Introduction to
Software Patterns
anag

Strategy Pattern

COMP2511, CSE, UNSW

YYYYYY

What Are Design Patterns?

** Proven solutions to common software design problems.
** Reusable templates that help structure software.

** Provide shared vocabulary for developers.

COMP2511: Introduction to Patterns and Strategy Pattern

Why Use Design Patterns?

% Serve as a template or a guide for addressing important software design issues.

» Is not a complete implementation, but rather a flexible guideline for addressing recurring design
challenges.

» Captures design expertise, making it easier to share and reuse across projects.
» Offers a common vocabulary that enhances communication among developers.
** Improve code readability and reusability

» Promote best practices and industry standards

+» Facilitate maintainability and scalability

COMP2511: Introduction to Patterns and Strategy Pattern

Mastering Design Patterns — An Art & Craft

s Develop a strong working knowledge of various patterns.
** Understand clearly the problems they can effectively solve.

+* Recognize accurately when a specific problem can benefit from applying a pattern.

COMP2511: Introduction to Patterns and Strategy Pattern 4

Origins and History of Design Patterns

¢ The concept stems from architecture, originally introduced by Christopher Alexander and

colleagues, who identified around 250 design patterns for building construction.
*»» Adapted to software by the "Gang of Four" (GoF): Gamma, Helm, Johnson, Vlissides

¢ GoF Book (1994): Design Patterns: Elements of Reusable Object-Oriented Software

COMP2511: Introduction to Patterns and Strategy Pattern

Key Elements of a Design Pattern:

** Name: Identifier for pattern

** Problem: Context and issue

>

** Solution: General design

** Consequences: Results and trade-offs

COMP2511: Introduction to Patterns and Strategy Pattern 6

When NOT to Use Patterns

** When patterns add unnecessary complexity
** When simpler solutions suffice

** Avoid "pattern abuse" or "overengineering"

COMP2511: Introduction to Patterns and Strategy Pattern 7

Design Patterns vs. Algorithms

% Algorithms solve computational problems
*» Design Patterns solve design/architectural problems

s Example:
o Algorithm: QuickSort

o Pattern: Strategy to switch sorting algorithms

COMP2511: Introduction to Patterns and Strategy Pattern

Design Patterns and Software Principles

** Closely tied to SOLID principles:
o Single Responsibility

Open/Closed

Liskov Substitution

Interface Segregation

Dependency Inversion

O O O O

s Patterns tries to address SOLID principles

COMP2511: Introduction to Patterns and Strategy Pattern 9

Problem Statement

Design Problem:
For simulation, represent a car with varying types of engines and brakes.

s A Car class should support, along with other behaviours:
o 4 types of engines (e.g., Petrol, Diesel, Electric, Hybrid)
o 5 types of brakes (e.g., Disc, Drum, Regenerative, ABS, Air Brakes)

** Requirements may change (add or modify engine/brake types)

COMP2511: Introduction to Patterns and Strategy Pattern 10

Implementation with pubtic class Car {

private S5tring engineType;

If E |Se private String brakeType;

public void startEngine() {

if (engineType.equals("petrol")) {
// Petrol engine logic

} else if (engineType.equals("diesel")) {
// Diesel engine logic

} else if (engineType.equals("electric")) {
// Electric engine logic

} else if (engineType.equals("hybrid")) {
// Hybrid engine logic

public void applyBrakes() {
if (brakeType.equals("disc")) {
// Disc brake logic
} else if (brakeType.equals("drum")) {
// Drum brake logic
} else if (brakeType.equals("regenerative")) {
// Regenerative braking logic

I
// «..and so on
}
}
Iﬂl
COMP2511: Introduction to Patterns and Strategy Pattern 11

UNSW

SYDNEY

Implementation with
If-Else

Problems with hardcoding logic, it is a bad practice:

» Violates the Open-Closed Principle: Class must be modified for every new
brake or engine type.

«* Adding new behaviour leads to code duplication and potential bugs.
«* Not scalable: Explosion of if-else or switch blocks.

% Code is hard to read and maintain.

