
Creational 
Patterns

COMP2511, CSE, UNSW
UNSW 

SYDNEY 



Creational Patterns 

COMP2511: Creational Patterns 2

Creational patterns provide various object creation mechanisms, which increase 
flexibility and reuse of existing code. 

•:• Factory Method 
o provides an interface for creating objects in a superclass, 

but allows subclasses to alter the type of objects that will be created. 

•:• Abstract Factory 
o let users produce families of related objects 

without specifying their concrete classes. 

•:• Builder 
o let users construct complex objects step by step. The pattern allows users to 

produce different types and representations of an object using the same 
construction code. 

•:• Singleton 
o Let users ensure that a class has only one instance, 

while providing a global access point to this instance. 

~ 

UNSW 
SYDNEY 



Factory Method 

COMP2511: Creational Patterns 3 ~ 

UNSW 
SYDNEY 



Factory Method

COMP2511: Creational Patterns 4

•!• Factory Method is a creational design pattern that uses factory methods to deal with 
the problem of creating objects without having to specify the exact class of the object 
that will be created. 

•!• Problem: 
o creating an object directly within the class that requires (uses) the object is inflexible 

o it commits the class to a particular object and 
o makes it impossible to change the instantiation independently from 

(without having to change) the class. 

•!• Possible Solution: 
o Define a separate operation (factory method) for creating an object. 

o Create an object by calling a factory method. 

o This enables writing of subclasses to change the way an object is created 
(to redefine which class to instantiate). 

~ 

UNSW 
SYDNEY 



Factory Method : Structure

COMP2511: Creational Patterns 5

Product p • createProductQ 
p.doStuffQ 

... 

Creator 

.. + someOperation0 

(3) 

+ createProduetO: Product 

~ 
I I 

ConcreteCreatorA ConcreteCreatorB ,_ 
... 1 4 t . 

' 
+ createProductQ: Product + createProductQ. Product 

return new ConcreteProductAO 

«interface» 

- Product 
~ 

+ doStutf0 

, ______ i _____ -, 
I I 

' 
Concrete I 

ProductA I 
2 Co ncrete 

ductB Pro 

1. The Product declares the interface, which is common to all objects that can be produced by the 
creator and its subclasses. 

2. Concrete Products are different implementations of the product interface. 

3. The Creator class declares the factory method that returns new product objects. 

4. Concrete Creators override the base factory method so it returns a different type of product. 

~ 

UNSW 
SYDNEY 



Factory Method : Example

COMP2511: Creational Patterns 6

Example in Java (MUST read): 
https://refactoring.guru/design-patterns/factory-method/java/example

Bu o okButton • createBu onO 
o Button onClick(closeDialog) 
o Button.re derO 

Dialog 

... 

- - renderO 
createButtonO • Button 

4 
I I 

WindowsDi log Web Dialog 

... . .. 

createButtonQ: Bu on createButtonQ: Button 

return n w WindowsBu onO 

«interface» 

- Button -
renderO 

onCl1ckO 

, ______ 1 _____ 
I 
I 

Windows H 
Button B 

~ 

UNSW 
SYDNEY 

https://refactoring.guru/design-patterns/factory-method/java/example


Factory Method 

COMP2511: Creational Patterns 7

For more, read the following: 

https://refactoring.guru/design-patterns/factory-method
 

~ 

UNSW 
SYDNEY 

https://refactoring.guru/design-patterns/factory-method


Abstract Factory Pattern

COMP2511: Creational Patterns 8 ~ 

UNSW 
SYDNEY 



Abstract Factory Pattern

COMP2511: Creational Patterns 9

Intent: Abstract Factory is a creational design pattern that lets you produce families of 
related objects without specifying their concrete classes. 

Problem: 

Imagine that you're creating a furniture shop simulator. Your code consists of classes that 
represent: 

•!• A family of related products, say: Chair+ Sofa+ CoffeeTable. 

