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What Goes Wrong in Software Design?

v Initial design is clean and elegant, often well-structured.

v Over time, design degrades due to evolving requirements and rushed changes.

v Known as "software rot", this process makes code hard to maintain and evolve.

Symptoms:

o Rigidity: Small changes cause widespread impact.

o Fragility: One change breaks unrelated parts.

o Immobility: Useful components can’t be reused easily.

o Viscosity: Environment or process encourages hacks over clean design.
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Rigidity and Fragility

Rigidity: System resists change due to interdependencies.
Example: A login module change forces updates in unrelated reporting or database 
modules.
Impact: Managers hesitate to allow even minor fixes.

Fragility: Changes result in unexpected breakages.
Example: Fixing an email validator crashes the profile picture upload feature.
Impact: Developer trust and morale drop; testing becomes difficult.

Observation: The above are due to poor dependency management, not just evolving 
requirements.
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Immobility and Viscosity

Immobility: Modules can't be reused due to tight coupling.
Example: A "UserNotification" class depends on web framework internals, so we 
cannot reuse in CLI app.

Design viscosity: Easier to do the wrong thing (hack) than the right thing.
Environmental viscosity: Long compile/test cycles encourage shortcuts.

Example: Hack a feature with global variables instead of refactoring due to 20-
minute build time.

Observation: Most symptoms of rot are caused by bad dependency structures.
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What Are Software Design Principles?

v They provide guidelines to develop systems that are maintainable, flexible, reusable, 
and robust. 

v Adhering to these principles helps to mitigate common software engineering issues 
such as design rot (degradation) and ensures software remains scalable and adaptable 
over time.

v Changing requirements don’t have to ruin design.

v Good design anticipates change, however, bad design breaks under it.
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Importance of Software Design Principles

v Maintainability: Software should be easy to update and enhance without extensive 

refactoring (re-engineering).

v Flexibility: Systems should adapt smoothly to changing requirements.

v Reusability: Components and modules should be designed to be easily reusable across 

various parts of the application or even in different projects.

v Robustness: The software should handle errors gracefully and maintain functionality 

under different circumstances.
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SOLID Principles (1)

An acronym that represents five crucial principles for object-oriented design:

Single Responsibility Principle (SRP):
o A class should have only one reason to change, focusing on a single functionality.

Open/Closed Principle (OCP):
o Software entities should be open for extension but closed for modification.

Liskov Substitution Principle (LSP):
o Objects of a superclass should be replaceable with objects of subclasses without affecting the 

correctness of the program.
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SOLID Principles (2)

Interface Segregation Principle (ISP):
o Clients should not be forced to depend on interfaces they do not use; favor many specific 

interfaces over a single general-purpose one.

Dependency Inversion Principle (DIP):
o Depend on abstractions, not concrete implementations. Higher-level modules should not 

depend on lower-level modules but rather on abstractions.
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Why Follow These Principles?

v Preventing Software Rot: Avoid the deterioration of the software design 
over time.

v Ease of Maintenance: Reduce the cost and effort involved in updating and 
managing code.

v Enhanced Productivity: Developers spend less time debugging and 
refactoring, more on innovation and delivering value.

v Improved Collaboration: Clear, principle-driven design aids team 
communication and collaboration.
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Real-world Example

Consider an online payment system:

Without design principles:
v Payment methods (Credit Card, PayPal, Crypto, etc.) tightly coupled in the 

codebase, making additions or modifications challenging and error-prone.

Applying SOLID principles:
v Each payment method is encapsulated within its class (SRP).
v Adding new payment methods requires implementing a payment interface 

without altering existing code (OCP, DIP).
v Users of payment classes aren't exposed to methods irrelevant to them (ISP).
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Good Design

“Change in software is constant, good design embraces it!”

v Following structured design principles ultimately results in higher-quality, 
longer-lasting software.

COMO2511: Software Design Principles 11



Software Cohesion and Coupling

v Cohesion: The degree to which elements of a module/class belong together.

v Coupling:  The degree of interdependence between software modules.

v High cohesion and low coupling are hallmarks of good software design.

COMO2511: Software Design Principles 12



What is Cohesion?

v Cohesion: The degree to which elements of a module/class belong together.

v High Cohesion: Elements of the module work towards a single purpose.

v Low Cohesion: Elements are unrelated or loosely related.

v Aim for high cohesion for maintainability and readability.
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Examples of Cohesion

Class: InvoiceProcessor

o Methods: calculateTotal(), applyDiscount(), generateInvoice()

o All methods related to processing an invoice.

Benefits: Easier to understand and maintain, Reusable
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Class: UtilityClass

o Methods: readFile(), sendEmail(), sortArray()

o Functions unrelated to one another.

