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Software Architecture as a Metaphor

** While building a house, architectural decisions (rooms, floors, layout) are
crucial and costly to change later.

¢ A poorly architectural house can lead to substandard and uncomfortable
living conditions.
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What is Software Architecture?

¢ Software architecture defines the fundamental structure of a software system.

» Influences how effectively the software can adapt to changes, scale, perform,
and maintain its reliability.

»  Software Architecture diagrams represent relationships between components
(e.g. databases, services, interfaces).
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The Four Dimensions of Software
Architecture

1. Architectural Characteristics
2. Architectural Decisions
3. Logical Components

4. Architectural Style
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Dimension 1: Architectural Characteristics
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Dimension 2: Architectural Decisions

s Long-term structural decisions influencing software behaviour.

*» Architectural Decisions set constraints guiding future development.
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Dimension 3: Logical Components

** Functional building blocks representing business features.
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Dimension 4: Architectural Styles

s Overall system shape and structural patterns. % Real-world Examples:

< Common styles: o Netflix adopting microservices.

o Traditional enterprise apps using
layered architecture.

o Layered (clear separation of concerns)
o Microservices (highly scalable and agile)
o Event-driven (responsive and scalable)
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Architecture vs. Design

+* Architecture: Structural decisions (hard to change).

» Design: Appearance and detailed decisions (easy to
change).

+* Decisions exist on a spectrum from pure
architecture to pure design.

i Strategic decisions (architecture):
Long-term, high impact, high effort.

*» Tactical decisions (design):
Short-term, low impact, low effort.

Example:

+* Choosing databases (architecture) vs.
Ul button colour (design).
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Taking the mean of all three factors puts the decision
right about here, meaning this decision has some
architectural aspects and an architect should probably
be consulted or involved. We needed all three factors
to determine whether this decision was more about
architecture or design.

Level of effort

It doesn’t take a whole lot
of effort 1o send a message
1o another service. This is
pretty standard stuff.




ldentifying Architectural Decisions

This detision involves This eq ves a lo ’cdoC F{a gl .
. . RS ¥ ¢ entive Qam onary, a ves @
** Questions to consider: s ) g& MPIC\
» s it strategic (long-term) or tactical (short-term)? &J§; e m§fm
. ;&iﬁ ,ow,;nm, your first dog clowdor on prises
> Effort to change: high or low? S i D
. . . .o ) ERE {::sia;c:?:fons :lincc»
» Does it involve significant trade-offs? \ et B
& & Choosing a &
Migrating pars Sy Using a design
ng::’g:f‘;’g:e‘" your gysmm oo pgﬁcrn ’

wicroservices °d 4.
K "4k

Examples:

o Migrating from monolith to microservices
(architecture, strategic).

o Changing background colour of login page (design,
tactical).
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Trade-offs in Decision Making
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Summary (1)

/

** Architecture focuses on structure and system-wide qualities; design is more about code-level
appearance and organization.

¢ Four essential dimensions of software architecture:
o  Architectural Characteristics — Foundation traits like scalability, availability, security.
o  Architectural Decisions — Guideposts that define the system's constraints and trade-offs.
o  Logical Components — Functional building blocks implemented in code.

o  Architectural Style — High-level patterns like layered, event-driven, or microservices.




Summary (2)

» Software architecture is about making informed structural decisions, not just organising code.
% Understand and prioritise architectural characteristics for your system.

** Every architectural decision involves trade-offs, know the “why.”

»  Use ADRs to document decisions and ensure long-term clarity.

% Choose an architectural style that supports your system’s most critical characteristics.

% Know when a decision is architectural (system-wide impact) or design-level (local impact).

“Good architecture supports change. Great architecture explains why.”




