Refactoring

COMP2511, CSE, UNSW

Introduction to Refactoring

¢ Refactoring is the process of restructuring existing code
without changing its external behavior.

s Aim is to:
o improve internal structure/design, readability, and
maintainability
o help detect bugs.
o increase development speed.

o help conform to design principles and eliminate design/code
smells.

COMP2511: Refactoring

SSSSSS

When to Refactor

s Before adding new features if current structure is not suitable.
** While fixing bugs.

¢ During code reviews.

COMP2511: Refactoring 3

Code Smells

** Code smells are indicators of potential design issues.

** They hint at poor design but do not guarantee defects.

*»» Refactoring addresses code smells.

Common Code Smells:

Duplicated Code Shotgun Surgery
Long Method Feature Envy
Large Class Lazy Classes
Long Parameter List Data Classes
Divergent Change

COMP2511: Refactoring 4

Refactoring Cycle

s Step 1: Identify code smell.

s Step 2: Write tests to confirm current behaviour.
¢ Step 3: Apply small refactoring step.

** Step 4: Re-run tests.

% Step 5: Repeat.

COMP2511: Refactoring 5

Refactoring Technique: Extract Method

¢ ldentify logical chunks of code and
extract into separate methods.

** Benefits: improves readability,
reduces duplication.

Before

void printOwing() {
printBanner();

// calculate outstanding

double outstanding = 0;

for (Order o : orders) {
outstanding += o.getAmount();

}

After

void printOwing() {
printBanner();

double outstanding = calculateQOutstanding();

printDetails(outstanding);MZ///
}

2

printDetails(outstanding);

'factoring

double calculateQutstanding() {
double result = 0;
for (Order o : orders) {
result += o.getAmount();

}

return result;

}

VVVVVV

Refactoring Technique: Move Method

** Move methods to the class whose data they use most.

class Customer {
double getDiscount(Product product) {
return product.getBasePrice() x 0.1;

e

}
} O\

Y

Move getDiscount to Prodtict class.

class Product {
double getDiscount() {
return this.getBasePrice() * 0.1;

}

COMP2511: Refactoring

VVVVVV

Refactoring Technique: Replace Temp with Query

** Move expressions into methods instead of temporary variables.

if (basePrice > 1000)
return basePrice x 0.95;

double basePrice = quantity x itemPrice;

if

(basePrice() > 1000)
return basePrice() * 0.95;

double basePrice() {

}

return quantity *x itemPrice;

COMP2511: Refactoring

SSSSSS

Refactoring Technique: Replace Conditional with
Polymorphism

** Switch or if-else chains based on type codes are hard to maintain and violate OOP
principles.
o Adding a new type requires changes to every switch statement.
o Increases rigidity and breaks Open/Closed Principle.

Solution:

o Replace switch statements with inheritance.

o Define a superclass with an abstract method and implement this method in subclasses, each
representing a case of the switch.

COMP2511: Refactoring 9

Refactoring Technique: Replace Conditional with
Polymorphism

s Use polymorphism instead of conditionals.

(abstract class Movie {

abstract double getCharge(int daysRented);

"4 .
class Movie {

}

\

int getPriceCode();

class Rental {

double getCharge() {
switch(movie.getPriceCode()) {
case REGULAR: return daysRented x 2;

case CHILDRENS: return daysRented * 1.5;

}
}

N

}
_
) & : : N
class RegularMovie extends Movie {
double getCharge(int daysRented) {
) return daysRented * 2;
™~ }
M
VN y
(class ChildrensMovie extends Movie { A
double getCharge(int daysRented) {
return daysRented * 1.5;
}
/ J J
COMP2511: Refactoring 10

VVVVVV

Refactoring Using Composition

¢ Favor composition over inheritance.

Instead of extending Logger class,

use composition (has-a relation) and method forwarding.

class Application {
private Logger logger = new Logger();
void logInfo(String msg) { —
logger. log(msg);
}

COMP2511: Refactoring

SSSSSS

Desigh Smell: Refused Bequest

Refused Bequest: subclass inherits inappropriate behavior.