Problems: Hard to maintain, Difficult to test, Not reusable as a unit

High Cohesion

Low Cohesion



What is Coupling?

v Coupling: The degree of interdependence between software modules.

v Tight Coupling: Modules heavily dependent on each other.

v Loose Coupling: Modules operate independently with minimal dependencies.

v Aim for loose coupling to enable flexibility and reuse.
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Types of Coupling

Some of the important types of coupling are:

v Data Coupling: Modules share data through parameters.

v Control Coupling: One module controls the flow of another (e.g., flags).

v External Coupling: Modules depend on externally imposed data formats.

v Common Coupling: Shared global variables.

v Content Coupling: One module modifies data of another.
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Examples of Coupling

Modules: UserInterface, BusinessLogic, DataAccess

o Each layer interacts through interfaces.

Benefits: Easy to change or replace components, Improved testability

COMO2511: Software Design Principles 17

Class A calls methods of Class B directly and modifies its state.

Problems: Difficult to reuse or refactor, Ripple effects from changes

Low Coupling

High Coupling



Design Tips for High Cohesion

v Use the Single Responsibility Principle (SRP), as far as possible.

v Group related functionalities.

v Avoid “God classes”.

v Refactor when a class or method grows too large.
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Design Tips for Low Coupling

v Minimize shared data

v Use interfaces and abstractions

v Apply Dependency Injection

v Use event-driven or observer patterns, for loosely dynamically coupled systems
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When to Use Design Principles?

v Design principles help to remove design smells: needless complexity.

v However, they should not be used when there are no design smells.

v It is a mistake to blindly accept a principle just because it is one.

v Avoid over-adherence, it can create a new design smell: needless complexity.
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Design Principle: 

Principle of Least Knowledge (Law of Demeter)

v The Principle of Least Knowledge (also called the Law of Demeter) suggest that a 

module (or object) should only talk to its immediate "friends", and not to strangers.

v In simpler terms: “Only call methods on objects you directly know.”

v Formal Rule
A method M of an object O may only invoke methods that belong to:

1) O itself
2) M's parameters
3) Any objects created/instantiated within M
4) O’s direct fields (its own instance variables)
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Design Principle: 

Principle of Least Knowledge (Law of Demeter)

v Minimises coupling: Prevents objects from becoming overly dependent on 

others' internal structure.

v Enhances maintainability: Changes in one class are less likely to ripple 

through the system.

v Improves encapsulation: Objects hide their data better and expose 

minimal necessary interfaces.
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Code Example – Violating LoD (Tightly Coupled)
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Violates LoD,
accessing a “stranger” (engine)



Code Example – Respecting LoD (Loosely Coupled)
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Car mediates access

Talks only to its direct friend



Definition of LSP (Liskov Substitution Principle)

"Objects of a superclass should be replaceable with 
objects of a subclass without breaking the application.”

- Barbara Liskov, 1987

v This ensures a subclass behaves in ways that do not surprise or violate the expectations 
set by the parent class.

v Formally:
“Let S be a subtype of T. Then, objects of type T may be replaced with 
objects of type S without altering any of the desirable properties of the program.”

COMO2511: Software Design Principles 25



Real-World Analogy: LSP

v Superclass: Bird
Subclass: Penguin

v Birds can fly, therefore fly() is in the base (super) class Bird.

v Penguins are birds, but they cannot fly.

v Problem: Substituting Penguin for Bird breaks the program!
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Examples: LSP
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Violating LSP

Fixing the Violation



Example: LSP (Shape Hierarchy)
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After refactoring

We cannot substitute Square for Rectangle,  
may break logic expecting  width != height.



Why LSP Matters

v Encourages correct hierarchy modelling

v Enables safe polymorphism

v Reduces unexpected behaviour at runtime

v Facilitates reusability and maintainability

v Think of LSP as a contract: subclasses must honour the guarantees of their parents.
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Introduction to Covariance and Contravariance

v Covariance and Contravariance describe how types behave in inheritance when 

method overriding.

v Covariance: Return type can be more specific (subtype)

v Contravariance: Parameter types can be more general (supertype)
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Covariant Return Types

v Allows the return type in an overridden 

method to be a subtype of the original.

v Enables more specific results while 

remaining compatible.
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Contravariance in Parameters

v Contravariant parameters accept supertypes of the original type.
v This is not allowed in typical method overriding (Java, C++).
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Not Overriding,
But results in Overloading!
Now there are two methods, 
one each for Number and Integer types.



Rules Summary for Method Overriding
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Aspect Rule in OOP Overriding
Method Name Must match
Parameters Must be identical
Return Type Covariant allowed
Exceptions Can be narrower
Access Modifier Can be more open



End
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