
Software Design
Principles

COMP2511, CSE, UNSW

What Goes Wrong in Software Design?

v Initial design is clean and elegant, often well-structured.

v Over time, design degrades due to evolving requirements and rushed changes.

v Known as "software rot", this process makes code hard to maintain and evolve.

Symptoms:

o Rigidity: Small changes cause widespread impact.

o Fragility: One change breaks unrelated parts.

o Immobility: Useful components can’t be reused easily.

o Viscosity: Environment or process encourages hacks over clean design.

COMO2511: Software Design Principles 2

Rigidity and Fragility

Rigidity: System resists change due to interdependencies.
Example: A login module change forces updates in unrelated reporting or database
modules.
Impact: Managers hesitate to allow even minor fixes.

Fragility: Changes result in unexpected breakages.
Example: Fixing an email validator crashes the profile picture upload feature.
Impact: Developer trust and morale drop; testing becomes difficult.

Observation: The above are due to poor dependency management, not just evolving
requirements.

COMO2511: Software Design Principles 3

Immobility and Viscosity

Immobility: Modules can't be reused due to tight coupling.
Example: A "UserNotification" class depends on web framework internals, so we
cannot reuse in CLI app.

Design viscosity: Easier to do the wrong thing (hack) than the right thing.
Environmental viscosity: Long compile/test cycles encourage shortcuts.

Example: Hack a feature with global variables instead of refactoring due to 20-
minute build time.

Observation: Most symptoms of rot are caused by bad dependency structures.

COMO2511: Software Design Principles 4

What Are Software Design Principles?

v They provide guidelines to develop systems that are maintainable, flexible, reusable,
and robust.

v Adhering to these principles helps to mitigate common software engineering issues
such as design rot (degradation) and ensures software remains scalable and adaptable
over time.

v Changing requirements don’t have to ruin design.

v Good design anticipates change, however, bad design breaks under it.

COMO2511: Software Design Principles 5

Importance of Software Design Principles

v Maintainability: Software should be easy to update and enhance without extensive

refactoring (re-engineering).

v Flexibility: Systems should adapt smoothly to changing requirements.

v Reusability: Components and modules should be designed to be easily reusable across

various parts of the application or even in different projects.

v Robustness: The software should handle errors gracefully and maintain functionality

under different circumstances.

COMO2511: Software Design Principles 6

SOLID Principles (1)

An acronym that represents five crucial principles for object-oriented design:

Single Responsibility Principle (SRP):
o A class should have only one reason to change, focusing on a single functionality.

Open/Closed Principle (OCP):
o Software entities should be open for extension but closed for modification.

Liskov Substitution Principle (LSP):
o Objects of a superclass should be replaceable with objects of subclasses without affecting the

correctness of the program.

COMO2511: Software Design Principles 7

SOLID Principles (2)

Interface Segregation Principle (ISP):
o Clients should not be forced to depend on interfaces they do not use; favor many specific

interfaces over a single general-purpose one.

Dependency Inversion Principle (DIP):
o Depend on abstractions, not concrete implementations. Higher-level modules should not

depend on lower-level modules but rather on abstractions.

COMO2511: Software Design Principles 8

Why Follow These Principles?

v Preventing Software Rot: Avoid the deterioration of the software design
over time.

v Ease of Maintenance: Reduce the cost and effort involved in updating and
managing code.

v Enhanced Productivity: Developers spend less time debugging and
refactoring, more on innovation and delivering value.

v Improved Collaboration: Clear, principle-driven design aids team
communication and collaboration.

COMO2511: Software Design Principles 9

Real-world Example

Consider an online payment system:

Without design principles:
v Payment methods (Credit Card, PayPal, Crypto, etc.) tightly coupled in the

codebase, making additions or modifications challenging and error-prone.

Applying SOLID principles:
v Each payment method is encapsulated within its class (SRP).
v Adding new payment methods requires implementing a payment interface

without altering existing code (OCP, DIP).
v Users of payment classes aren't exposed to methods irrelevant to them (ISP).

COMO2511: Software Design Principles 10

Good Design

“Change in software is constant, good design embraces it!”

v Following structured design principles ultimately results in higher-quality,
longer-lasting software.

COMO2511: Software Design Principles 11

Software Cohesion and Coupling

v Cohesion: The degree to which elements of a module/class belong together.

v Coupling: The degree of interdependence between software modules.

v High cohesion and low coupling are hallmarks of good software design.

COMO2511: Software Design Principles 12

What is Cohesion?

v Cohesion: The degree to which elements of a module/class belong together.

v High Cohesion: Elements of the module work towards a single purpose.

v Low Cohesion: Elements are unrelated or loosely related.

v Aim for high cohesion for maintainability and readability.

COMO2511: Software Design Principles 13

Examples of Cohesion

Class: InvoiceProcessor

o Methods: calculateTotal(), applyDiscount(), generateInvoice()

o All methods related to processing an invoice.

Benefits: Easier to understand and maintain, Reusable

COMO2511: Software Design Principles 14

Class: UtilityClass

o Methods: readFile(), sendEmail(), sortArray()

o Functions unrelated to one another.

