
Composite
Pattern

COMP2511, CSE, UNSW
UNSW

SYDNEY

Composite Pattern

These lecture notes use material from the reference book “Head First Design Patterns”.

COMP2511: Composite Pattern 2 ~

UNSW
SYDNEY

Composite Pattern: Motivation and Intent

COMP2511: Composite Pattern 3

• In 00 programming, a composite is an object designed as a composition of one-or-more similar
objects (exhibiting similar functionality).

• Aim is to be able to manipulate a single instance of the object just as we would manipulate a
group of them. For example,

• operation to resize a group of Shapes should be same as resizing a single Shape.

• calculating size of a file should be same as a directory.

• No discrimination between a Single (leaf) Vs a Composite (group) object.

• If we discriminate between a single object and a group of object,
code will become more complex and therefore, more error prone.

~

UNSW
SYDNEY

Composite Pattern: More Examples

COMP2511: Composite Pattern 4

Calculate the total price of an individual part or a complete subcomponent (consisting of many
parts) without having to treat part and subcomponent differently.

Chassis
subcomponent

Disk

Processor Memory

A text document can be organized as part-whole hierarchy consisting of

• characters, pictures, lines, pages, etc. (parts) and

• lines, pages, document, etc. (wholes).

• Display a line, page or the entire document (consisting of many pages) uniformly using the same
operation/ method.

~

UNSW
SYDNEY

Composite Pattern: Possible Solution

COMP2511: Composite Pattern 5

Client

Leaf

+ operation 1 ()
+ operabon2()

<<Interface>>
Component

+ operation1 ()
+ operation2()

Composite

+ operation 1 ()
+ operation2()
+ add(Component c)
+ remove(Component c)
+ getChild(lnt Index): Component

L

• Define a unified Component interface for both

:Client J ·[compositel] :Compo ent

/ --.
l ~ leafl composite27

Compone :Compone

/
leag

:Co pone Qeaf4 :J
mpone

Leaf (single I part) objects and Composite (Group I whole) objects.

G leaf2 ~
Compone

lea~ S
~ ompo ent

• A Composite stores a collection of children components (either Leaf and/or Composite
objects).

• Clients can ignore the differences between compositions of objects and individual objects, this
greatly simplifies clients of complex hierarchies and makes them easier to implement, change,
test, and reuse.

~

UNSW
SYDNEY

Composite Pattern: Possible Solution

COMP2511: Composite Pattern 6

• Tree structures are normally used to represent part-whole hierarchies. A multiway tree structure
stores a collection of say Components at each node (children below), to store Leaf objects
and Composite (subtree) objects.

• A Leaf object performs operations directly on the object.

• A Composite object performs operations on its children, and if required, collects return values
and derives the required answers.

Code Segment from the Composite class

Arraylist<Component> children = ne Arraylist<Component>);

@Override
public double calcula eCost {

double answer = this .ge Cost();
for Componen c : children {

ans er = c .calculat eCost);
}

return answer ;
}

For more, read the example
code provided for this week

~

UNSW
SYDNEY

Implementation Issue: Uniformity vs Type Safety

COMP2511: Composite Pattern 7

Two possible approaches to implement child-related operations
(methods like add, remove, getChild, etc.):

Cl ent

Leaf

+ operation10
+ operation20

<<Interface>>
Compon nt

+ operation1Q
+ operation20

..

Composite

+ operatlon10
+ operatlon20
+ add(Component c)
+ remove(Component c)
+ getChild(int "ndex): Co ponen

Design for Type Safety: only define child-related
operations in the Composite class.

See the next slide for more details.

<<Interface>>
Component

operatlo 10
operatlo 2()
add(Co
re

+ getC

.. ..
Leaf

+ operallo 10
+ operation2Q
+ add(Component c)
+ remove(Component c)
+ etC ·1d(lnt index): Componen

Compo te

operatlo 10
operatio 20

+ add(Componen c)
+ remove(Compone t c)
+ getC ild(int index)· Componen

Design for Uniformity: include all child-related
operations in the Component interface.

~

UNSW
SYDNEY

Implementation Issue: Uniformity vs Type Safety

COMP2511: Composite Pattern 8

Design for Uniformity
• include all child-related operations in the Component interface, this means the Leaf class

needs to implement these methods with "do nothing" or "throw exception".

• a client can treat both Leaf and Composite objects uniformly.

• we loose type safety because Leaf and Composite types are not cleanly separated.

• useful for dynamic structures where children types change dynamically (from Leaf to
Composite and vice versa), and a client needs to perform child-related operations regularly.
For example, a document editor application.

Design for Type Safety
• only define child-related operations in the Composite class

• the type system enforces type constraints, so a client cannot perform child-related
operations on a Leaf object.

