Architectural
Styles

COMP2511, CSE, UNSW

These lecture slides are from the book “Head First Software Architecture”,
by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

Introduction to Architectural Styles

¢ Architectural Styles:

o Predefined patterns and philosophies guiding how software systems
are structured and deployed.

¢ Importance of Understanding Styles:
o Facilitates better design decisions.

o Aligns software architecture with project needs.

¢ Example:

o Residential housing styles influenced by geography, climate, personal
preference. Similarly, software architecture varies by project

requirements.

COMP2511: Architectural Styles

N2/ »
SN e B
o S —_—— i =3 .
ol | EL 2 Iy g ==}
Eath one of these j
N sl -
“ |
H == i e | 8

s{\/\cs exists for a
veason—be that
histovical, cultural,
Leehnical.

Categorizing Architectural Styles

Two main categories for architectural styles:

1. Partitioning Partitioning
o Technical vs. Domain-based. Teohnical Domain
o Layered
2. Dep|oyment -é Monolith Modular monolith
= Microkernel
o Monolithic vs. Distributed. g
% Distributed
o Event-driven Microservices
** Why Categorize?

o Helps systematically analyse and select appropriate
architecture.

COMP2511: Architectural Styles 4

Partitioning by Technical Concerns

Technical Partitioning:

o Code organized by functional roles or technical layers.

Characteristics:
o Clear separation of responsibilities.
o Easier specialization of teams.

Example: A standard web application:

o Presentation Layer (Ul);
o Business Logic Layer (Services)
o Data Persistence Layer (Database)

Presentation

Services

Persistence

» Real-world Analogy:
Roles in a fancy restaurant (host, server, chef, busser)
clearly divided by technical concerns (greeting,
cooking, cleaning).

COMP2511: Architectural Styles 5

Partitioning by Domain Concerns

Domain Partitioning:

o Code organized around business domains or problem areas.

Customer

Characteristics:
o Alignment with business goals.

o Easier maintenance of related features. A‘Invenfory

o Strong domain modeling.

Example: An e-commerce platform:

o Customer Domain (user accounts, user interface) > Real-world Analogy:

o Inventory Domain (product catalog, stock management) Food court restaurants, each specialised in
o Payment Domain (billing, transactions) distinct cuisines (pizza, salads, burgers).

COMP2511: Architectural Styles 6

Comparing Technical vs. Domain Partitioning

Technical Partitioning Domain Partitioning

Layered by technical roles Organized by business areas
Easier for specialised teams Aligned closely with business needs
Risk of over-generalisation Risk of duplicating common functionalities

Example Scenario: A banking application:
o Technical: Separate teams for frontend, backend, DB administration.

o Domain: Separate teams for loans, investments, account management.

COMP2511: Architectural Styles

SSSSSS

Deployment Models Overview

1. Monolithic Architecture
o Single deployable unit.

2. Distributed Architecture

o Multiple deployable units
communicating over networks.

Choice affects scalability, complexity, and cost.

This is @ monolithie

ay?liaa{:ion,

Customer
Con{‘,aining all the /é $10

logical components
in one dc?lo‘/mcn{

Uhl‘ﬁ-

Distributed

architettures

deploy lots o{)

smaller units.

COMP2511: Architectural Styles

CCOSYStCm] or as

a
in the NET wo\rldf\ Sl

e~ Recall that architectural
tharacteristios influence

the structure of £he
application.

Monolithic Architecture — Overview and Pros

Monolithic:

o Entire application deployed as one single executable

or package.

Pros:

o Easier initial development.

o Simplified debugging.

o Lower initial deployment cost.

Examples:

o Asingle .jar (Java) or .exe (.NET) containing all app

logic and resources.

o Smartphone as a single device doing many functions

(calling, browsing, tracking).

. . .
/\ simplicity
OD Typically, monolithic
applications have a single
codebase, which makes them
easier to develop and to
understand.

cost

reliability
=
@g\@/}) A monolith is an island. It makes
= = few or no network calls, which
usually means more reliable
applications.

next page.

COMP2511: Architectural Styles

Monoliths are cheaper to build
and operate because they tend
to be simpler and require less
infrastructure.

> ©®

feasibility

Rushing to market? Monoliths
are simple and relatively cheap,
freeing you to experiment and
deliver systems faster.

La B
debuggability
If you spot a bug or get an error
stack trace, debugging is easy,
since all the code is in one place.

