
Refactoring

COMP2511, CSE, UNSW



Introduction to Refactoring

v Refactoring is the process of restructuring existing code 
without changing its external behavior.

v Aim is to:
o improve internal structure/design, readability, and 

maintainability
o help detect bugs.
o increase development speed.
o help conform to design principles and eliminate design/code 

smells.

COMP2511: Refactoring 2



When to Refactor

v Before adding new features if current structure is not suitable.

v While fixing bugs.

v During code reviews.

COMP2511: Refactoring 3



Code Smells 

v Code smells are indicators of potential design issues.
v They hint at poor design but do not guarantee defects.
v Refactoring addresses code smells.

Common Code Smells:

COMP2511: Refactoring 4

Duplicated Code Shotgun Surgery
Long Method Feature Envy
Large Class Lazy Classes
Long Parameter List Data Classes
Divergent Change



Refactoring Cycle

v Step 1: Identify code smell.

v Step 2: Write tests to confirm current behaviour.

v Step 3: Apply small refactoring step.

v Step 4: Re-run tests.

v Step 5: Repeat.

COMP2511: Refactoring 5



Refactoring Technique: Extract Method

v Identify logical chunks of code and 
extract into separate methods.

v Benefits: improves readability, 
reduces duplication.

COMP2511: Refactoring 6

Before

After



Refactoring Technique: Move Method

v Move methods to the class whose data they use most.

COMP2511: Refactoring 7

Move getDiscount to Product class.



Refactoring Technique: Replace Temp with Query

v Move expressions into methods instead of temporary variables.

COMP2511: Refactoring 8



Refactoring Technique: Replace Conditional with 
Polymorphism
v Switch or if-else chains based on type codes are hard to maintain and violate OOP 

principles.
o Adding a new type requires changes to every switch statement.
o Increases rigidity and breaks Open/Closed Principle.

Solution: 
o Replace switch statements with inheritance. 
o Define a superclass with an abstract method and implement this method in subclasses, each 

representing a case of the switch.

COMP2511: Refactoring 9



Refactoring Technique: Replace Conditional with 
Polymorphism
v Use polymorphism instead of conditionals.

COMP2511: Refactoring 10



Refactoring Using Composition

v Favor composition over inheritance.

COMP2511: Refactoring 11

Instead of extending Logger class, 
use composition (has-a relation) and method forwarding.



Design Smell: Refused Bequest

Refused Bequest: subclass inherits inappropriate behavior.

COMP2511: Refactoring 12

Problem: Refused Bequest — Camel shouldn't inherit getModel().

Push Down getModel()



Smell: Long Parameter List

v To avoid long parameter lists, encapsulate related parameters into a data class and pass 
an instance of that class instead.

COMP2511: Refactoring 13



Smell: Large Method/Class

v Large Method: method with many lines doing multiple things.
v Refactor: use Extract Method to create new method(s)

v Large Class: Class with 20+ methods and many fields.
v Refactor: use Extract Class to separate concerns.

COMP2511: Refactoring 14



Smell: Similar Code Fragments

Case 1: Same code in multiple methods of the same class
o Use Extract Method and invoke it from each place.

Case 2: Same code in two subclasses of the same level
o Use Extract Method in both subclasses, Use Pull Up Field or Pull Up Method to unify code in the 

superclass.
o If inside constructors: use Pull Up Constructor Body.
o For similar but not identical code: use Template Method.
o If algorithms differ, use Strategy Pattern.

Case 3: Duplicate code in unrelated classes
o Use Extract Superclass to unify shared logic.

COMP2511: Refactoring 15



Smell: Feature Envy

v A method is more interested in another class’s data than its own.

Symptoms
o The method invokes several methods on another object to calculate a value.
o Causes unnecessary coupling and breaks encapsulation.

Solution: Move the method to the class that owns the data (Move Method).
o If only part of the method accesses external data: use Extract Method followed by Move 

Method.
o If multiple external classes are involved: identify which one holds the majority of used data 

and move the method there.

COMP2511: Refactoring 16



Smell: Divergent Change

v A class is changed in many unrelated ways for different 
reasons.

v Violates Single Responsibility Principle.
v Increases risk of regression bugs due to unrelated 

modifications

Solution:

o Identify the reasons for change and separate them into 
cohesive classes.

o Use Extract Class to encapsulate each responsibility.

COMP2511: Refactoring 17



Smell: Shotgun Surgery
v A small change requires updating many different classes.

v Makes code brittle and hard to maintain.

Solution:

o Consolidate related changes into a single class.
o Use Move Method, Move Field, or Inline Class to localize the change.

COMP2511: Refactoring 18



Divergent Change and Shotgun Surgery

v Divergent Change = One class changes for many unrelated reasons.

v Shotgun Surgery = One change spreads across many classes.

v Both can be addressed with refactoring to improve modularity and reduce fragility.

COMP2511: Refactoring 19



Useful Links

https://refactoring.guru/refactoring/smells

https://www.refactoring.com/catalog/

COMP2511: Refactoring 25

https://refactoring.guru/refactoring/smells
https://www.refactoring.com/catalog/


Demo

The Video Rental System

COMP2511: Refactoring 26



End

COMP2511: Refactoring 27


