Composite
Pattern

COMP2511, CSE, UNSW

Composite Pattern

These lecture notes use material from the reference book “Head First Design Patterns”.

Composite Pattern: Motivation and Intent

* In OO programming, a composite is an object designed as a composition of one-or-more similar
objects (exhibiting similar functionality).

* Aim is to be able to manipulate a single instance of the object just as we would manipulate a
group of them. For example,

e operation to resize a group of Shapes should be same as resizing a single Shape.
* calculating size of a file should be same as a directory.

* No discrimination between a Single (leaf) Vs a Composite (group) object.

 |If we discriminate between a single object and a group of object,
code will become more complex and therefore, more error prone.

COMP2511: Composite Pattern 3
P UNSW

VVVVVV

Composite Pattern: More Examples

Calculate the total price of an individual part or a complete subcomponent (consisting of many
parts) without having to treat part and subcomponent differently.

subcomponent @

Processor

A text document can be organized as part-whole hierarchy consisting of
» characters, pictures, lines, pages, etc. (parts) and
* lines, pages, document, etc. (wholes).

* Display a line, page or the entire document (consisting of many pages) uniformly using the same
operation/method.

- P
COMP2511: Composite Pattern 4 =

VVVVVV

Composite Pattern: Possible Solution

<<Interface>>

Component . compositel
f—p - pr———p
Client ’ Client ’ Component I
+ operationi()
+ operation2() , \
Y / I
22 = leafl composite2 leaf2
Leaf Composite :Component Component Component
+ operation1() + operation1() U = S
+ operation2() + operation2()
+ add(Component c)
+ remove(Component c)
tChild(int index): Com t
HOMCARCRRL A Sompone, leaf3 leafa leafs
:Component :Component :Component

* Define a unified Component interface for both
Leaf (single / part) objects and Composite (Group / whole) objects.

* A Composite stores a collection of children components (either Leaf and/or Composite
objects).

* Clients can ignore the differences between compositions of objects and individual objects, this
greatly simplifies clients of complex hierarchies and makes them easier to implement, change,

test, and reuse.

COMP2511: Composite Pattern

Composite Pattern: Possible Solution

* Tree structures are normally used to represent part-whole hierarchies. A multiway tree structure
stores a collection of say Components at each node (children below), to store Leaf objects

and Composite (subtree) objects.

 ALeaf object performs operations directly on the object.

* AComposite object performs operations on its children, and if required, collects return values

and derives the required answers.

Code Segment from the Composite class

@0verride
public double calculateCost() {
double answer = this.getCost();
for(Component ¢ : children) {
answer += c.calculateCost();

}

return answer;

ArrayList<Component> children = new ArrayList<Component>();

ead the example

For more, I :
ed for this week

code provid

COMP2511: Composite Pattern

Implementation Issue: Uniformity vs Type Safety

Two possible approaches to implement child-related operations
(methods like add, remove, getChild, etc.):

<<Interface>>
Component

+ operationi()
+ operation2()

g v v on

Leaf

+ operation1()
+ operation2()

Composite

+ operation1()

+ operation2()

+ add(Component c)

+ remove(Component c)

+ getChild(int index): Component

operations in the Composite class.

-

Design for Type Safety: only define child-related

/

See the next slide for more details.

-

<<interface>>
Component

=P, operation1()

+ operation2()

i+ add(Component ¢)

1+ remove(Component ¢)

1+ getChild(int index): Component

VN

Client

~

Leaf Composite

+ operationi()

+ operation2()

+ add(Component c)

+ remove(Component ¢)

+ operation1()

+ operation2()

+ add(Component c)

+ remove(Component ¢)

+ getChild(int index): Component

+ getChild(int index): Component

Design for Uniformity: include all child-related
vperations in the Component interface. /

COMP2511: Composite Pattern

Implementation Issue: Uniformity vs Type Safety

Design for Uniformity

include all child-related operations in the Component interface, this means the Leaf class
needs to implement these methods with “do nothing” or “throw exception”.

a client can treat both Leaf and Composite objects uniformly.
we loose type safety because Leaf and Composite types are not cleanly separated.

useful for dynamic structures where children types change dynamically (from Leaf to
Composite and vice versa), and a client needs to perform child-related operations regularly.
For example, a document editor application.

Design for Type Safety

only define child-related operations in the Composite class

the type system enforces type constraints, so a client cannot perform child-related
operations on a Leaf object.

a client needs to treat Leaf and Composite objects differently.

useful for static structures where a client doesn’t need to perform child-related operations
on “unknown” objects of type Component.

