Functional
Paradigm in Java

COMP2511, CSE, UNSW

Java Lambda Expressions

** Lambda expressions allow us to
¢ easily define anonymous methods,
% treat code as data and
*» pass functionality as method argument.

% An anonymous inner class with only one method can be replaced by a lambda
expression.

** Lambda expressions can be used to implement an interface with only one abstract
method. Such interfaces are called Functional Interfaces.

» Lambda expressions offer functions as objects - a feature from functional programming.

» Lambda expressions are less verbose and offers more flexibility.

COMP2511: Functional Paradigm in Java

VVVVVV

Java Lambda Expressions - Syntax

A lambda expression consists of the following:

¢ A comma-separated list of formal parameters enclosed in parentheses. No need to provide data
types, they will be inferred. For only one parameter, we can omit the parentheses.
** The arrow token, =>

+* A body, which consists of a single expression or a statement block.

MyFunctionInterfaceA fl = (x, y) => X + Yy ;

public interface MyFunctionInterfaceA { .
public int myCompute(int x, int y); MyFunctionInterfaceA f2

(x, y) => x =y + 200;

} MyFunctionInterfaceB f3

(x, y) = x>y ;

public interface MyFunctionInterfaceB {

2 MyFunctionInterfaceC f4 = x -> {
public boolean myCmp(int x, int y);

double y = 1.5x%x;

} return y + 8.0;
};
public interface MyFunctionInterfaceC {
public double doSomething(int x); System.out.println(fl.myCompute(1@, 20)); // prints 30
} System.out.println(f2.myCompute(1@, 20)); // prints 190
System.out.println(f3.myCmp(10, 20)); // prints false

System.out.println(f4.doSomething(10)); // prints 23.0

COMP2511: Functional Paradigm in Java

Method References

We can treat an existing method as an instance of a Functional Interface.

There are multiple ways to refer to a method, using ¢ ¢ operator.

+* A static method (ClassName: :methName)

*» An instance method of a particular object (instanceRef : :methName) or

(ClassName: :methName)
+** A class constructor reference (ClassName: : new)

¢ Etc.

COMP2511: Functional Paradigm in Java

VVVVVV

Function Interfaces in Java

#* Functional interfaces, in the package java.util.function, provide predefined target types for
lambda expressions and method references.

7

#+ Each functional interface has a single abstract method, called the functional method for that functional
interface, to which the lambda expression's parameter and return types are matched or adapted.

®,

% Functional interfaces can provide a target type in multiple contexts, such as assignment context, method
invocation, etc. For example,

Predicate<String> p = String::isEmpty;
s

// Collect empty strings
List<String> strEmptylListl = strlList.stream()

filter(p)
.collect(Collectors.toList());

System.out.printin("Number of empty strings: " + strEmptyListl.size());
// prints 3

// Collect strings with length less than six
List<String> strEmptyList2 = strList.stream()
.filter(e => e.length() < 6)
.collect(Collectors.toList());

Lambda expression

System.out.println("Number of strings with length < 6: " + strEmptyList2.size());
// prints 4

Function Interfaces in Java

+»* There are several basic function shapes, including
** Function (unary function from T to R),
+* Consumer (unary function from T to void),
+* Predicate (unary function from T to boolean), and

<+ Supplier (nilary function to R).

** More information at the package summary page

https://docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.html

Function Interfaces in Java: Examples

Function<String, Integer> func = x -> x.length();
Integer answer = func.apply("Sydney");
System.out.println(answer); // prints 6

Function<String, Integer> funcl = x -> x.length();
Function<Integer, Boolean> func2 = x => x > 5;
Boolean result = funcl.andThen(func2).apply("Sydney");
System.out.println(result);

Predicate<Integer> myPass = mark -> mark >= 50 ;
List<Integer> listMarks = Arrays.asList(45, 50, 89, 65, 10);
List<Integer> passMarks = listMarks.stream()
.filter(myPass)
.collect(Collectors.toList());

System.out.println(passMarks); // prints [50, 89, 65]

Consumer<String> print = x -> System.out.println(x);
print.accept("Sydney"); // prints Sydney

Function Interfaces in Java: Examples

// Consumer to multiply 5 to every integer of a list
Consumer<List<Integer> > myModifyList = list -> {
for (int i = 0; i < list.size(); i++)
list.set(i, 5 * list.get(i));

