Software
Architecture

COMP2511, CSE, UNSW

These lecture slides are from the book “Head First Software Architecture”,
by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

Software Architecture as a Metaphor

** While building a house, architectural decisions (rooms, floors, layout) are
crucial and costly to change later.

¢ A poorly architectural house can lead to substandard and uncomfortable
living conditions.

Not on\\{ is this house
wlYs it’s not very
‘C\md',iov\a\ either

This house has a
nice arthitecture.

Load—bearing

tolumn

SSSSSS

What is Software Architecture?

¢ Software architecture defines the fundamental structure of a software system.

» Influences how effectively the software can adapt to changes, scale, perform,
and maintain its reliability.

» Software Architecture diagrams represent relationships between components
(e.g. databases, services, interfaces).

;3 Client Requests | | Client Requests | Client Requests |
- chonne ¥ ¥ (User Interface)

[Presentation Layer] [[,—T

- p— v v API Layer v I 1 1 3
[Business Layer] et e / [[/[| [/| / (Gomporer) (Gomporer) (Gomponer) (Gomponen)

- 4 4 4 (Component) (Component) (Component) Component
[Persistence Layer] L L L [1]]

e Service Service Service Service Service Yy £
[Database Layer] —» Pmcessnlr | Module) [Module) | Module) [Module) [Module)
Y M [Module [Module] [Module] [Module] [Module]

C el e
Database Database Database

 ——

Database
Database Database
A

The Four Dimensions of Software
Architecture

1. Architectural Characteristics
2. Architectural Decisions
3. Logical Components

4. Architectural Style

SSSSSS

Dimension 1: Architectural Characteristics

¢ Architectural Characteristics define ot s f e
fundamental qualities software architecture —_— &
must support. U Dbty
ka e~ =3 be ¢tonsistent and laocnc\a;ha:c
H ~
gaeckurl:\yc stringen Jc }
s* Commonly used Architectural Characteristics: i b o
op- Both domains have sealability as
o Scalability (support growth) e .
. ope . . mbers of tonturve "
o Reliability (consistent operation) O or it '
o Availability (system uptime) gsgb"ifgzﬁm N (
ope . easy to use quick and
o Testability (ease of testing components) c%wv!:d .
o Security —

Online auction

Consistency) AN Kilflabl'fy o
""""""""""""""""""""""""""""""""""""" Bd must be cay{ ved liabl €S mu e
' ‘cc{lyadnovdc veliable—users don Ukeu?

| th:accfd b

Audltablllty Performance Securlty Reqmrements Data Legallty Scalablllty

Dimension 2: Architectural Decisions

s Long-term structural decisions influencing software behaviour.

*» Architectural Decisions set constraints guiding future development.

-
7

Hcrc’s an c*am?lc

of an arehitettural This avehitectural / 7
What should your home look dotision Architectural detision imposes
like? This kind of decision \ﬁ decision a tonstraint and
is an architeetural one. . atts as a 3uidc-
\/ The user interface must Vata
go through the data /_\ Access

access service to read Service
or write data; it cannot
communicate directly with

the database.
This .magc
‘j\ rcyrcscn{s a
i b
\/oul” be lcarnin5 a lo{: e \/ou F

it aloti
about avehitectural ichcmeoia ot in
detisions in Chapter 3. e

Thls is the
database.

Dimension 3: Logical Components

** Functional building blocks representing business features.

Order
Trackin
All of Lhese boxes / !

/ vepresent \ji\ca\ tomponents: k
Order Payment - <—\

Placement Processing Shipping We dive int, (),
details of ,"Sidal
ComPonc,,{:S and
how £o Creat,
The Payment Protessing em i O JE
logical Com?oncnjc is E app Pter 4.
Inventory identified through this
Managewment divectory structure and is order
implemented {hvou%h these
three sourte tode Yiles. __7 L| payment
[E| pay_with_creditcard.py
ﬁ::;iitkie E pay_with_giftcard.py

,anguagc—aanos{w

We\jus{: haPFcn to _j
be using P‘/‘l’,hon

heve.

process_refund.py

Dimension 4: Architectural Styles

s Overall system shape and structural patterns. % Real-world Examples:

< Common styles: o Netflix adopting microservices.

o Traditional enterprise apps using
layered architecture.

o Layered (clear separation of concerns)
o Microservices (highly scalable and agile)
o Event-driven (responsive and scalable)

Theve are a number of different

architectural styles, but \Cor{:unafcl\/
not as many as there ave house styles.

