
Modular
Monoliths
Architecture

COMP2511, CSE, UNSW

These lecture slides are from the books:

o “Head First Software Architecture”, by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

o “Fundamentals of Software Architecture”, 2nd Edition, by Mark Richards, Neal Ford

COMP2511: Modular Monoliths Architecture

Introduction to Modular Monoliths

v Definition: A monolithic architecture organized by domain, not technical layers.
v Goal: Align code and teams around business capabilities.
v Key Trait: Deployed as a single unit, with domain-based modular structure

COMP2511: Modular Monoliths Architecture

Layered vs. Modular Monolith

v Layered: Organized by technical concerns (UI,
services, DB).

v Modular: Organized by domain (Order, Payment,
Inventory).

v Problem with Layered: Changes often touch
many teams.

v Benefit of Modular: Changes are isolated within
a domain.

COMP2511: Modular Monoliths Architecture

What Is a Module?

v Independent unit within a domain.

v Contains all business logic for its domain.

v Examples:

o OrderPlacement module handles order lifecycle

o Recipe module contains ingredients and cooking

steps

o Inventory module tracks stock levels and alerts

o UserManagement module handles user accounts

and roles

COMP2511: Modular Monoliths Architecture

Why Choose a Modular Monolith?

v Business alignment: Modules map to subdomains

v Team ownership: Cross-functional teams per domain

v Faster changes: Changes isolated to one module

v High performance: No inter-service network latency

v Easier testing: Scoped test suites per module

COMP2511: Modular Monoliths Architecture

Code Organization in a Modular Monolith

v Single deployment

v Separate namespaces/packages for each module

v Each module has:
o Public API
o Private internals

v Example (namespace):
o com.naanpop.order
o com.naanpop.inventory
o com.naanpop.reports

COMP2511: Modular Monoliths Architecture

Managing Inter-Module Communication
v Don't: Direct calls between modules (tight coupling)

v Do: Use public APIs

v Risk: Big ball of mud from uncontrolled access

v Solution: Interface-based interaction only

COMP2511: Modular Monoliths Architecture

Keeping Modules Modular

v IDE features (e.g. auto-import) can break boundaries

v Separate folders/repositories

v Use build tools (e.g., Gradle subprojects)

v Use language features:

o Java: JPMS

o .NET: internal keyword

COMP2511: Modular Monoliths Architecture

Modularizing the Database

v One DB per monolith, but partitioned by schema

v Rule: Each module accesses only its own tables

v No foreign keys between modules

v Use ID references and API calls

COMP2511: Modular Monoliths Architecture

Avoiding Coupling in Data Access

v Risk: JOINs across module tables reintroduce coupling

v Solution:

o Store IDs, not foreign keys

o Retrieve info via module API

v Example:

o Order module stores RecipeItemID

o Calls Recipe API when needed

COMP2511: Modular Monoliths Architecture

Extending Modularity to Teams

v Align teams with subdomains (modular ownership)

v Foster domain expertise and autonomy

v Minimize coordination overhead

v Example: Inventory team owns inventory module and tests

COMP2511: Modular Monoliths Architecture

Example – Expense Tracking App

v Requirements:
o Users add expenses
o Auditors review reports
o Audit trail for traceability

v Modules:
o ExpenseEntry
o AuditReview
o UserManagement

COMP2511: Modular Monoliths Architecture

Example – Educational LMS

v Requirements:
o Instructors upload courses
o Students enroll and complete assessments
o Admins manage roles and reports

v Modules:
o CourseContent
o Enrollment
o AssessmentEngine
o UserAdministration

COMP2511: Modular Monoliths Architecture

Benefits of Modular Monoliths

v Domain Partitioning: Better team alignment

v Performance: No inter-service latency

v Maintainability: Domain-local changes

v Testability: Scoped, isolated testing

v Deployability: Single unit, easier CI/CD

COMP2511: Modular Monoliths Architecture

Limitations of Modular Monoliths

v Reuse: Harder to share utilities

v One set of characteristics: No per-module customization

v Fragile modularity: Easy to break boundaries

v Operational limits: Harder to scale or isolate faults

COMP2511: Modular Monoliths Architecture

Governance and Discipline

v Modular monoliths require:

o Discipline in access control

o Codebase enforcement (tools, practices)

o Database discipline (modular schemas)

v Governance tools help but don’t eliminate the need for vigilance

COMP2511: Modular Monoliths Architecture

When to Use Modular Monoliths

v Teams aligned to business domains

v Applications that must remain performant

v Systems needing easy testability and deployment

COMP2511: Modular Monoliths Architecture

Transition Path – Layered to Modular

v Start with layered → modularize by domain over time

v Introduce governance and APIs gradually

v Split database logically first, physically later

COMP2511: Modular Monoliths Architecture

Modular Monolith Advantages

v Better domain alignment than layered monoliths

v Single deployment with domain modularity

v Enables domain-oriented teams

v Maintains runtime performance of monoliths

v Fewer operational headaches than microservices

COMP2511: Modular Monoliths Architecture

Common Pitfalls in Modular Monoliths

v Bypassing module APIs (direct access)

v Database JOINs across modules

v Overusing shared libraries (tight coupling)

v Lack of observability into module interactions

COMP2511: Modular Monoliths Architecture

Techniques for Success

v Define strong module boundaries

v Maintain minimal public API surface

v Invest in automated testing and monitoring

v Review architecture regularly for erosion

COMP2511: Modular Monoliths Architecture

Modular Monolith Star Ratings

COMP2511: Modular Monoliths Architecture

Exercise

Which of the following
systems might be well suited
for the modular monolith
architectural style, and why?

COMP2511: Modular Monoliths Architecture