K ch? an eye out ‘Co\r this ?oin{;

when we distuss tons on the

Monolithic Architecture - Limitations

Cons: 3
/ scalability
o Difficult to scale independently. |II If you ever need to scale

] l one part of the application {#5‘
. . . independently of the others, M’ evolvabili
O Slngle bug can dISFU pt entlre SyStem. well, you’re in trouble. It’s all or \ ty

: 2 2 As monolithic applications grow,
nothing with monoliths. g ¢
S making changes becomes harder.

o Inflexible when adapting to changing demands. s aatlente PUhomon uncadiewhole
AgamT \ o T8 application is one codebase, you
\’15Jc~\)05Jc aryew eo can’t adapt different technology

reliability (— {')\ough{', we'd yoin{: o= stacks to different domains if

=3
%EQJ Because monolithic applications yRuneediio:
= deploy as a single unit, any bug
Exa m p | e : that degrades the service will
affect the whole monolith.

. e : . , 7 /z) deployability
o Scaling a monolithic online store application There's veliability again! /7 Tmplementing any change

/ will require redeploying the
whole application, which could

o Scaling means duplicating the entire application, ibodtice ot ot
increasing resource consumption significantly.

COMP2511: Architectural Styles 10

Distributed Architecture - Overview

Distributed:

o Application components deployed separately, each as
individual processes/services.

=l

Man—

M
B
Maa—
MA~—

Pros:

o Independent scalability of components.

o Encourages modular design.

o Faultisolation—failures affect only single units.

scalability

Distributed architectures deploy
different logical components
separately from one another.
Need to scale one? Go ahead!

La B
testability
Each deployment only serves
a select group of logical
components. This makes
testing a lot easier—even as lhc‘ﬁv
application grows.

Distributed arehitectuves
are a lot more testable

than monolithie
applications.

fault tolerance

Sp
9 G
@@) Even if one piece of the system

Example:

o Microservices architecture for Netflix or Amazon,
allowing independent scaling of services like user
management, video streaming, and recommendation
systems.

COMP2511: Architectural Styles

fails, the rest of the system can
continue functioning.

@
2
8
S

modularity
Distributed architectures
encourage a high degree of
modularity because their logical
components must be loosely
coupled.

// deployability

Distributed architectures
encourage lots of small units.

They evolved after modern

engineering principles like
continuous integration,
continuous deployments, and
automated testing became the
norm.

H8V|n5 ,ofs O‘C small um{',s
with good testabil; Jc
vedutes the visk assoclajccd
with chlo\/mg changcs

Distributed Architecture - Challenges

Cons:

o High complexity due to network dependence.

o Increased maintenance and debugging complexity.
o Higher infrastructure and operational costs.

&)

L e

Example:

o Managing distributed transactions across
services—complex coordination required, o
increased risk of partial failures.

performance

Distributed architectures

involve lots of small services

that communicate with each
other over the network to do
their work. This can affect
performance, and although there
are ways to improve this, it’s
certainly something you should
keep in mind.

simplicity

Distributed systems are the
opposite of simple. Everything
from understanding how they
work to debugging errors

becomes challenging:

We cannot emphasize
> tannot

now ompl
Real-world Analogy: o it

¢an bel

o Earlier days—separate devices for GPS, web
browsing, and phone calls each required separate
maintenance and integration.

COMP2511: Architectural Styles

cost

Deploying multiple units means
more servers. Not to mention,
these services need to talk to one
another—which entails setting
up and maintaining network
infrastructure.

chu553n5 distributed systems
involves Jchinking deeply about
logging, and usually requires
aggregating logs. This also
adds to the cost.

debuggabilityéy

Errors could happen in any
service involved in servicing

a request. Since logical
components are deployed in
separate units, tracing errors can
get very tricky.

12

Introduction to Fallacies of Distributed Computing

¢ Originated at Sun Microsystems in 1994
** Common false assumptions about networks
¢ Crucial for architects of distributed systems

+* 11 total fallacies (8 classical + 3 additional)

