Architectural

Decision Records
(ADRS)

COMP2511, CSE, UNSW

These lecture slides are from the books:

o “Head First Software Architecture”, by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

o “Fundamentals of Software Architecture”, 2nd Edition, by Mark Richards, Neal Ford

Architectural Decision Records (ADRs)

% "Why is more important than how.”

% Architectural decisions must be justified

** Future team members need to understand the rationale

» Without context, good decisions may seem arbitrary or incorrect

% Architectural Decision Records (ADRs) capture the what, why, and
impact

% An ADR has seven sections: Title, Status, Context, Decision,
Consequences, Governance, and Notes.

** Important aspects of an architectural decision are documented,
including the decision itself.

COMP2511: Architectural Decision Records (ADRs)

ADR

ADR Structure Overview

Main Sections:

¢ Title: Numbered and concise

i Status: Proposed, Accepted, Superseded, or Request for Comments (RFC)
» Context: Forces and constraints

» Decision: What was chosen and why

» Consequences: Trade-offs and impacts

» Compliance: Governance and enforcement

» Notes: Metadata (author, date, approval)

COMP2511: Architectural Decision Records (ADRs) 4

ADR Section - Title

** Purpose: ldentify and summarize the decision

** Best Practices:

o Number sequentially (e.g., ADR 001)
o Short, descriptive, and unambiguous

s Example:
“ADR 17: Asynchronous Messaging Between Order and Payment Services”

“ADR 21: Transition to PostgreSQL for Inventory Management”
“ADR 34: Enable OAuth 2.0 for Internal APIs”

COMP2511: Architectural Decision Records (ADRs) 5

ADR Section - Status

s Types:
o Proposed: Pending approval
o Accepted: Approved and active
o Superseded: Replaced by another ADR
o RFC: Open for feedback until a deadline
s Examples:
o ADR 12: Status: Accepted

o ADR 17: Status: Superseded by ADR 21
o ADR 34: Status: RFC, Deadline 30 May 2025

COMP2511: Architectural Decision Records (ADRs) 6

ADR Section - Context

** Purpose: Explain what situation led to this decision

*** Include:

o Problem or force requiring a decision
o Alternatives under consideration

s Examples:
o “The Order service must transmit payment info. Options include REST or messaging.”

o “Inventory updates are inconsistent across services; central DB vs. event-based sync
considered.”

o “Increased phishing attempts require re-evaluating access token validation approach.”

COMP2511: Architectural Decision Records (ADRs) 7

ADR Section - Decision

¢ Purpose: Describe what was chosen

** Best Practices:

o Use clear, assertive language: “We will use...”
o Justify with rationale

s Examples:
o “We will use asynchronous messaging due to latency and decoupling benefits.”

o “We will migrate inventory management to PostgreSQL to ensure consistency and
performance.”

o “We will adopt OAuth 2.0 using IdentityServer for access control.”

COMP2511: Architectural Decision Records (ADRs) 8

ADR Section - Consegquences

** Purpose: Describe outcomes and trade-offs

*** Include:

o Positive and negative impacts
o Known limitations

s Examples:
o “Improves performance, however adds complexity in error handling.”
o “Enables real-time updates; requires Kafka infrastructure.”
o “Strengthens security, but introduces user reauthentication challenges.”

COMP2511: Architectural Decision Records (ADRs) 9

ADR Section - Compliance

** Purpose: Define how decision enforcement is measured

s Types:
o Manual review
o Automated tests (e.g., fitness functions)

s Examples:

o Static code analysis rules for package structure compliance
o Integration test that validates token expiration and renewal workflows

COMP2511: Architectural Decision Records (ADRs) 10

ADR Section - Notes

¢ Purpose: Capture metadata

¢ Typical Fields:
o Author, approval date, approver
o Last modified, superseded reference

s Examples:
o Author: A. Johnson, Approved by: Arch Review Board, 15 May 2025
o Author: M. Singh, Modified on: 10 May 2025, Supersedes ADR 12
o Author: L. Chen, RFC Deadline: 30 May 2025

COMP2511: Architectural Decision Records (ADRs) 11

Benefits of Using ADRs

» Serves as a memory log for decisions

% Improves consistency and governance

» Helps new team members understand context

» Supports continuous evolution and learning

A sing
vetord
detision Was ™

These
settions make

up an ADR

s

\e ar ehitettur ald

eibes wha
des “de and why-

etision

Title
Status
Context

Decision

Consequences

Governance

Notes

over time
_—

Over time, You build
up a log of detision

vetords—one for every

detision. l

leads to
R —

This log sevves as a
the memory store

o‘c Your Fro\')cc{:,
cxylaining how and wh\/
the Proﬁccf go{: +t

is.