Problems: Hard to maintain, Difficult to test, Not reusable as a unit

High Cohesion

Low Cohesion

What is Coupling?

v Coupling: The degree of interdependence between software modules.

v Tight Coupling: Modules heavily dependent on each other.

v Loose Coupling: Modules operate independently with minimal dependencies.

v Aim for loose coupling to enable flexibility and reuse.

COMO2511: Software Design Principles 15

Types of Coupling

Some of the important types of coupling are:

v Data Coupling: Modules share data through parameters.

v Control Coupling: One module controls the flow of another (e.g., flags).

v External Coupling: Modules depend on externally imposed data formats.

v Common Coupling: Shared global variables.

v Content Coupling: One module modifies data of another.

COMO2511: Software Design Principles 16

Examples of Coupling

Modules: UserInterface, BusinessLogic, DataAccess

o Each layer interacts through interfaces.

Benefits: Easy to change or replace components, Improved testability

COMO2511: Software Design Principles 17

Class A calls methods of Class B directly and modifies its state.

Problems: Difficult to reuse or refactor, Ripple effects from changes

Low Coupling

High Coupling

Design Tips for High Cohesion

v Use the Single Responsibility Principle (SRP), as far as possible.

v Group related functionalities.

v Avoid “God classes”.

v Refactor when a class or method grows too large.

COMO2511: Software Design Principles 18

Design Tips for Low Coupling

v Minimize shared data

v Use interfaces and abstractions

v Apply Dependency Injection

v Use event-driven or observer patterns, for loosely dynamically coupled systems

COMO2511: Software Design Principles 19

When to Use Design Principles?

v Design principles help to remove design smells: needless complexity.

v However, they should not be used when there are no design smells.

v It is a mistake to blindly accept a principle just because it is one.

v Avoid over-adherence, it can create a new design smell: needless complexity.

COMO2511: Software Design Principles 20

Design Principle:

Principle of Least Knowledge (Law of Demeter)

v The Principle of Least Knowledge (also called the Law of Demeter) suggest that a

module (or object) should only talk to its immediate "friends", and not to strangers.

v In simpler terms: “Only call methods on objects you directly know.”

v Formal Rule
A method M of an object O may only invoke methods that belong to:

1) O itself
2) M's parameters
3) Any objects created/instantiated within M
4) O’s direct fields (its own instance variables)

COMO2511: Software Design Principles 21

Design Principle:

Principle of Least Knowledge (Law of Demeter)

v Minimises coupling: Prevents objects from becoming overly dependent on

others' internal structure.

v Enhances maintainability: Changes in one class are less likely to ripple

through the system.

v Improves encapsulation: Objects hide their data better and expose

minimal necessary interfaces.

COMO2511: Software Design Principles 22

Code Example – Violating LoD (Tightly Coupled)

COMO2511: Software Design Principles 23

Violates LoD,
accessing a “stranger” (engine)

Code Example – Respecting LoD (Loosely Coupled)

COMO2511: Software Design Principles 24

Car mediates access

Talks only to its direct friend

Definition of LSP (Liskov Substitution Principle)

"Objects of a superclass should be replaceable with
objects of a subclass without breaking the application.”

- Barbara Liskov, 1987

v This ensures a subclass behaves in ways that do not surprise or violate the expectations
set by the parent class.

v Formally:
“Let S be a subtype of T. Then, objects of type T may be replaced with
objects of type S without altering any of the desirable properties of the program.”

COMO2511: Software Design Principles 25

Real-World Analogy: LSP

v Superclass: Bird
Subclass: Penguin

v Birds can fly, therefore fly() is in the base (super) class Bird.

v Penguins are birds, but they cannot fly.

v Problem: Substituting Penguin for Bird breaks the program!

COMO2511: Software Design Principles 26

Examples: LSP

COMO2511: Software Design Principles 27

Violating LSP

Fixing the Violation

Example: LSP (Shape Hierarchy)

COMO2511: Software Design Principles 28

After refactoring

We cannot substitute Square for Rectangle,
may break logic expecting width != height.

Why LSP Matters

v Encourages correct hierarchy modelling

v Enables safe polymorphism

v Reduces unexpected behaviour at runtime

v Facilitates reusability and maintainability

v Think of LSP as a contract: subclasses must honour the guarantees of their parents.

COMO2511: Software Design Principles 29

Introduction to Covariance and Contravariance

v Covariance and Contravariance describe how types behave in inheritance when

method overriding.

v Covariance: Return type can be more specific (subtype)

v Contravariance: Parameter types can be more general (supertype)

COMO2511: Software Design Principles 30

Covariant Return Types

v Allows the return type in an overridden

method to be a subtype of the original.

v Enables more specific results while

remaining compatible.

COMO2511: Software Design Principles 31

Contravariance in Parameters

v Contravariant parameters accept supertypes of the original type.
v This is not allowed in typical method overriding (Java, C++).

COMO2511: Software Design Principles 32

Not Overriding,
But results in Overloading!
Now there are two methods,
one each for Number and Integer types.

Rules Summary for Method Overriding

COMO2511: Software Design Principles 33

Aspect Rule in OOP Overriding
Method Name Must match
Parameters Must be identical
Return Type Covariant allowed
Exceptions Can be narrower
Access Modifier Can be more open

End

COMO2511: Software Design Principles 34