COMP2511: Introduction to Patterns and Strategy Pattern

public class Car {
private S5tring engineType;
private String brakeType;

public void startEngine() {
if (engineType.equals("petrol")) {
// Petrol engine logic
} else if (engineType.equals("diesel")} {
// Diesel engine logic
} else if (engineType.equals("electric")) {
// Electric engine logic
} else if (engineType.equals("hybrid")) {
// Hybrid engine logic
b
}

public void applyBrakes() {

if (brakeType.equals("disc")) {
// Disc brake logic

} else if (brakeType.equals("drum"))} {
// Drum brake logic

} else if (brakeType.equals("regenerative")) {
// Regenerative braking logic

)

J/ ...and so on

} Bad

design!

ﬂ
e -
\ i |

-
Z@l
=

»
=<
o
z
m
=<

Alternative: Inheritance-Based Design

Car (commaon methods for Car in this class)

ElectricDiscCar

ElectricDrumCar

ElectricABSCar

ElectricAirCar

ElectricRegerativeCar

PetrolDiscCar DieselDiscCar HybridDiscCar

4 engine types x 5 brake types = 20 sub classes

Inheritance
Explosion!

Consider subclassing for
each combination.

With M engines types and N brakes
types, we need M x N subclasses

Adding a new engine type requires
N new classes, for each brake type.

Inheritance Explosion Problem!
Not scalable

Tightly couples engine and brake
behaviour

Hard to test and reuse logic

COMP2511: Introduction to Patterns and Strategy Pattern 13 N

vvvvvv

Strategy Pattern: Motivation

*»» Hardcoding algorithm logic in a class makes it inflexible.
** Example: A Car class with multiple engine and brake behaviours.

** Problems:

o What if we need to represent all possible unique combinations of brakes and engines?

o What if we need to change engine/brake behaviour at runtime?

COMP2511: Introduction to Patterns and Strategy Pattern 14

Strategy Pattern

** Define a family of algorithms (e.g. family of engine algorithms).
¢ Encapsulate each algorithm in a separate strategy class
(e.g. a class for petrol engine, a class for electric engine, etc.).
** Make algorithms interchangeable in the context object (e.g. in a car object).
¢ Vary behaviour without changing the context class.

wclassn
Context

sinterface»
+private Strategylnterface strategy . Strategylnterface
——dJr = -

+do_something()

+do_something()

U T

uclass» aclassn uclass»
ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC
+do_something() +do_something() +do_something()

COMP2511: Introduction to Patterns and Strategy Pattern 15

Alternative: Using Strategy

4

L)

J

4

Pattern (1)

+private BrakeStrategy engine ’

A
+private EngineStrategy brake

+startEngine()
+applyBrakes()

A Car class contains an object of type
BrakeStrategy.

BrakeStrategy is an interface that defines a

vinterface»

BrakeStrategy

+apply()

DiscBrake

DrumBrake

ABSBrake

+apply()

+apply()

+apply()

Concrete classe

method such as apply() to encapsulate brake
behaviour.

Various concrete classes like DiscBrake, ABSBrake,

etc. implement the BrakeStrategy interface to
represent different braking strategies.

The Car class delegates its braking strategy to the

associated BrakeStrategy object/instance. \

publ

ic class Car {

private EngineStrategy engine;

-__>|priuate BrakeStrategy brake;|

public Car(EngineStrategy engine, BrakeStrategy brake) {

this.engine = engine;

| this.brake = brake; |

}

public void startEngine() { engine.start(); }

public void applyBrakes() { brake.apply(); }

COMP2511: Introduction to Patterns and Strategy Pattern

VVVVVV

Alternative: Using Strategy Pattern (2)

L)

J

Similarly, a Car class contains an object of type
EngineStrategy.

EngineStrategy is an interface that defines a
method such as start() to encapsulate engine
behaviour.

Various concrete classes like ElectricEngine,
PetrolEngine, etc. implement the EngineStrategy

interface to represent different engine strategies.