Architecture vs. Design

+* Architecture: Structural decisions (hard to change).

» Design: Appearance and detailed decisions (easy to
change).

+* Decisions exist on a spectrum from pure
architecture to pure design.

i Strategic decisions (architecture):
Long-term, high impact, high effort.

*» Tactical decisions (design):
Short-term, low impact, low effort.

Example:

+* Choosing databases (architecture) vs.
Ul button colour (design).

Significance of frade-offs Strategic or tactical
Using a queve will increase responsiveness when Not wany people need fo be
placing an order, but inventory wmay not be updated The Siahiwc itant involved in this decision, and
in a timely manner, likely creating back-order W trade-offs push this it dogsn’t involve long-term
conditions. These are prefty significant frade-offs, detision tloser to planning, so it’s wore tactical.

architetture.

g

Lo

Architecture

Taking the mean of all three factors puts the decision
right about here, meaning this decision has some
architectural aspects and an architect should probably
be consulted or involved. We needed all three factors
to determine whether this decision was more about
architecture or design.

Level of effort

It doesn’t take a whole lot
of effort 1o send a message
1o another service. This is
pretty standard stuff.

ldentifying Architectural Decisions

This detision involves This eq ves a lo ’cdoC F{a gl .
. . RS ¥ ¢ entive Qam onary, a ves @
** Questions to consider: s) g& MPIC\
» s it strategic (long-term) or tactical (short-term)? &J§; e m§fm
. ;&iﬁ ,ow,;nm, your first dog clowdor on prises
> Effort to change: high or low? S i D
. . . .o) ERE {::sia;c:?:fons :lincc»
» Does it involve significant trade-offs? \ et B
& & Choosing a &
Migrating pars Sy Using a design
ng::’g:f‘;’g:e‘" your gysmm oo pgﬁcrn ’

wicroservices °d 4.
K "4k

Examples:

o Migrating from monolith to microservices
(architecture, strategic).

o Changing background colour of login page (design,
tactical).

Strategic Somewhere in Tactical
between

Trade-offs in Decision Making

Okay, so maybe this is 3

. . . . s iFieult detision somet-
* Architectural decisions often involve Slgnitieant Teadeotfs? [e detiion sometines.
S gn ificant trade-offs. || VYes IX] No Picking out what clothes to wear to work today
[E Yes [] No Choosing to deploy in the cloud or on prewisis L beade-
Example: There aveeertant SO0 o
loud deol \abil [|Yes [Xj No Selecting a user interface framework & _((< heve, so this o€
o Cloud deployment: scalability vs. cither VY
ost ploy Y | |VYes @ No Peciding on the name of a variable in a class file
C .
) : [|Yes K] No Choosing between vanilla and chocolate ice cream
© Asyn cm -eS Saging: performance vs. [E Yes [|No Deciding which architectural style to use k\w mpatt scalability
complexity. e emante, avd 0l

K] Yes | |No Choosing between REST and messaging ™ . it
. K maw&a \f
o Choosing between performance

. [X<lYes | |No Using full data or only keys for the message payload Q
and data consistency.

[|Yes @:] No Selecting an XML parsing library

[E Yes | No Peciding whether or not to break apart a service

¢ Architects handle strate gicc hoices; D(]Yes [No Choosing between atowic or distributed tramsactions
develope r's manage detailed tactical [Yes [X|No Deciding whether or not to go out to diner tonight ﬂ
i Are ou :
Cho ICES You getting hungry yet? j This tan impact data intearity

and data Consis{cnt‘/, but also
sealability and ycncormancc.

Summary (1)

/

** Architecture focuses on structure and system-wide qualities; design is more about code-level
appearance and organization.

¢ Four essential dimensions of software architecture:
o Architectural Characteristics — Foundation traits like scalability, availability, security.
o Architectural Decisions — Guideposts that define the system's constraints and trade-offs.
o Logical Components — Functional building blocks implemented in code.

o Architectural Style — High-level patterns like layered, event-driven, or microservices.

Summary (2)

» Software architecture is about making informed structural decisions, not just organising code.
% Understand and prioritise architectural characteristics for your system.

** Every architectural decision involves trade-offs, know the “why.”

» Use ADRs to document decisions and ensure long-term clarity.

% Choose an architectural style that supports your system’s most critical characteristics.

% Know when a decision is architectural (system-wide impact) or design-level (local impact).

“Good architecture supports change. Great architecture explains why.”

