
Singleton Pattern
and Asynchronous
Design

COMP2511, CSE, UNSW
UNSW

SYDNEY

Creational Pattern: Singleton Pattern

COMP2511: Singleton Pattern and Asynchronous Design 2

Creational patterns provide various object creation mechanisms, which increase
flexibility and reuse of existing code.

•:• Factory Method
o provides an interface for creating objects in a superclass,

but allows subclasses to alter the type of objects that will be created.

•:• Abstract Factory
o let users produce families of related objects

without soecifvinR their concrete classes.

•:• Singleton
o Let users ensure that a class has only one instance,

while providing a global access point to this instance.

~

UNSW
SYDN E Y

Singleton Pattern

COMP2511: Singleton Pattern and Asynchronous Design 3

Intent: Singleton is a creational design pattern that lets you ensure that a class has
only one instance, while providing a global access point to this instance.

Problem: A client wants to,

•!• ensure that a class has just a single instance, and

•!• provide a global access point to that instance

Solution:

All implementations of the Singleton have these two steps in common:

•!• Make the default constructor private, to prevent other objects from using the new operator
with the Singleton class.

•!• Create a static creation method that acts as a constructor. Under the hood, this method calls the
private constructor to create an object and saves it in a static field. All following calls to this
method return the cached object.

•!• If your code has access to the Singleton class, then it's able to call the Singleton's static method.

•!• Whenever Singleton's static method is called, the same object is always returned.

~

UNSW
SYDN E Y

Singleton: Structure

COMP2511: Singleton Pattern and Asynchronous Design 4

•!• The Singleton class declares the static

method getlnstance (1) that returns the

same instance of its own class.

•!• The Singleton's constructor should be

hidden from the client code.

•!• Calling the getlnstance {1} method

should be the only way of getting the

Singleton object.

Client

Singleton

-inst nce:Sing leton
- SingletonO

getlnstanceQ: Sing.lgtQn @

if (instance == null) {

}

II o f ou'r er ating an pp I h
II mul I hr ading support, you shou d
II plac a thread ock h r .
instance= new SingletonO

return instance

~

UNSW
SYDN E Y

Singleton: How to Implement

For more information, read:
 https://refactoring.guru/design-patterns/singleton/java/example

COMP2511: Singleton Pattern and Asynchronous Design 5

•!• Add a private static field to the class for storing the singleton instance.

•!• Declare a public static creation method for getting the singleton instance.

•!• Implement "lazy initialization" inside the static method.

o It should create a new object on its first call and put it into the static field.

o The method should always return that instance on all subsequent calls.

•!• Make the constructor of the class private.

o The static method of the class will still be able to call the constructor, but not the
other objects.

•!• In a client, call singleton's static creation method to access the object.

~

UNSW
SYDN E Y

https://refactoring.guru/design-patterns/singleton/java/example
https://refactoring.guru/design-patterns/singleton/java/example
https://refactoring.guru/design-patterns/singleton/java/example
https://refactoring.guru/design-patterns/singleton/java/example
https://refactoring.guru/design-patterns/singleton/java/example

Synchronous vs Asynchronous
Software Design UNSW

SYDNEY

What is Synchronous programming?

COMP2511: Singleton Pattern and Asynchronous Design 7

• In synchronous programming, operations are carried out in order.

• The execution of an operation is dependent upon the completion of the
preceding operation.

• Tasks (functions) A, B, and Care executed in a sequence, often using one thread.

A

B

C

~

UNSW
SYDNEY

What is Asynchronous programming?

COMP2511: Singleton Pattern and Asynchronous Design 8

• In asynchronous programming, operations are carried out independently.

• The execution of an operation is not dependent upon the completion of the
preceding operation.

• Tasks (functions) A, B, and Care executed independently, can use multiple
threads/ resources.

A
Call Back

function for B

C

Cal/Back

function for C

~

UNSW
SYDNEY

Example: Synchronous vs Asynchronous programming

COMP2511: Singleton Pattern and Asynchronous Design 9

Synchronous

function getRecord (key) {
establish database connection
retrieve the record for key
return record;

}

function display (rec){
display rec on the web page

}

rec= getRecord ('Rita');
display(rec)

rec= getRecord ('John');
display(rec)

A

B

Asynchronous

function getRecord (key, callback) {
establish database connection
retrieve the record for key
callback (record);

}

function display (rec){
display rec on the web page

}

getRecord('Rita', display)--1--.
getRecord('John', display)

- ---t-A.

B

~

UNSW
SYDNEY

Kafka: An Example of Asynchronous Software Design

COMP2511: Singleton Pattern and Asynchronous Design 10

❖ Today, streams of data records, including streams of events, are continuously generated by many online applications.

❖ A streaming platform enables the development of applications that can continuously and easily consume and process
streams of data and events.

❖ Apache Kafka (Kafka) is a free and open-source distributed streaming platform useful for building, real time or
asynchronous, event-driven applications.

❖ Kafka offers loose coupling between producers and consumers.

❖ Consumers have the option to either consume an event in real
time or asynchronously at a later time.

❖ Kafka maintains the chronological order of records/events,
ensuring fault tolerance and durability.

❖ To increase scalability, Kafka separates a topic and stores each
partition on a different node.

❖ Producer AP/ - Permits an application to publish streams of l
records/ events.

❖ Consumer AP/ - Permits an application to subscribe to topics

L and processes streams of records/events.

Producer Producer Producer

Kafka Cluster

Topic Topic Topic

IParti~ IPartitio~ r,;;rtrtion j
[Partition J [Partlt~ [Partition

[iirtltlon J [Partlt~ !Partition

@ onsum~

~

UNSW
SYDN E Y

END

COMP2511: Singleton Pattern and Asynchronous Design 11 ~

UNSW
SYDN EY