• a client needs to treat Leaf and Composite objects differently.

• useful for static structures where a client doesn't need to perform child-related operations
on "unknown" objects of type Component.

~

UNSW
SYDNEY

COMP2511: Composite Pattern 9

Composite Pattern: Demo Example
ode discussed/developed in

Read the example c . ded for this week
the lectures, and also prov,

Client

Leal

+ nam ng()
+ cal ateCostO

<<lnterface>>
Component

+ names nng()
ca lateCostQ
add(Component c)

+ remove(Component c)
getC lld(lnt Index): Compone

+ dd(Compone I C)
+ remove(Component c}
+ getCt.ld(int index): Componen

:Cl ent

proc or
: o po"lent

Composite

ng()
stQ

ponent C)
o ponentc)

int index): Compone

m mory
:Co po1en

disk

Componen mainboard - ne
Coponen processor = n
Component m ory = ne
ainboard .add(processor);
ainboard .add(e o y);

Composi e 11 Mainboa rd• , 1 0);
Leaf(Processor 11 , 50
leaf(emory " , 80 ;

Componen chasis - ne Co posite(Chasis , 75
chasis .add(ainboard);

Componen dis - ne Leaf 'Dis , se
chasis .add(disk

Sys em. out .prin ln
Syste .out .pr ·n ln

Sys em. out .println
Sys e .out .prin ln

[0] II

[0] .,

[1] .,
[1] .,

processor .names ring() ;
processor .calcula eCost));

inboard .names r ·ng());
ainboard . calcula eCost (Ll ;

:Co porie t
Sys em. out .prin ln [2] II chasis .nameS ring) ;
Sys e .out .prin ln [2] chasis .calculateCos ()) ;,,

This example uses design for Uniformity (see composite.uniformity).
Sample code also includes design for Type Safety (see composite.typesafe).

~

UNSW
SYDNEY

COMP2511: Composite Pattern 10

public class enuTes Drive {
public static void a1n(String args []) {

enuCo ponen panca eHous enu =
ne enu(· PANCAKE HOUSE MENU · , · area fast •);

enuCo ponen din nu -
ne Menu(•DINER MENU tt , •Lunch N);

enuCo ponent cafe enu -
enu(•CAFE MENU • , •Di nne r");

ponent dessert enu -
n enu(•OESSERT MENU • , 'Dessert of course! ");

MenuComponent coffee enu - ne enuc •coF EE MENU ", S

enuComponent all enus = new enu (' ALL ENus • , 'All

allMenus .add(panca eHouse nu);
all enus .add(dine enu);
all enus .add(caf enu);

panca eHouse enu .add(new enuI e (
•K&B ' s Pancake Breakfast • ,
•Pancakes with scra bled eggs, and toast " ,
tru ,
2. 99));

panca eHouse enu .add(n w nu! e (
•Regular Pancake Breakfast " ,
•Pancakes with fried eggs, sausage u,
false ,
2. 99));

all enus .prin);

Composite Pattern: Demo Example

d'O
d/de\le\ope \

d. scusse . e\<
\e code \ . d tor th\S we

d the e~arnP \ o nro\J\de
Rea and as t'

the \ectures,

All MENUS, All menus co bined

PANCAKE HOUSE ENU, Breakfast

K&B ' s Pancake Breakfast(v), 2.99
-- Pancakes ith scra bled eggs, and toast

Regular Pancake Breakfast, 2.99
-- Pancakes with fr ed eggs, sausage

Blueberry Panca es(v), 3. 9
- - Pancakes ade w th fresh blueberries, and blueberry syrup

affles(v), 3.59
-- Waffles, with your choi ce of blueberries or strawb rri es

DINER ME U, lunch

Vegetarian BLT(v), 2.99
-- (Fakin ') Bacon with lettuce & tomato on whole wheat

BLT, 2.99
-- Bacon with lettuce & tomato on whole wheat

Soup of the day, 3.29
-- A bowl of the soup of the day, with a side of po a o salad

Ho dog, 3.85

~

UNSW
SYDNEY

Demos …….

v Live Demos ...

v Make sure you properly understand the demo example code

available for this week.

COMP2511: Composite Pattern 11 ~

UNSW
SYDNEY

Summary

COMP2511: Composite Pattern 12

• The Composite Pattern provides a structure to hold both individual objects and

composites.

• The Composite Pattern allows clients to treat composites and individua objects

uniformly.

• A Component is any object in a Composite structure. Components may be other

composites or leaf nodes.

• There are many design tradeoffs in implementing Composite. You need to balance

transparency/uniformity and type safety with your needs.

~

UNSW
SYDNEY

