
Architectural 
Styles

COMP2511, CSE, UNSW



2

These lecture slides are from the book “Head First Software Architecture”, 

by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

COMP2511: Architectural Styles



Introduction to Architectural Styles

v Architectural Styles:

o Predefined patterns and philosophies guiding how software systems 
are structured and deployed.

v Importance of Understanding Styles:

o Facilitates better design decisions.

o Aligns software architecture with project needs.

v Example:

o Residential housing styles influenced by geography, climate, personal 
preference. Similarly, software architecture varies by project 
requirements.

3COMP2511: Architectural Styles



Categorizing Architectural Styles
Two main categories for architectural styles:

1. Partitioning
o Technical vs. Domain-based.

2. Deployment
o Monolithic vs. Distributed.

v Why Categorize?
o Helps systematically analyse and select appropriate 

architecture.

4COMP2511: Architectural Styles



Partitioning by Technical Concerns

Technical Partitioning:
o Code organized by functional roles or technical layers.

Characteristics:
o Clear separation of responsibilities.
o Easier specialization of teams.

Example:  A standard web application:
o Presentation Layer (UI); 
o Business Logic Layer (Services)
o Data Persistence Layer (Database)

5

Ø Real-world Analogy:
Roles in a fancy restaurant (host, server, chef, busser) 
clearly divided by technical concerns (greeting, 
cooking, cleaning).

COMP2511: Architectural Styles



Partitioning by Domain Concerns

Domain Partitioning:
o Code organized around business domains or problem areas.

Characteristics:
o Alignment with business goals.
o Easier maintenance of related features.
o Strong domain modeling.

Example:  An e-commerce platform:
o Customer Domain (user accounts, user interface)
o Inventory Domain (product catalog, stock management)
o Payment Domain (billing, transactions)

6

Ø Real-world Analogy:
Food court restaurants, each specialised in 
distinct cuisines (pizza, salads, burgers).

Inventory

Customer

Payment

COMP2511: Architectural Styles



Comparing Technical vs. Domain Partitioning

Example Scenario:  A banking application:

o Technical: Separate teams for frontend, backend, DB administration.

o Domain: Separate teams for loans, investments, account management.

7

Technical Partitioning Domain Partitioning

Layered by technical roles Organized by business areas

Easier for specialised teams Aligned closely with business needs

Risk of over-generalisation Risk of duplicating common functionalities

COMP2511: Architectural Styles



Deployment Models Overview

1. Monolithic Architecture
o Single deployable unit.

2. Distributed Architecture
o Multiple deployable units 

communicating over networks.

Choice affects scalability, complexity, and cost.

8COMP2511: Architectural Styles



Monolithic Architecture – Overview and Pros

Monolithic:
o Entire application deployed as one single executable 

or package.

Pros:
o Easier initial development.
o Simplified debugging.
o Lower initial deployment cost.

Examples:
o A single .jar (Java) or .exe (.NET) containing all app 

logic and resources.
o Smartphone as a single device doing many functions 

(calling, browsing, tracking).

9COMP2511: Architectural Styles



Monolithic Architecture - Limitations

Cons:
o Difficult to scale independently.

o Single bug can disrupt entire system.

o Inflexible when adapting to changing demands.

Example:
o Scaling a monolithic online store application 

o Scaling means duplicating the entire application, 
increasing resource consumption significantly.

10COMP2511: Architectural Styles



Distributed Architecture - Overview

Distributed:
o Application components deployed separately, each as 

individual processes/services.

Pros:
o Independent scalability of components.
o Encourages modular design.
o Fault isolation—failures affect only single units.

Example:
o Microservices architecture for Netflix or Amazon, 

allowing independent scaling of services like user 
management, video streaming, and recommendation 
systems.

11COMP2511: Architectural Styles



Distributed Architecture - Challenges

Cons:
o High complexity due to network dependence.
o Increased maintenance and debugging complexity.
o Higher infrastructure and operational costs.

Example:
o Managing distributed transactions across 

services—complex coordination required, 
increased risk of partial failures.

Real-world Analogy:
o Earlier days—separate devices for GPS, web 

browsing, and phone calls each required separate 
maintenance and integration.

