
Introduction to
Software Patterns
and
Strategy Pattern

COMP2511, CSE, UNSW

What Are Design Patterns?

❖ Proven solutions to common software design problems.

❖ Reusable templates that help structure software.

❖ Provide shared vocabulary for developers.

COMP2511: Introduction to Patterns and Strategy Pattern 2

Why Use Design Patterns?

❖ Serve as a template or a guide for addressing important software design issues.

❖ Is not a complete implementation, but rather a flexible guideline for addressing recurring design

challenges.

❖ Captures design expertise, making it easier to share and reuse across projects.

❖ Offers a common vocabulary that enhances communication among developers.

❖ Improve code readability and reusability

❖ Promote best practices and industry standards

❖ Facilitate maintainability and scalability

COMP2511: Introduction to Patterns and Strategy Pattern 3

Mastering Design Patterns – An Art & Craft

❖ Develop a strong working knowledge of various patterns.

❖ Understand clearly the problems they can effectively solve.

❖ Recognize accurately when a specific problem can benefit from applying a pattern.

COMP2511: Introduction to Patterns and Strategy Pattern 4

Origins and History of Design Patterns

❖ The concept stems from architecture, originally introduced by Christopher Alexander and

colleagues, who identified around 250 design patterns for building construction.

❖ Adapted to software by the "Gang of Four" (GoF): Gamma, Helm, Johnson, Vlissides

❖ GoF Book (1994): Design Patterns: Elements of Reusable Object-Oriented Software

COMP2511: Introduction to Patterns and Strategy Pattern 5

Key Elements of a Design Pattern:

❖ Name: Identifier for pattern

❖ Problem: Context and issue

❖ Solution: General design

❖ Consequences: Results and trade-offs

COMP2511: Introduction to Patterns and Strategy Pattern 6

When NOT to Use Patterns

❖ When patterns add unnecessary complexity

❖ When simpler solutions suffice

❖ Avoid "pattern abuse" or "overengineering"

COMP2511: Introduction to Patterns and Strategy Pattern 7

Design Patterns vs. Algorithms

❖ Algorithms solve computational problems

❖ Design Patterns solve design/architectural problems

❖ Example:

o Algorithm: QuickSort

o Pattern: Strategy to switch sorting algorithms

COMP2511: Introduction to Patterns and Strategy Pattern 8

Design Patterns and Software Principles

❖ Closely tied to SOLID principles:
o Single Responsibility

o Open/Closed

o Liskov Substitution

o Interface Segregation

o Dependency Inversion

❖ Patterns tries to address SOLID principles

COMP2511: Introduction to Patterns and Strategy Pattern 9

Problem Statement

Design Problem:
For simulation, represent a car with varying types of engines and brakes.

❖ A Car class should support, along with other behaviours:

o 4 types of engines (e.g., Petrol, Diesel, Electric, Hybrid)

o 5 types of brakes (e.g., Disc, Drum, Regenerative, ABS, Air Brakes)

❖ Requirements may change (add or modify engine/brake types)

COMP2511: Introduction to Patterns and Strategy Pattern 10

Implementation with
If-Else

COMP2511: Introduction to Patterns and Strategy Pattern 11

Implementation with
If-Else

COMP2511: Introduction to Patterns and Strategy Pattern 12

Problems with hardcoding logic, it is a bad practice:

❖ Violates the Open-Closed Principle: Class must be modified for every new
brake or engine type.

❖ Adding new behaviour leads to code duplication and potential bugs.

❖ Not scalable: Explosion of if-else or switch blocks.

❖ Code is hard to read and maintain.

Bad
design!

Alternative: Inheritance-Based Design

❖ Consider subclassing for
each combination.

❖ With M engines types and N brakes
types, we need M × N subclasses

❖ Adding a new engine type requires
N new classes, for each brake type.

❖ Inheritance Explosion Problem!
Not scalable

❖ Tightly couples engine and brake
behaviour

❖ Hard to test and reuse logic

COMP2511: Introduction to Patterns and Strategy Pattern 13

Inheritance
Explosion!

Strategy Pattern: Motivation

❖ Hardcoding algorithm logic in a class makes it inflexible.

❖ Example: A Car class with multiple engine and brake behaviours.

❖ Problems:

o What if we need to represent all possible unique combinations of brakes and engines?

o What if we need to change engine/brake behaviour at runtime?

COMP2511: Introduction to Patterns and Strategy Pattern 14

Strategy Pattern

❖ Define a family of algorithms (e.g. family of engine algorithms).

❖ Encapsulate each algorithm in a separate strategy class
(e.g. a class for petrol engine, a class for electric engine, etc.).

❖ Make algorithms interchangeable in the context object (e.g. in a car object).