•!• Several variants of this family. 
•!• For example, products Chair+ Sofa+ CoffeeTable are available in these variants: 

Coffee 
Ch ir Sofa 1 ble 

I I 
I I 

Art Deco 
I I 
I I 
I I 
I I I 

-------- I 
I 
--------- I 

---------- i---I 
I 

~ t? 
I 

Victorian .,_ - I I 
I I 
I I 
I I 
I I ---------

---------- ---------- ---------I I 

lb 
I I 

0 Modern 
I I 9 I I I 
I 
I I I 

---· ----------

~ 

UNSW 
SYDNEY 



Abstract Factory Pattern: 

COMP2511: Creational Patterns 10

~ 

«interface 
Chair 

haslegsQ 
+ s tOnQ 

I ,---------------, 
I I 

VictorianChair ModernChair 

... ... 
haslegsQ hasl..egsQ 

+ sitOnQ sitOn0 

Possible Solution: 

lb 

«interface» 
FurnitureFactory 

createChairQ: Chair 
createCoffeeTableQ: CoffeeTable 

createSofaQ· Sofa 

,--------------~--------------, I I 

Victori nFurnitureFactory 

+ createChairO: Chair 
createCoff TableQ. Coffee Table 

+ createSo aQ: So a 

ModernFurnitureF ctory 

+ creat ChairQ: Chair 
createCoffceTabl O: Coff eTable ,;,, 

+ createSofaQ: Sofa -+-

~ 

UNSW 
SYDNEY 



COMP2511: Creational Patterns 11

Abstract Factory Pattern: Structure 4 
ConcreteFactory1 

,--------------,-------
' I --------

: : + creat DroductAO: ProductA 
I I '+' W + createProductBQ: ProductB 

Coner t 
ProductA1 

Concrete 
ProductA2 

2 

2 

Coner 
Product81 

Concrete 
Product82 

~ 4 
: I 
I I 

~--------------J ______ _ 
r turn n 
ConaeteProductA20 

«interface» 

Abstr ctFactory 

+ createProductA(): ProductA 
er ateProductBO: ProductB 

ConcreteFactory2 

createProductAO: Prod ctA 
+ createProductBO: ProductB 

Client 

Client(f· AbstractFactory) 
someOp rat on0 

ProductA pa • actory ere t Prod ctAO 

1. Abstract Products declare interfaces for a set of distinct but related products which make up a product family. 
2. Concrete Products are various implementations of abstract products, grouped by variants. Each abstract product 

(chair/sofa) must be implemented in all given variants (Victorian/Modern). 
3. The Abstract Factory interface declares a set of methods for creating each of the abstract products. 
4. Concrete Factories implement creation methods of the abstract factory. Each concrete factory corresponds to a specific 

variant of products and creates only those product variants. 
5. The Client can work with any concrete factory/product variant, as long as it communicates with their objects via abstract 

interfaces. 

~ 

UNSW 
SYDNEY 



Abstract Factory Pattern: Example

COMP2511: Creational Patterns 12

Example in Java (MUST read): 
https://refactoring.guru/design-patterns/abstract-factory/java/example
 

. -----------~-------• I 
I I 
I I 
I I 
I I 

'f 'f T WioCh""'°" 

I Button 11 Checkbox 

, M,1. , M ''""'"" 

~ ~ 
I 
I 
I 

I I 

. 

WinFactory 

... 

+ createButtonO· Button 
+ createCheckboxO: Checkbox 

«interface» 
GUIFactory 

+ createButtonO· Bu on 

+ createCheckboxQ. Checkbox 

MacFactory 

•-----------·------- aoo 

+ createButtonQ. Button 
+ createCheckboxQ: Checkbox 

Application 

• factory: GUI Factory 
button: Button 

+ Appl1cation(f: GUIFactory) 

+ createUIO 
+ paintO 

~ 

UNSW 
SYDNEY 

https://refactoring.guru/design-patterns/abstract-factory/java/example


Abstract Factory Pattern

COMP2511: Creational Patterns 13

For more, read the following: 

https://refactoring.guru/design-patterns/abstract-factory
 

~ 

UNSW 
SYDNEY 

https://refactoring.guru/design-patterns/abstract-factory


End

COMP2511: Creational Patterns 14 ~ 

UNSW 
SYDNEY 


