Modular
Monoliths
Architecture

COMP2511, CSE, UNSW

These lecture slides are from the books:

o “Head First Software Architecture”, by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

o “Fundamentals of Software Architecture”, 2nd Edition, by Mark Richards, Neal Ford

Introduction to Modular Monoliths

*» Definition: A monolithic architecture organized by domain, not technical layers.

**» Goal: Align code and teams around business capabilities.
*» Key Trait: Deployed as a single unit, with domain-based modular structure

M ar mon /
:(IO}T:O']; ;)nooll:{{:l(/ K(]J\,)\fi {,hr}h OV'qahl}',U\g ‘
deployment model. “| _ Order Inventory e sppileation By
I/ naeeme"f‘l {Ma"ageme"f-l 7;/tv(.f.hm<‘vdl (‘von'(‘,(‘v ns,
q— we organize them by
bumr.,‘.ﬂ d main
[— Payment 7 o
Modular monoliths) ¢
>
also use a monolithie —
database ~

COMP2511: Modular Monoliths Architecture

Layered vs. Modular Monolith

*»» Layered: Organized by technical concerns (Ul,
services, DB).

» Modular: Organized by domain (Order, Payment,
Inventory).

** Problem with Layered: Changes often touch
many teams.

** Benefit of Modular: Changes are isolated within
a domain.

Modular monolith

IS FL]LO a monolithie

dcyloymcn{, model \\

...and even‘f‘,ua”\/ gets

a response.
The user makes %
5 rco\uc{sﬁ of the Re i Response
application.- / . ‘
I/ \\
/ Presentation \
Workflow
\ Persistence /
\ /
_ /
\ =
Patabase ~——
/ R&“\f,r {,han OV'gam?.mg

Order Inventory the application by

|— Placement —‘ [Management 1) /*‘“‘““"' Concerns,

we o\rt_‘)amzf “\(_m b‘/

bvﬂntﬂ‘» domain

I— Payment —I

Modular monoliths) i

also use a monolithie ——
N—

database ~— =

COMP2511: Modular Monoliths Architecture

What Is a Module?

Individual domains
make up the modules

“* Independent unit within a domain. Vel °§7°“”’*’F“§‘d°" TNy

Order Recipe Inventory
. dowmain domain domain
% Contains all business logic for its domain. - =
s)
£ | Presentation £ | Presentation S| Presentation
“* Examples: 5 g 2
¢ pies: = | Business rules S | Business rules £ | Business rules
e () t>...
o OrderPlacement module handles order lifecycle & | Kersictonce g ersistonee E [lenistencs
=
. . : : K N 7
o Recipe module contains ingredients and cooking) A

These “slices” vepresent a particular set
of business funetions within a domain.

steps
o Inventory module tracks stock levels and alerts

o UserManagement module handles user accounts

and roles

COMP2511: Modular Monoliths Architecture

Why Choose a Modular Monolith?

+ Business alignment: Modules map to subdomains

» Team ownership: Cross-functional teams per domain
» Faster changes: Changes isolated to one module

« High performance: No inter-service network latency

» Easier testing: Scoped test suites per module

COMP2511: Modular Monoliths Architecture

Code Organization in a Modular Monolith

** Single deployment
*» Separate namespaces/packages for each module

** Each module has:
o Public API

o Private internals

** Example (hamespace):
O com.naanpop.order

O Ccom.naanpop.inventory
O Ccom.naanpop.reports

COMP2511: Modular Monoliths Architecture

Managing Inter-Module Communication

** Don't: Direct calls between modules (tight coupling)
** Do: Use public APIs
** Risk: Big ball of mud from uncontrolled access

» Solution: Interface-based interaction only

Calls to any module
happen only to their
vespective APls.

Order [Recipe lnventory
domain &/ dowain dowmain
APl < > APl < > APl
Implementation Implementation Implementation
(private) (private) (private)

COMP2511: Modular Monoliths Architecture

Keeping Modules Modular

» IDE features (e.g. auto-import) can break boundaries
»* Separate folders/repositories

s Use build tools (e.g., Gradle subprojects) These avvous vepresen alls

Leom one layer in a module
1o a layer in another module.

One Second Another
¢ Use language features: T dowain - TN T dowai 7T T dowain 5
| Presentation Ll »| Presentation 4 Presentation I
. I I |
o Java: JPMS | Business rules / Business rules | Business rules I
. | Persistence 11 Persistence 11 Persistence |
o .NET: internal keyword e e e)

/& [€ left uneheeked, cath'g;iulc’s _)

tode betomes more tlosely oupled
with the other modules’ tode, and
theivr boundaries start to disappear.

COMP2511: Modular Monoliths Architecture

Modularizing the Database

** One DB per monolith, but partitioned by schema

+* Rule: Each module accesses only its own tables

** No foreign keys between modules —

[Order J [lnventory J e?’cill a modular
. monolith.
¢ Use ID references and API calls [Recipe |

We still only have one
/ database for the

modular monolith.

Eath of the lettered boxes
rc?vcscwts a sc?ara‘tc sthema

+o house the tables for eath
module. (O stands Lor Ovder,

and so on.)