The Car class delegates its engine strategy to the

associated EngineStrategy object/instance. \

Car

+private BrakeStrategy engine

+private EngineStrategy brake
S

+startEngine()

+applyBrakes()

vinterface»

EngineStrategy

+start()

. ElectricEngine

PetrolEngine

HybridEngine

oncrete classe

public class Car {

~—| private EngineStrategy engine; |

private BrakeStrategy brake;

}

| public void startEngine() { engine.start(); }

public void applyBrakesT(]

{ brake.apply(]; F

public Car(EngineStrategy engine, BrakeStrategy brake) {
|this.engine = engineﬂ
this.brake = brake;

COMP2511: Introduction to Patterns and Strategy Pattern

vvvvvv

Using the Strategy-Based Car

EngineStrategy engine = new ElectricEngine(};
BrakeStrategy brake = new RegenerativeBrake();
Car car = new Car(engine, brake);
car.startEngine();

car.applyBrakes();

Strategy Pattern to the Rescue

Use composition to encapsulate engine and brake behaviour:

** Encapsulate variations
** Add more classes for new engine and brake types
s Use method overriding to change behaviour of the existing engine/brake

*»» Adheres to Open-Closed Principle (e.g. no need to change Car class for the above)

COMP2511: Introduction to Patterns and Strategy Pattern 19

Video Rental Example: Using Inheritance

¢ The Movie is defined as an interface.

** Each concrete movie class (RegularMovie, ChildrenMovie,
NewReleaseMovie) handles both the movie class and its
pricing logic, resulting in tight coupling.

Movie
** However, a movie’s classification or its pricing can change +getCharge()
during its lifetime. /‘r"\
. . . L. . . . RegularMovie ChildernsMovie NewReleaseMovie
** Modifying a movie’s class or pricing behaviour at runtime is
not straightforward in this design. +getCharge() +getCharge() +getCharge()
¢ This approach is not ideal; we can refactor and improve it

using the Strategy Pattern, which allows dynamic selection of
pricing behaviour.

COMP2511: Introduction to Patterns and Strategy Pattern 20

Video Rental Example: Using Strategy Pattern

\/
0’0

A Movie class contains a reference to a Price strategy
object.

Price is an interface that defines methods such as
getCharge(days) to encapsulate pricing behaviour.

Various concrete classes like ChildrenPrice, RegularPrice,
and NewReleasePrice implement the Price interface to
represent different pricing strategies.

The Movie class delegates its pricing logic to the associated
Price strategy instance.

To change the pricing behaviour of a movie, simply assign a
different Price strategy object, making the design flexible
and maintainable.

Movie

+ String title

+ Price price_policy

+getCharge(days: int)

v

«interface»

Price

getCharge(days: int)

T

uclass»

RegularMovie

wclass»
ChildernsMovie

uclass»

NewReleaseMovie

+getCharge(days: int)

+getCharge(days: int)

+getCharge(days: int)

COMP2511: Introduction to Patterns and Strategy Pattern

Benefits of Strategy Pattern

** Promotes Composition over Inheritance: Allows behaviours to be combined and reused without

deep inheritance hierarchies.

» Supports Runtime Behaviour Change: Strategies can be swapped dynamically at runtime to
adapt to changing context (e.g., a hybrid car switching between electric and petrol engines).

** Encourages Separation of Concerns: Keeps the Car class focused on orchestration while
delegating specific behaviours to strategy classes.

*** Enables Open-Closed Principle: New strategies can be added without changing existing code,
reducing the risk of introducing bugs.

» Encourages modular design.

** Scalable and reusable components

COMP2511: Introduction to Patterns and Strategy Pattern 22

	Slide 1: Introduction to Software Patterns and Strategy Pattern
	Slide 2: What Are Design Patterns?
	Slide 3: Why Use Design Patterns?
	Slide 4: Mastering Design Patterns – An Art & Craft
	Slide 5: Origins and History of Design Patterns
	Slide 6: Key Elements of a Design Pattern:
	Slide 7: When NOT to Use Patterns
	Slide 8: Design Patterns vs. Algorithms
	Slide 9: Design Patterns and Software Principles
	Slide 10: Problem Statement
	Slide 11: Implementation with If-Else
	Slide 12: Implementation with If-Else
	Slide 13: Alternative: Inheritance-Based Design
	Slide 14: Strategy Pattern: Motivation
	Slide 15: Strategy Pattern
	Slide 16: Alternative: Using Strategy Pattern (1)
	Slide 17: Alternative: Using Strategy Pattern (2)
	Slide 18: Using the Strategy-Based Car
	Slide 19: Strategy Pattern to the Rescue
	Slide 20: Video Rental Example: Using Inheritance
	Slide 21: Video Rental Example: Using Strategy Pattern
	Slide 22: Benefits of Strategy Pattern

