
Functional
Paradigm in Java

COMP2511, CSE, UNSW
UNSW

SYDNEY

Java Lambda Expressions

COMP2511: Functional Paradigm in Java 2

•:• Lambda expressions allow us to

•!• easily define anonymous methods,

•!• treat code as data and

•!• pass functionality as method argument.

•:• An anonymous inner class with only one method can be replaced by a lambda .
expression.

•:• Lambda expressions can be used to implement an interface with only one abstract
method. Such interfaces are called Functional Interfaces.

•:• Lambda expressions offer functions as objects - a feature from functional programming.

•:• Lambda expressions are less verbose and offers more flexibility.

~

UNSW
SYDN E Y

Java Lambda Expressions - Syntax

COMP2511: Functional Paradigm in Java 3

A lambda expression consists of the following:

•!• A comma-separated list of formal parameters enclosed in parentheses. No need to provide data
types, they will be inferred. For only one parameter, we can omit the parentheses.

•!• The arrow token, ->
•!• A body, which consists of a single expression or a statement block.

public interf ce MyFunctioninterf ceA {
public int myCompute (int x, int y);

}

public interface MyFunctioninterfaceB {
public boolean myC p(int x, int y);

}

public interface MyFunctioninterfaceC {
public double doSomething (int x);

}

~-----------------------~
MyFunctioninterfac A fl= (x , y) - > x + y;

MyfunctioninterfaceA f2 = (x , y) - > x - y + 200 ;

MyFunctioninterfaceB f3 = (x , y) - > x > y ;

MyfunctioninterfaceC f4 ox-> {

Syste .out . printtn (
Syst m. out . printtn{
Syste .out . printtn (
Syste . out . println (

double y = 1.5 x;
return y + 8.0 ;

};

f 1. myCompute (10, 20)

f2 .myCompute (10 , 20)

f3 .myCmp (l0 , 20)) ;

f4 . doSomething (10)) ;

) ; I prints 30
) ; I prints 190

I I prints false
II prints 23.0

~

UNSW
SYDN EY

Method References

COMP2511: Functional Paradigm in Java 4

We can treat an existing method as an instance of a Functional Interface.

There are multiple ways to refer to a method, using : : operator.

•!• A static method (ClassName : : methName)

•!• An instance method of a particular object (instanceRef : : methName) or

(ClassName : : methName)

•!• A class constructor reference (ClassName : : new)

•!• Etc.

~

UNSW
SYDN E Y

Function Interfaces in Java

COMP2511: Functional Paradigm in Java 5

❖ Functional interfaces, in the package j ava. util. function, provide predefined target types for
lambda expressions and method references.

❖ Each functional interface has a single abstract method, called the functional method for that functional
interface, to which the lambda expression's parameter and return types are matched or adapted.

❖ Functional interfaces can provide a target type in multiple contexts, such as assignment context, method
invocation, etc. For example,

Predicate<String> p = String:: i sEmpty ;

II Collect empty strings
List<String> strEmpt yl is t l = strlist . stream()

. filter (p)

. collect (Collectors . tolist ()):

Syste .out . println ("Number of empty strings:" + st rEmpt ylistl. size ());
II prints 3

II Callee tring ~th l ngth l than ix
{

Lambda expression
List<String> st rEmpt ylist2 = strlist. stream()

. filter (e -> e. length () < 6 }

. collect (Cottectors . tolist ());

Syste . out . println ("Nu ber of strings with length< 6: " + strEmptylist2 . size ());
II prints 4

~

UNSW
SYDN EY

Function Interfaces in Java

COMP2511: Functional Paradigm in Java 6

•!• There are several basic function shapes, including

•!• Function (unary function from T to R),

•!• Consumer (unary function from T to void),

•!• Predicate (unary function from T to boolean), and

•!• Supplier (nilary function to R).

•!• More information at the package summary page

https://docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.html

~

UNSW
SYDN E Y

Function Interfaces in Java: Examples

COMP2511: Functional Paradigm in Java 7

Function<String , Integer> func = x -> x . length ();
Integer answer = func. apply ("Sydney");
Syste .out . println (answer) ; / pr 6

Function<String , Integer> funcl = x -> x . length ();
Function<Integer , Boolean> func2 = x -> x > ;
Boole n result = funcl .andThen (func2). apply ("Sydney");
Syste .out . println (result);

Predicate<Integer> myPass = mark-> ma rk >= 50 ;
List<Integer> listMa rks = Arr ys . as List (5, , 0, 89 , 65 , 10) ;
List<Integer> passMarks = listMarks . stream()

. filter (myPass)

. collect (Collectors. tolist ());

Syste .out . println (passMarks); // prints [50, 89, 65)

Consu er<String> print = x -> Syste . out . println (x) ;
print. accept ("Sydney"); ,, rints Sydney