}H

List<Integer> list = new ArraylList<Integer>();
list.add(5);
list.add(1);
list.add(10);

// Implement myModifylList using accept()
myModifylList.accept(list);

// Consumer to display a list of numbers
Consumer<List<Integer>> myDispList = myList -> {
myList.stream().forEach(e -> System.out.printin(e));

};

// Display list using myDisplList
myDispList.accept(list);

Comparator using Lambda Expression: Example

//Using an anonymous inner class

@Override
public int compare(Customer ol, Customer 02) {

}
} 3

custA.sort(myCmpAnonymous);

Comparator<Customer> myCmpAnonymous = new Comparator<Customer>() {

return ol.getRewardsPoints() - o02.getRewardsPoints() ; ~\\\

Only one line!

//Using Lambda expression — simple example (only one line)

custA.sort((Customer ol, Customer 02)->0l.getRewardsPoints() - o2.getRewardsPoints());

custA.forEach((cust) => System.out.println(cust));

«— Print using Lambda expression

COMP2511: Functional Paradigm in Java

Comparator using Lambda Expression: Another
Example

Parameters — 01 and 02
//Using Lambda expression ~fAnother example (with return)

custA.sort(|(Customer ol, Customer 02)-> {
if(ol.getPostcode() != o2.getPostcode()) {

return ol.getPostcode() - o02.getPostcode() ; }
return ol.getRewardsPoints() - o2.getRewardsPoints() ;

Hi e Body

Pipelines and Streams

*» A pipeline is a sequence of aggregate operations.

¢ The following example prints the male members contained in the collection roster with a
pipeline that consists of the aggregate operations £ilter and forEach:

roster Using pipeline and aggregate ops:

.Sstream()
.filter(e -> e.getGender() == Person.Sex.MALE)

.forEach(e -> System.out.println(e.getName()));

Traditional approach,

for (Person p : roster) {
using a for-each loop:

if (p.getGender() == Person.Sex.MALE) {
System.out.println(p.getName());

}

}
*» Please note that, in a pipeline, operations are loosely coupled, they only rely on their incoming
streams and can be easily rearranged/replaced by other suitable operations.

¢ Just to clarify, the “” (dot) operator in the above syntax has a very different meaning to the “

(dot) operator used with an instance or a class. o

COMP2511: Functional Paradigm in Java

Pipelines and Streams

*

A pipeline contains the following components:

* A source: This could be a collection, an array, a generator function, or an I/O channel. Such as
roster in the example.

» Zero or more intermediate operations. An intermediate operation, such as filter, produces a
new stream.

A stream is a sequence of elements. The method stream creates a stream from a collection
(roster).

The filter operation returns a new stream that contains elements that match its predicate. The
filter operation in the example returns a stream that contains all male members in the collection
roster.

A terminal operation. A terminal operation, such as forEach, produces a non-stream result, such
as a primitive value (like a double value), a collection, or in the case of forEach, no value at all.

roster
.stream()
.filter(e -> e.getGender() == Person.Sex.MALE)
.forEach(e -> System.out.println(e.getName()));

COMP2511: Functional Paradigm in Java 12

Pipelines and Streams: Example

X4

X4

X4

X4

double average = roster
.Stream()
.filter(p -> p.getGender() == Person.Sex.MALE)
.mapTolInt (Person: :getAge)
.average()
.getAsDouble();

The above example calculates the average age of all male members contained in the collection
roster with a pipeline that consists of the aggregate operations filter, mapTolnt, and average.

The mapTolnt operation returns a new stream of type IntStream (which is a stream that contains
only integer values). The operation applies the function specified in its parameter to each
element in a particular stream.

As expected, the average operation calculates the average value of the elements contained in a
stream of type IntStream.

There are many terminal operations such as average that return one value by combining the
contents of a stream. These operations are called reduction operations; see the section
Reduction for more information at https://docs.oracle.com/javase/tutorial/collections/streams/reduction.html

COMP2511: Functional Paradigm in Java 13

Pipelines and Streams: Another Example

double avgNonEmptyStrLen = strList.stream()
.filter(e => e.length() > 0@)
.mapToInt(String::length)
.average()
.getAsDouble();

End

