
Layered 
Architecture

COMP2511, CSE, UNSW



Introduction to Layered Architecture
v Layered Architecture separates technical 

responsibilities into distinct layers.

v Simplifies the design by dividing the system into 
manageable, logical parts.

Key benefits:

o Easy to understand and implement.

o Promotes reuse and separation of concerns.

2COMP2511: Layered Architecture



Case Study: Naan & Pop Restaurant
v Startup restaurant serving Indian-inspired flatbread 

sandwiches.
v Needs a simple website for online ordering quickly.

Requirements:

o Time to market: Quick launch.

o Separation of responsibilities: Clear division for UI specialists 
and database administrators.

o Extensible: Allow future enhancements easily.

3COMP2511: Layered Architecture



Why Choose Layered Architecture?

v Matches Naan & Pop’s needs: simplicity, fast 
delivery, separation of technical roles.

v Aligns closely with familiar design patterns like 
MVC.

Trade-offs involved:

o Simplicity vs. extensibility.

o Speed vs. maintainability.

4COMP2511: Layered Architecture



Mapping MVC to Layered Architecture

v MVC concepts translate naturally into 
architectural layers.

v Additional layers may be introduced based on 
real-world constraints (e.g., integration).

5COMP2511: Layered Architecture



Layered Architecture – Philosophy

v Technically partitioned and usually monolithic.

v Domain logic spans multiple layers:
o Presentation (UI components).
o Workflow (business logic components).
o Persistence (database schemas and operations).

Implication:
o Domain changes affect multiple layers.

6COMP2511: Layered Architecture



Drivers for Layered Architecture

Why choose layered architecture?

v Specialization: Separates UI, business logic, and database, allowing team specialisation.

v Physical separation: Matches real-world technology separation (frontend/backend/database).

v Ease of reuse: Technical reuse across multiple projects.

v Familiarity: Mirrors MVC, easy for developers to grasp.

7COMP2511: Layered Architecture



Physical Architectures in Layered Systems

Common physical architectures:

v Two-tier (Client/Server):
o Client UI directly accesses the database.

v Three-tier (Web):
o Browser (presentation), 
o App server (business logic)
o Database server (persistence)

v Embedded/Mobile:
o All layers bundled into one deployable unit.

8COMP2511: Layered Architecture



Physical Architecture – Pros and Cons

9COMP2511: Layered Architecture



Adding Layers – Integration Layer Example

v Additional layers can be introduced for specialised tasks 
(e.g., Integration layer for delivery partners).

v Clearly isolates integration code from core business logic.

Example:

o Integration with Uber Eats API resides entirely within an Integration Layer.

10COMP2511: Layered Architecture



Caveats – Domain Changes Impact Multiple Layers

v Layered architecture easily supports changes in technical capabilities.

v However, changes in the domain (e.g., adding pizzas to menu) will affect multiple layers:
o Presentation layer (new UI)
o Workflow layer (processing new item)
o Persistence layer (storing item data)

Trade-off:
o Ease of technical changes vs. difficulty of domain-wide changes.

11COMP2511: Layered Architecture



Layered Architecture: Strengths

v Feasibility: Quick, cost-effective solutions.

v Technical partitioning: Easy technical reuse.

v Data-intensive operations: Efficient local data processing.

v Performance: High internal performance without network overhead.

v Fast development: Ideal for MVPs and small systems.

12COMP2511: Layered Architecture



Layered Architecture: Weaknesses

v Deployability: Monolith deployments become cumbersome as systems grow.

v Coupling: High risk of tight coupling (“big ball of mud”).

v Scalability: Difficult to scale individual functionalities independently.

v Elasticity: Poor performance under bursty traffic conditions.

v Testability: Increasingly difficult testing as codebase grows.

13COMP2511: Layered Architecture



Layered Architecture – Rating Chart (Example)

14COMP2511: Layered Architecture



Layered Architecture – Exercises

15COMP2511: Layered Architecture



Suitable Scenarios for Layered Architecture

Ideal Use Cases:

v Small, simple systems requiring quick delivery (e.g., small business websites).

v Data-intensive applications with local database storage 

(e.g., desktop CRM apps).

v Applications needing clear specialization boundaries 

(e.g., separate UI, backend, DB teams).

16COMP2511: Layered Architecture



Summary of Layered Architecture

Key points:

v Simple, fast to implement.

v Clearly separates technical concerns.

v Ideal for stable domains with minimal changes.

v Challenging to adapt when domain changes significantly.

17COMP2511: Layered Architecture