COMP2511: Architectural Styles 13

Fallacy #1 - The Network Is Reliable

+** Reality: Networks can and do fail

** Impact: Services might be healthy but unreachable

s Mitigation:
o Use timeouts
o Retry policies

** Example: Service A sends request to Service B - no response due to intermittent
network issue

COMP2511: Architectural Styles 14

Fallacy #2 - Latency Is Zero

¢ Reality: Remote calls take milliseconds, not microseconds

** Impact: Chained service calls can add significant delay

s Mitigation:
o Monitor 95th-99th percentile latency

o Minimise unnecessary calls

s Example: 10 chained calls with 100ms each = 1s delay

COMP2511: Architectural Styles

Fallacy #3 - Bandwidth Is Infinite

** Reality: Bandwidth is limited, especially under load

*» Impact: Excessive inter-service communication slows the system

s Mitigation:

o minimizing the passing of large, complex data structures

s* Example: Returning 500KB when only 200B needed - 1Gbps load for 2k req/s

COMP2511: Architectural Styles 16

Fallacy #4 - The Network Is Secure

+* Reality: More endpoints = higher attack surface
¢ Impact: Inter-service communication can be vulnerable

s Mitigation:
o Zero-trust architecture
o Secure each endpoint

s* Example: Internal services hacked due to open port

COMP2511: Architectural Styles

Fallacy #5 - Topology Never Changes

+* Reality: Network topology evolves frequently
** Impact: Latency assumptions break

s Mitigation:
o Coordinate with network teams
o Use adaptive timeout policies

** Example: Sunday network upgrade - production timeouts Monday

COMP2511: Architectural Styles 18

Fallacy #6 - There Is Only One Administrator

*» Reality: Multiple admins across departments

¢ Impact: Miscommunication and missed changes

s Mitigation:
o Maintain a clear contact directory
o Standardize change coordination

** Example: Change in one subnet unknowingly affects dependent service

COMP2511: Architectural Styles 19

Fallacy #7 - Transport Cost Is Zero

¢ Reality: Infrastructure and routing costs add up

** Impact: Distributed systems are more expensive

s Mitigation:
o Assess total cost of ownership (TCO)
o Consider hybrid designs

** Example: Simple REST call needs new proxies, firewalls, gateway

COMP2511: Architectural Styles 20

Fallacy #8 - The Network Is Homogeneous

+* Reality: Different vendors, firmware, configurations
** Impact: Compatibility and packet loss

s Mitigation:
o Test network assumptions regularly
o Avoid hard dependencies on vendor features

** Example: Packet loss between Cisco and Juniper segments

COMP2511: Architectural Styles 21

Fallacy #9 - Versioning Is Easy

¢ Reality: Supporting multiple versions is hard

** Impact: Contract proliferation, test complexity

s Mitigation:
o Limit concurrent versions
o Use deprecation plans

s Example: Team supports 7 versions of same AP| endpoint

COMP2511: Architectural Styles

Fallacy #10 - Compensating Updates Always Work

¢ Reality: Rollbacks can fail too
¢ Impact: Data inconsistency

s Mitigation:
o Design for idempotency
o Include recovery mechanisms

s Example: Order placed, and rollback fails > duplicated state

COMP2511: Architectural Styles 23

Fallacy #11 - Observability Is Optional

** Reality: Without observability, debugging is impossible
¢ Impact: Silent failures across services

s Mitigation:
o Centralized logging

o Distributed tracing

» E.g., OpenTelemetry: open-source framework for collecting, processing, and exporting telemetry
data (traces, metrics, and logs) from cloud-native applications and infrastructure.

** Example: Request times out without any log trail

COMP2511: Architectural Styles 24

Fallacy - Summary and Implications

+*»* Fallacies reveal key weaknesses in distributed systems
** Addressing them improves resilience and clarity
** Must be communicated to development and operations teams

** Good architecture anticipates and mitigates these assumptions

COMP2511: Architectural Styles

Comparing Monolithic vs. Distributed

Simpler development & debugging Complex system integration
Lower initial costs Higher upfront infrastructure cost
Scaling is all-or-nothing Individual services scalable

Single failure disrupts whole system Fault tolerance through isolation

COMP2511: Architectural Styles

SSSSSS

Discussion - Regulatory and Compliance Needs

Consider special needs like:
o Regulatory compliance (e.g., financial industry).
o Security requirements.

Monolithic:

o Easier control and monitoring in regulated environments.

Distributed:

o Can complicate compliance but increases modularity and maintainability.

Example:

o Banking systems might use monolithic for core banking due to tight regulatory controls,
however distributed services for customer engagement modules.

COMP2511: Architectural Styles 27

Key Takeaways

** Numerous architectural styles exist; each with unique characteristics and trade-offs.

« Partitioning styles: Technical vs. Domain.
** Deployment models: Monolithic vs. Distributed.

» Choice of style influenced by:
o Project goals.

o Scalability requirements.

o Complexity management.

o Cost implications.

COMP2511: Architectural Styles 28