12COMP2511: Architectural Styles



Introduction to Fallacies of Distributed Computing

v Originated at Sun Microsystems in 1994

v Common false assumptions about networks

v Crucial for architects of distributed systems

v 11 total fallacies (8 classical + 3 additional)

13COMP2511: Architectural Styles



Fallacy #1 - The Network Is Reliable

v Reality: Networks can and do fail

v Impact: Services might be healthy but unreachable

v Mitigation:
o Use timeouts
o Retry policies

v Example: Service A sends request to Service B → no response due to intermittent 
network issue

14COMP2511: Architectural Styles



Fallacy #2 - Latency Is Zero

v Reality: Remote calls take milliseconds, not microseconds

v Impact: Chained service calls can add significant delay

v Mitigation:

o Monitor 95th-99th percentile latency

o Minimise unnecessary calls

v Example: 10 chained calls with 100ms each = 1s delay

15COMP2511: Architectural Styles



Fallacy #3 - Bandwidth Is Infinite

v Reality: Bandwidth is limited, especially under load

v Impact: Excessive inter-service communication slows the system

v Mitigation:

o minimizing the passing of large, complex data structures

v Example: Returning 500KB when only 200B needed → 1Gbps load for 2k req/s

16COMP2511: Architectural Styles



Fallacy #4 - The Network Is Secure

v Reality: More endpoints = higher attack surface

v Impact: Inter-service communication can be vulnerable

v Mitigation:
o Zero-trust architecture
o Secure each endpoint

v Example: Internal services hacked due to open port

17COMP2511: Architectural Styles



Fallacy #5 - Topology Never Changes

v Reality: Network topology evolves frequently

v Impact: Latency assumptions break

v Mitigation:
o Coordinate with network teams
o Use adaptive timeout policies

v Example: Sunday network upgrade → production timeouts Monday

18COMP2511: Architectural Styles



Fallacy #6 - There Is Only One Administrator

v Reality: Multiple admins across departments

v Impact: Miscommunication and missed changes

v Mitigation:
o Maintain a clear contact directory
o Standardize change coordination

v Example: Change in one subnet unknowingly affects dependent service

19COMP2511: Architectural Styles



Fallacy #7 - Transport Cost Is Zero

v Reality: Infrastructure and routing costs add up

v Impact: Distributed systems are more expensive

v Mitigation:
o Assess total cost of ownership (TCO)
o Consider hybrid designs

v Example: Simple REST call needs new proxies, firewalls, gateway

20COMP2511: Architectural Styles



Fallacy #8 - The Network Is Homogeneous

v Reality: Different vendors, firmware, configurations

v Impact: Compatibility and packet loss

v Mitigation:
o Test network assumptions regularly
o Avoid hard dependencies on vendor features

v Example: Packet loss between Cisco and Juniper segments

21COMP2511: Architectural Styles



Fallacy #9 - Versioning Is Easy

v Reality: Supporting multiple versions is hard

v Impact: Contract proliferation, test complexity

v Mitigation:
o Limit concurrent versions
o Use deprecation plans

v Example: Team supports 7 versions of same API endpoint

22COMP2511: Architectural Styles



Fallacy #10 - Compensating Updates Always Work

v Reality: Rollbacks can fail too

v Impact: Data inconsistency

v Mitigation:
o Design for idempotency
o Include recovery mechanisms

v Example: Order placed, and rollback fails → duplicated state

23COMP2511: Architectural Styles



Fallacy #11 - Observability Is Optional

v Reality: Without observability, debugging is impossible

v Impact: Silent failures across services

v Mitigation:
o Centralized logging
o Distributed tracing 

Ø E.g., OpenTelemetry: open-source framework for collecting, processing, and exporting telemetry 
data (traces, metrics, and logs) from cloud-native applications and infrastructure.

v Example: Request times out without any log trail

24COMP2511: Architectural Styles



Fallacy - Summary and Implications

v Fallacies reveal key weaknesses in distributed systems

v Addressing them improves resilience and clarity

v Must be communicated to development and operations teams

v Good architecture anticipates and mitigates these assumptions

25COMP2511: Architectural Styles



Comparing Monolithic vs. Distributed

Monolithic Distributed

Simpler development & debugging Complex system integration

Lower initial costs Higher upfront infrastructure cost

Scaling is all-or-nothing Individual services scalable

Single failure disrupts whole system Fault tolerance through isolation

26COMP2511: Architectural Styles



Discussion - Regulatory and Compliance Needs

Consider special needs like:
o Regulatory compliance (e.g., financial industry).
o Security requirements.

Monolithic:
o Easier control and monitoring in regulated environments.

Distributed:
o Can complicate compliance but increases modularity and maintainability.

Example:
o Banking systems might use monolithic for core banking due to tight regulatory controls, 

however distributed services for customer engagement modules.

27COMP2511: Architectural Styles



Key Takeaways

v Numerous architectural styles exist; each with unique characteristics and trade-offs.

v Partitioning styles: Technical vs. Domain.

v Deployment models: Monolithic vs. Distributed.

v Choice of style influenced by:
o Project goals.
o Scalability requirements.
o Complexity management.
o Cost implications.

28COMP2511: Architectural Styles