((abstract class Transport {
private String model;

return model;

[public String getModel() { J

}

Push Down getModel()

\} J/

class Car extends Transport {
// uses getModel()

}

(class Camel extends Transport {

@Override
public String getModel() {
throw new UnsupportedOperationException("Camels don't have models");

}

}

Problem: Refused Bequest — Camel shouldn't inherit getModel().

Y

COMP2511: Refactoring

abstract class Transport {
// Common transport functionality
}
(class Car extends Transport {)
private String model;
public String getModel() {
return model;
}
\} J
(class Camel extends Transport {
// No getModel()
|}
R
12

Smell: Long Parameter List

¢ To avoid long parameter lists, encapsulate related parameters into a data class and pass
an instance of that class instead.

void createUser(String name, int age, String email, String phone)

/class UserInfo {
String name;
int age;

String email;
String phone;

\ Y,

void createUser(UserInfo user)

COMP2511: Refactoring 13

SSSSSS

Smell: Large Method/Class

» Large Method: method with many lines doing multiple things.

» Refactor: use Extract Method to create new method(s)

» Large Class: Class with 20+ methods and many fields.

»* Refactor: use Extract Class to separate concerns.

COMP2511: Refactoring 14

Smell: Similar Code Fragments

Case 1: Same code in multiple methods of the same class
o Use Extract Method and invoke it from each place.

Case 2: Same code in two subclasses of the same level

o Use Extract Method in both subclasses, Use Pull Up Field or Pull Up Method to unify code in the
superclass.

o Ifinside constructors: use Pull Up Constructor Bodly.
o For similar but not identical code: use Template Method.
o If algorithms differ, use Strategy Pattern.

Case 3: Duplicate code in unrelated classes

o Use Extract Superclass to unify shared logic.

COMP2511: Refactoring 15

Smell: Feature Envy

** A method is more interested in another class’s data than its own.

Symptoms
o The method invokes several methods on another object to calculate a value.
o Causes unnecessary coupling and breaks encapsulation.

Solution: Move the method to the class that owns the data (Move Method).

o If only part of the method accesses external data: use Extract Method followed by Move
Method.

o If multiple external classes are involved: identify which one holds the majority of used data
and move the method there.

COMP2511: Refactoring 16

Smell: Divergent Change

s A class is changed in many unrelated ways for different
reasons.

¢ Violates Single Responsibility Principle.

» Increases risk of regression bugs due to unrelated
modifications

Solution:

o ldentify the reasons for change and separate them into
cohesive classes.

o Use Extract Class to encapsulate each responsibility.

COMP2511: Refactoring

N_

/7; Before
class DocumentManager {

void print(Document doc) { ... }
void save(Document doc) { ... }

void exportToPDF(Document doc) { ...

}

}

N

7/ After
class PrintService {

void print(Document doc) { ... }

class PersistenceService {

void save(Document doc) { ... }

class ExportService {
void exportToPDF(Document doc) { ...

J N\~

17

L

%gﬁ‘

=<
o
z
m
<

Smell: Shotgun Surgery

** A small change requires updating many different classes.

** Makes code brittle and hard to maintain.

Solution:

o Consolidate related changes into a single class.

o Use Move Method, Move Field, or Inline Class to localize the change.

// Before: logic for logging exists in multiple classes
class Order {
void logCreation() { Logger.log("Order created"); }
}
class Invoice {
void logGeneration() { Logger.log("Invoice generated"); }

}

// After: Centralized logging

class LogService {
[::::::::> static void logOrderCreation() { Logger.log("Order created"); }

static void logInvoiceGeneration() { Logger.log("Invoice generated"); }

}

COMP2511: Refactoring

18

T2k \v

=<
o
z

Divergent Change and Shotgun Surgery

*» Divergent Change = One class changes for many unrelated reasons.
*» Shotgun Surgery = One change spreads across many classes.

+* Both can be addressed with refactoring to improve modularity and reduce fragility.

COMP2511: Refactoring 19

Useful Links

https://refactoring.guru/refactoring/smells

https://www.refactoring.com/catalog/

https://refactoring.guru/refactoring/smells
https://www.refactoring.com/catalog/

Demo

The Video Rental System

End