wheve i

Together, these
ADRs form the

OMP2511: Architectural Decision Records (ADRS)

Example: ADR

Title

Ol2: Use of queues Lor asynthronous messaging between order and downstream sevvices

Status

Accepted

Context

The brad'mg sevvice must 'm(:orm downstream servites (namcl\/ the no{i@ica{:ion and analy{i(,s sevvites, for now)
about new items available for sale and about all transactions. This tan be done through synthronous messaging
(using REST) or asynthronous messaging (using queues or topics).

Decision

We will use queues for asynthronous messaging between the trading and downstream sevvices.

Using queues makes the S\/s{:crn move extensible, sinte eath queue tan deliver a diffevent kind of message.
Furthermore, sinte the trading service is atutely aware of any and all subseribers, adding a new Lonsumer involves
modi‘cying it—which improves the security of the system.

Consequences

Queues mean a higher degree ot toupling between services.

We will need to provision queuing infrastructure. [£ will vequive Ctlustering to provide for high availabili{:\/.

[£ additional downstream sevvites (in addition o the ones we know about) need to be notified, we will have +o
make modifications to the {:\rading sevvite.

COMP2511: Architectural Decision Records (ADRs) 13

ADR — Auction System Example

Architectural Decision in the following auction system:

/

%* use separate point-to-point queues between the bid capture, bid streamer, and bid tracker
services instead of a single publish-and-subscribe topic (or even REST, for that matter)

+* ADR needs to justify the choice to prevent confusion or disagreements among other designers
or developers.

Bids Winner

v 4

Bid Bid Bid
Capture Streamer Tracker
service service service

COMP2511: Architectural Decision Records (ADRs) 14

ADR — Auction System Example

ADR 76. Separate Queues for Bid Streamer and Bidder Tracker Services

STATUS
Accepted

CONTEXT
The Bid Capture service, upon receiving a bid, must forward that bid to the Bid Streamer ser-

vice and the Bidder Tracker service. This could be done using a single topic (pub/sub), separate

queues (point-to-point) for each service, or REST via the Online Auction API layer.

COMP2511: Architectural Decision Records (ADRs)

L

-
T2k \v
=

15

«
=<
o
z
m
<

ADR — Auction System Example

DECISION
We will use separate queues for the Bid Streamer and Bidder Tracker services.

The Bid Capture service does not need any information from the Bid Streamer service or

Bidder Tracker service (communication is only one-way).

The Bid Streamer service must receive bids in the exact order they were accepted by the Bid
Capture service. Using messaging and queues automatically guarantees the bid order for the stream

by leveraging first-in, first out (FIFO) queues.

Multiple bids come in for the same amount (for example, “Do I hear a hundred?”). The Bid
Streamer service only needs the first bid received for that amount, whereas the Bidder Tracker
needs all bids received. Using a topic (pub/sub) would require the Bid Streamer to ignore bids that
are the same as the prior amount, forcing the Bid Streamer to store shared state between

instances.

The Bid Streamer service stores the bids for an item in an in-memory cache, whereas the Bidder
Tracker stores bids in a database. The Bidder Tracker will therefore be slower and might re-
quire backpressure. Using a dedicated Bidder Tracker queue provides this dedicated backpressure

point.
COMP2511: Architectural Decision Records (ADRs)

ADR — Auction System Example

CONSEQUENCES
We will require clustering and high availability of the message queues.

This decision will require the Bid Capture service to send the same information to multiple queues.

Internal bid events will bypass security checks done in the API layer.
UPDATE: Upon review at the January 14, 2025, ARB meeting, the ARB decided that this was an accept-

able trade-off and that no additional security checks are needed for bid events between these services.

COMPLIANCE
We will use periodic manual code reviews to ensure that asynchronous pub/sub messaging is being

used between the Bid Capture service, Bid Streamer service, and Bidder Tracker service.

NOTES
Author: Subashini Nadella

Approved: ARB Meeting Members, 14 JAN 2025

Last Updated: 14 JAN 2025
COMP2511: Architectural Decision Records (ADRs)

Summary of ADR

+*»* Each section contributes to clarity and traceability
s Together they provide context, rationale, and continuity

¢ Encourage consistent use across all teams and domains

COMP2511: Architectural Decision Records (ADRs) 18