~

UNSW
SYDN EY

Function Interfaces in Java: Examples

COMP2511: Functional Paradigm in Java 8

II Consumer to mult· 11 _ r, ea
Consu er<List<Integer> > myModifylist = list

for (inti = 0; i < list . size (); i ++)
list . set (i , 5 list. get (i));

};

a list
-> {

List<Integer> list = new Arraylist<Integer> (};
list. add (S);
list. add () ;
list. add (0};

II nt myMo 1sing accept()
myModifylist . accept (list };

II Cor r to displ v ~ 1m
Consu er<List<Integer>> myDisplist = mylist -> {

mylist . stream(} . forEach (e -> System . out . println (e}} ;
};

DispList
myDisplis t . accept (list };

~

UNSW
SYDN EY

Comparator using Lambda Expression: Example

COMP2511: Functional Paradigm in Java 9

J J onymo
Co parator<Customer> myCmpAnonymous = new Co parator<Customer>() {

@Override

} ;

public int compare (Customer ol, Custo er o2) {
return ol. getRewardsPoints () - o2. getRewardsPoints () ;

}

custA. sort (myCmpAnonymous);

11 ·,q L expression - simp 1 (only one lin

Only one line!

custA. sort ((Custo er ol, Custo er o2)->ol. getRewardsPoin s () - o2. getRewardsPoints ());

custA. forEach ((cust) -> Syste .out . println (cust)); w---- Print using Lambda expression

~

UNSW
SYDN EY

Comparator using Lambda Expression: Another
Example

COMP2511: Functional Paradigm in Java 10

//U in
c stA so

rt rn ol.
re

}) :

{

stco ()) {
os code{ o2. e Pos cod () , }

ts () a ds o , ts () ,

Body

~

UNSW
SYDN EY

Pipelines and Streams

COMP2511: Functional Paradigm in Java 11

•!• A pipeline is a sequence of aggregate operations.

•!• The following example prints the male members contained in the collection roster with a
pipeline that consists of the aggregate operations filter and forEach :

roster Using pipeline and aggregate ops:
. stream()
.filter(e -> e.getGender() ==Person.Sex.MALE)
.forEach(e -> System.out.println(e.getName()));

for (Person p: roster) { Traditional approach,
using a for-each loop:

}

if (p.getGender() == Person.Sex.MALE) {
System.out.println(p.getName());

}

•!• Please note that, in a pipeline, operations are loosely coupled, they only rely on their incoming
streams and can be easily rearranged/replaced by other suitable operations.

•!• Just to clarify, the "." (dot) operator in the above syntax has a very different meaning to the "."
(dot) operator used with an ins!~-~f.~.9f a. ~l~ss . .

~

UNSW
SYDNEY

Pipelines and Streams

COMP2511: Functional Paradigm in Java 12

•!• A pipeline contains the following components:

• A source: This could be a collection, an array, a generator function, or an 1/0 channel. Such as
roster in the example.

• Zero or more intermediate operations. An intermediate operation, such as filter, produces a
new stream.

•!• A stream is a sequence of elements. The method stream creates a stream from a collection
(roster).

•!• The filter operation returns a new stream that contains elements that match its predicate. The
filter operation in the example returns a stream that contains all male members in the collection
roster.

•!• A terminal operation. A terminal operation, such as forEach, produces a non-stream result, such
as a primitive value (like a double value), a collection, or in the case of forEach, no value at all.

roster
. stream()
.filter(e -> e.getGender() ==Person.Sex.MALE)
.forEach(e -> Systern.out.println(e.getNarne()));

~

UNSW
SYDN E Y

Pipelines and Streams: Example

COMP2511: Functional Paradigm in Java 13

double average= roster
. stream()
.filter(p -> p.getGender() -- Person.Sex.MALE)
.mapToint(Person::getAge)
.average()
.getAsDouble();

•!• The above example calculates the average age of all male members contained in the collection
roster with a pipeline that consists of the aggregate operations filter, mapTolnt, and average.

•!• The mapTolnt operation returns a new stream of type lntStream (which is a stream that contains
only integer values). The operation applies the function specified in its parameter to each
element in a particular stream.

•!• As expected, the average operation calculates the average value of the elements contained in a
stream of type lntStream.

•!• There are many terminal operations such as average that return one value by combining the
contents of a stream. These operations are called reduction operations; see the section
Reduction for more information at https://docs.oracle.com/javase/tutorial/collections/streams/reduction.html

~

UNSW
SYDN E Y

Pipelines and Streams: Another Example

COMP2511: Functional Paradigm in Java 14

doub e avgNon ptySt r en = s rlist strea' ()
. filter (e -> e. le

ap oint (S rig·
. average ()
. getAs o ble ();

gt ()>
eng h)

)

~

UNSW
SYDN EY

End

COMP2511: Functional Paradigm in Java 15 ~

UNSW
SYDN EY