COMP2511: Modular Monoliths Architecture

Avoiding Coupling in Data Access

+** Risk: JOINs across module tables reintroduce coupling

+* Solution:

| need the details
for recipe_item_id 2.

Hold on! Let
” R me look this u
et foryou.
o O
o Store IDs, not foreign keys ® e orter ke b Rete g
—— dowain module AP{’: b\/ passing dof;g)ie" —
. . . in retipe_item id.
o Retrieve info via module API = q
lmplengen’raﬁon lmplew;en’raﬁon
‘:‘ EX am p | e (private) < 7 (private)
The Retipe module
¢ vesponds wi{:h{:a l ¢
. the vetipe details .
o Order module stores RecipeltemID — order_schema —— [— recipe_schema ——
orders recipes
. id |recipe_item_id |... id |ingredients
o Calls Recipe API when needed

COMP2511: Modular Monoliths Architecture

Extending Modularity to Teams

» Align teams with subdomains (modular ownership)
» Foster domain expertise and autonomy
»* Minimize coordination overhead

» Example: Inventory team owns inventory module and tests

COMP2511: Modular Monoliths Architecture

Example — Expense Tracking App

** Requirements:

o Users add expenses
o Auditors review reports
o Audit trail for traceability

** Modules:

o ExpenseEntry
o AuditReview
o UserManagement

COMP2511: Modular Monoliths Architecture

Example — Educational LMS

** Requirements:
o Instructors upload courses
o Students enroll and complete assessments
o Admins manage roles and reports

** Modules:
CourseContent
Enrollment
AssessmentEngine
UserAdministration

O O O O

COMP2511: Modular Monoliths Architecture

Benefits of Modular Monoliths

«* Domain Partitioning: Better team alignment
» Performance: No inter-service latency

« Maintainability: Domain-local changes

» Testability: Scoped, isolated testing

% Deployability: Single unit, easier CI/CD

COMP2511: Modular Monoliths Architecture

Limitations of Modular Monoliths

** Reuse: Harder to share utilities
** One set of characteristics: No per-module customization
** Fragile modularity: Easy to break boundaries

*» Operational limits: Harder to scale or isolate faults

COMP2511: Modular Monoliths Architecture

Governance and Discipline

** Modular monoliths require:
o Discipline in access control
o Codebase enforcement (tools, practices)

o Database discipline (modular schemas)

** Governance tools help but don’t eliminate the need for vigilance

COMP2511: Modular Monoliths Architecture

When to Use Modular Monoliths

s Teams aligned to business domains
¢ Applications that must remain performant

s Systems needing easy testability and deployment

COMP2511: Modular Monoliths Architecture

Transition Path — Layered to Modular

+*» Start with layered > modularize by domain over time

¢ Introduce governance and APIs gradually

** Split database logically first, physically later

COMP2511: Modular Monoliths Architecture

Modular Monolith Advantages

’0

» Better domain alignment than layered monoliths

‘0

« Single deployment with domain modularity

’0

s Enables domain-oriented teams

L)

* Maintains runtime performance of monoliths

L)

L)

* Fewer operational headaches than microservices

L)

COMP2511: Modular Monoliths Architecture

Common Pitfalls in Modular Monoliths

2+ Bypassing module APIs (direct access)
»* Database JOINs across modules
» Overusing shared libraries (tight coupling)

** Lack of observability into module interactions

COMP2511: Modular Monoliths Architecture

Techniques for Success

** Define strong module boundaries
** Maintain minimal public API surface
** Invest in automated testing and monitoring

** Review architecture regularly for erosion

COMP2511: Modular Monoliths Architecture

These fave
better than
in the layered
arthitectuval

style.

Most monolithie ‘(:
arcthitectures per-torm
well, especially if well —>
designed.

Ovevall, more

expensive than layered
avchitectures. Modular
monoliths vequire more
?lanning, ‘Ehough{z, and

lona—term maintainante.

Modular Monolith Star Ratings

Architectural Characteristic | Star Rating
Maintainability Y% % %
Testability *x Kk &
Deployability * Kk %k
Simplicity * % % %
Evolvability * * %
Performance * %k %
Scalability) ¢
Elasticity) ¢

Fault Tolerance) ¢

Overall Cost $

SSSSSS

Exercise

Which of the following
systems might be well suited
for the modular monolith
architectural style, and why?

An online auction system where users can bid on itewms
Why?

A large backend financial system for processing and
settling international wire transfers overnight
Why?

A company entering a new line of business that
expects constant changes to its system

Why?

A swmall bakery that wants to start taking online orders
Why?

A trouble ticket system for electronics purchased
with a support plan, in which field technicians
cowme to customers to fix problems

Why?

COMP2511: Modular Monoliths Architecture

E] Well suited for modular monoliths
[] Might be a fit for modular monoliths

[] Not well suited for modular monoliths

[] Well suited for modular monoliths
[] Might be a fit for modular monoliths

[] Not well suited for modular monoliths

[] Well suited for modular monoliths
] Might be a fit for modular monoliths

] Not well suited for modular monoliths

[] Well suited for modular monoliths
[] Might be a fit for modular monoliths

[] Not well suited for modular monoliths

[] Well suited for modular monoliths
[] Might be a fit for modular monoliths

[] Not well suited for modular monoliths