❖ Vary behaviour without changing the context class.

COMP2511: Introduction to Patterns and Strategy Pattern 15

Alternative: Using Strategy Pattern (1)

❖ A Car class contains an object of type
BrakeStrategy.

❖ BrakeStrategy is an interface that defines a
method such as apply() to encapsulate brake
behaviour.

❖ Various concrete classes like DiscBrake, ABSBrake,
etc. implement the BrakeStrategy interface to
represent different braking strategies.

❖ The Car class delegates its braking strategy to the
associated BrakeStrategy object/instance.

COMP2511: Introduction to Patterns and Strategy Pattern 16

Concrete classes

Alternative: Using Strategy Pattern (2)

❖ Similarly, a Car class contains an object of type
EngineStrategy.

❖ EngineStrategy is an interface that defines a
method such as start() to encapsulate engine
behaviour.

❖ Various concrete classes like ElectricEngine,
PetrolEngine, etc. implement the EngineStrategy
interface to represent different engine strategies.

❖ The Car class delegates its engine strategy to the
associated EngineStrategy object/instance.

COMP2511: Introduction to Patterns and Strategy Pattern 17

Concrete classes

Using the Strategy-Based Car

COMP2511: Introduction to Patterns and Strategy Pattern 18

Strategy Pattern to the Rescue

Use composition to encapsulate engine and brake behaviour:

❖ Encapsulate variations

❖ Add more classes for new engine and brake types

❖ Use method overriding to change behaviour of the existing engine/brake

❖ Adheres to Open-Closed Principle (e.g. no need to change Car class for the above)

COMP2511: Introduction to Patterns and Strategy Pattern 19

Video Rental Example: Using Inheritance

❖ The Movie is defined as an interface.

❖ Each concrete movie class (RegularMovie, ChildrenMovie,
NewReleaseMovie) handles both the movie class and its
pricing logic, resulting in tight coupling.

❖ However, a movie’s classification or its pricing can change
during its lifetime.

❖ Modifying a movie’s class or pricing behaviour at runtime is
not straightforward in this design.

❖ This approach is not ideal; we can refactor and improve it
using the Strategy Pattern, which allows dynamic selection of
pricing behaviour.

COMP2511: Introduction to Patterns and Strategy Pattern 20

Video Rental Example: Using Strategy Pattern

❖ A Movie class contains a reference to a Price strategy
object.

❖ Price is an interface that defines methods such as
getCharge(days) to encapsulate pricing behaviour.

❖ Various concrete classes like ChildrenPrice, RegularPrice,
and NewReleasePrice implement the Price interface to
represent different pricing strategies.

❖ The Movie class delegates its pricing logic to the associated
Price strategy instance.

❖ To change the pricing behaviour of a movie, simply assign a
different Price strategy object, making the design flexible
and maintainable.

COMP2511: Introduction to Patterns and Strategy Pattern 21

Benefits of Strategy Pattern

❖ Promotes Composition over Inheritance: Allows behaviours to be combined and reused without

deep inheritance hierarchies.

❖ Supports Runtime Behaviour Change: Strategies can be swapped dynamically at runtime to
adapt to changing context (e.g., a hybrid car switching between electric and petrol engines).

❖ Encourages Separation of Concerns: Keeps the Car class focused on orchestration while
delegating specific behaviours to strategy classes.

❖ Enables Open-Closed Principle: New strategies can be added without changing existing code,
reducing the risk of introducing bugs.

❖ Encourages modular design.

❖ Scalable and reusable components

COMP2511: Introduction to Patterns and Strategy Pattern 22

	Slide 1: Introduction to Software Patterns and Strategy Pattern
	Slide 2: What Are Design Patterns?
	Slide 3: Why Use Design Patterns?
	Slide 4: Mastering Design Patterns – An Art & Craft
	Slide 5: Origins and History of Design Patterns
	Slide 6: Key Elements of a Design Pattern:
	Slide 7: When NOT to Use Patterns
	Slide 8: Design Patterns vs. Algorithms
	Slide 9: Design Patterns and Software Principles
	Slide 10: Problem Statement
	Slide 11: Implementation with If-Else
	Slide 12: Implementation with If-Else
	Slide 13: Alternative: Inheritance-Based Design
	Slide 14: Strategy Pattern: Motivation
	Slide 15: Strategy Pattern
	Slide 16: Alternative: Using Strategy Pattern (1)
	Slide 17: Alternative: Using Strategy Pattern (2)
	Slide 18: Using the Strategy-Based Car
	Slide 19: Strategy Pattern to the Rescue
	Slide 20: Video Rental Example: Using Inheritance
	Slide 21: Video Rental Example: Using Strategy Pattern
	Slide 22: Benefits of Strategy Pattern