COMP2511: Composite Pattern

VVVVVV

Composite Pattern: Demo Example resdthe e

Client —_

<<Interface>>
Component

1+ nameString()

I+ calculateCost()

i+ add(Component c)

l+ remove(Component ¢)

I+ getChild(int index): Component

VL

+ nameString()
+ calculateCost()

Leaf

+ add(Component ¢)
+ remove(Component ¢)
+ getChild(int index): Component

Composite

+ nameString()

+ calculateCost()

+ add(Component ¢)

+ remove(Component ¢)

+ getChild(int index): Component

the lectures, an

le co
d also provided fo

de discussed/deve\oped in

r this week

Component mainboard
Component processor
Component memory

mainboard.add(memory) ;

chasis.add(mainboard);

chasis.add(disk);

Client e ———

c;g:ﬁ;m System.out.println("[0]
: System.out.println("[0]
l \\\\\\\\\ak System.out.println(“[1]
System.out.println("[1]
mainboard disk
:Component :Component

System.out.println("[2]

R

processor

:Component :Component

memory

System.out.println("[2]

Il+
II*

II*
Il+

Dl+
II+

new Composite(“Mainboard”, 100);
new Leaf("Processor”, 450);

new Leaf("Memory", 80);
mainboard.add(processor);

Component chasis = new Composite(“Chasis”, 75);

Component disk = new Leaf("Disk", 50);

processor.nameString());
processor.calculateCost());

mainboard.nameString());
mainboard.calculateCost());

chasis.nameString());
chasis.calculateCost());

—!""_'J-

This example uses design for Uniformity (see composite.uniformity).
Sample code also includes design for Type Safety (see composite.typesafe).

COMP2511: Composite Pattern

public class MenuTestbrive { Composite Pattern: Demo Example

public static void main(String args[]) {

MenuComponent pancakeHouseMenu =

new Menu("“PANCAKE HOUSE MENU", “Breakfast"); \ ed
MenuComponent dinerMenu = ussed ed/deve op

new Menu("DINER MENU", "Lunch"); \e de disC for th\s wee
MenuComponent cafeMenu = 4 the exa xampi€ \ o prov d 1o

new Menu("CAFE MENU", "Dinner"); Read es
MenuComponent dessertMenu = he \ecture>

new Menu("DESSERT MENU", "Dessert of course!");
MenuComponent coffeeMenu = new Menu("COFFEE MENU", "S

MenuComponent allMenus = new Menu("ALL MENUS", "All m| ALL MENUS, All menus combined

allMenus.add(pancakeHouseMenu);

allMenus.add(dinerMenu); PANCAKE HOUSE MENU, Breakfast
allMenus.add(cafeMenu); | feeeeeeeeieeeeee et

K&B's Pancake Breakfast(v), 2.99

pancakeHouseMenu.add (new MenuItem(-- Pancakes with scrambled eggs, and toast
"K&B's Pancake Breakfast", Regular Pancake Breakfast, 2.99
“Pancakes with scrambled eggs, and toast", -- Pancakes with fried eggs, sausage
true Blueberry Pancakes(v), 3.49
2 gg;). -- Pancakes made with fresh blueberries, and blueberry syrup

Waffles(v), 3.59

pancakeHouseMenu.add(new MenuItem(-- Waffles, with your choice of blueberries or strawberries

"Regular Pancake Breakfast",

“Pancakes with fried eggs, sausage”, DINER MENU, Lunch
faltse, | Jeeccecccccccccccccnn--
2.99)); Vegetarian BLT(v), 2.99
-- (Fakin') Bacon with lettuce & tomato on whole wheat
BLT, 2.99

-- Bacon with lettuce & tomato on whole wheat
Soup of the day, 3.29

-- A bowl of the soup of the day, with a side of potato salad
Hotdog, 3.65

allMenus.print();
]

Demos

** Live Demos ...

** Make sure you properly understand the demo example code

available for this week.

COMP2511: Composite Pattern 11

Summary

* The Composite Pattern provides a structure to hold both individual objects and
composites.

* The Composite Pattern allows clients to treat composites and individual objects
uniformly.

A Component is any object in a Composite structure. Components may be other
composites or leaf nodes.

* There are many design tradeoffs in implementing Composite. You need to balance
transparency/uniformity and type safety with your needs.

COMP2511: Composite Pattern 12

SSSSSS

