star Ratings

Exercise

Which of the following systems might be well suited for the microservices architectural style, and why?

An online auction system where users can bid on items Why? High scalability and elasticity needs; high	✓ Well suited for microservices✓ Might be a fit for microservices
concurrency; independent functions	Not well suited for microservices
A large backend financial system for processing and settling international wire transfers overnight Why? Microservices' superpowers aren't needed in this kind of complex system	 Well suited for microservices Might be a fit for microservices Not well suited for microservices
A company entering a new line of business that expects constant changes to its system Why? High agility and evolvability mean microservices could fit, but we need more info	 ☐ Well suited for microservices ☐ Might be a fit for microservices ☐ Not well suited for microservices
A small bakery that wants to start taking online orders Why? The high cost and complexity of microservices would be too much for a small bakery	 ☐ Well suited for microservices ☐ Might be a fit for microservices ☐ Not well suited for microservices
A trouble ticket system for electronics purchased with a support plan, in which field technicians come to customers to fix problems Why? Independent functions; good scalability and elasticity; simple workflows	

Summary

- Microservices offer high flexibility but involve significant complexity.
- * Requires crucial granularity and communication decisions.
- Evaluate and manage trade-offs carefully.

Example:

Transitioning from monoliths to microservices at Uber.