Singleton Pattern
and Asynchronous
Design

COMP2511, CSE, UNSW

Creational Pattern: Singleton Pattern

Creational patterns provide various object creation mechanisms, which increase
flexibility and reuse of existing code.

** Factory Method

o provides an interface for creating objects in a superclass,
but allows subclasses to alter the type of objects that will be created.

¢ Abstract Factory

o let users produce families of related objects
without specifying their concrete classes.

¢ Singleton

o Let users ensure that a class has only one instance,
while providing a global access point to this instance.

COMP2511: Singleton Pattern and Asynchronous Design

VVVVVV

Singleton Pattern

Intent: Singleton is a creational design pattern that lets you ensure that a class has
only one instance, while providing a global access point to this instance.

Problem: A client wants to,
** ensure that a class has just a single instance, and
» provide a global access point to that instance

Solution:
All implementations of the Singleton have these two steps in common:

** Make the default constructor private, to prevent other objects from using the new operator
with the Singleton class.

** Create a static creation method that acts as a constructor. Under the hood, this method calls the
private constructor to create an object and saves it in a static field. All following calls to this
method return the cached object.

¢ If your code has access to the Singleton class, then it’s able to call the Singleton’s static method.

** Whenever Singleton’s static method is called, the same object is always returned.

COMP2511: Singleton Pattern and Asynchronous Design

Singleton: Structure

+* The Singleton class declares the static
method getinstance (1) that returns the

same instance of its own class.

** The Singleton’s constructor should be

hidden from the client code.

¢ Calling the getinstance (1) method
should be the only way of getting the

Singleton object.

Singleton P —

Client

- instance: Singleton
- Singleton()

+ getlnstance(): Singleton 1

if (instance == null) {

// Note: if you're creating an app with

// multithreading support, you should

// place a thread lock here
instance = new Singleton()

}

return instance

COMP2511: Singleton Pattern and Asynchronous Design

Singleton: How to Implement

%+ Add a private static field to the class for storing the singleton instance.
%* Declare a public static creation method for getting the singleton instance.

% Implement “lazy initialization” inside the static method.

o It should create a new object on its first call and put it into the static field.
o The method should always return that instance on all subsequent calls.

+* Make the constructor of the class private.

o The static method of the class will still be able to call the constructor, but not the
other objects.

% In aclient, call singleton’s static creation method to access the object.

For more information, read:
https://refactoring.guru/design-patterns/singleton/java/example

COMP2511: Singleton Pattern and Asynchronous Design

VVVVVV

https://refactoring.guru/design-patterns/singleton/java/example
https://refactoring.guru/design-patterns/singleton/java/example
https://refactoring.guru/design-patterns/singleton/java/example
https://refactoring.guru/design-patterns/singleton/java/example
https://refactoring.guru/design-patterns/singleton/java/example

Synchronous vs Asynchronous
Software Design

What is Synchronous programming?

* |n synchronous programming, operations are carried out in order.

* The execution of an operation is dependent upon the completion of the
preceding operation.

* Tasks (functions) A, B, and C are executed in a sequence, often using one thread.

>

L0 [®]

COMP2511: Singleton Pattern and Asynchronous Design 7
J y J UNSW

VVVVVV

What is Asynchronous programming?

* In asynchronous programming, operations are carried out independently.

* The execution of an operation is not dependent upon the completion of the
preceding operation.

* Tasks (functions) A, B, and C are executed independently, can use multiple
threads/resources.

Ai 8
Call Back

function for B A
Call Back
function for C

COMP2511: Singleton Pattern and Asynchronous Design

VVVVVV

Example: Synchronous vs Asynchronous programming

Synchronous

function getRecord(key) {
establish database connection
retrieve the record for key
return record;

}

function display(rec){
display rec on the web page

}
rec = getRecord('Rita’); J__,;;
display(rec)

rec = getRecord('John');
display(rec)

Asynchronous

function getRecord(key, callback) {
establish database connection
retrieve the record for key
callback(record);

}

function display(rec)/{
display rec on the web page

}

getRecord(‘Rita’, display)
getRecord(‘John’, display)

'

COMP2511: Singleton Pattern and Asynchronous Design

Kafka: An Example of Asynchronous Software Design

+»* Today, streams of data records, including streams of events, are continuously generated by many online applications.

+* A streaming platform enables the development of applications that can continuously and easily consume and process

streams of data and events.

¢ Apache Kafka (Kafka) is a free and open-source distributed streaming platform useful for building, real time or

asynchronous, event-driven applications.

+»+ Kafka offers loose coupling between producers and consumers.

«» Consumers have the option to either consume an event in real
time or asynchronously at a later time.

++ Kafka maintains the chronological order of records/events,
ensuring fault tolerance and durability.

%+ To increase scalability, Kafka separates a topic and stores each
partition on a different node.

%* Producer APl - Permits an application to publish streams of
records/events.

%+ Consumer API - Permits an application to subscribe to topics
and processes streams of records/events.

Producer Producer Producer
Kafka Cluster
Topic Topic Topic
| Partition | | Partition | |Partition|
[Partition | | Partition | |Partition|
’Panilion] [Partition} [Panilion}
Consumer Consumer Consumer

COMP2511: Singleton Pattern and Asynchronous Design

END

