Generics and
Collections in Java

COMP2511, CSE, UNSW

Generics in Java

Generics enable types (classes and interfaces) to be parameters when defining:
* classes,

* interfaces and
* methods.

Benefits

** Removes casting and offers stronger type checks at compile time.

+» Allows implementations of generic algorithms, that work on collections of different types, can
be customized, and are type safe.

*» Adds stability to your code by making more of your bugs detectable at compile time.

List list = new ArraylList(); List<String> 1istG = new ArraylList<String>();

list.add("hello"); listG.add("hello");

String s = (String) list.get(0); String sg = listG.get(@); // no cast
Without Generics With Generics

COMP2511: Design By Contract 2
ey UNSW

Generic Types

/7

** A generic type is a generic class or interface that is parameterized over types.

/7

** A generic class is defined with the following format:
class name< T1, T2, ..., Tn> {/* ... */ }

% The most commonly used type parameter names are:

*

* E - Element (used extensively by the Java Collections Framework)

o

» K - Key public_class qu { A
private Object object;

o

e

* N - Number
public void set(Object object) { this.object = object; }

o T - Type public Object get() { return object; }
% V-Value }
s S,UV etc. - 2nd, 3rd, 4th types yrT
* Generic version of the Box class.
% For examp|e’ :/@param <T> the type of the value being boxed
Box<Integer> integerBox = new Box<Integer>(); public class Box<T> {
OR // T stands for "Type"
private T t;
Box<Integer> integerBox = new Box<>();
public void set(T t) { this.t = t; }
public T get() { return t; }
}

COMP2511: Design By Contract

Multiple Type Parameters

* A generic class can have multiple type
parameters.

}

/7

** For example, the generic OrderedPair class,
which implements the generic Pair interface

public interface Pair<K, V> {

public K getKey();
public V getValue();

public class OrderedPair<K, V> implements Pair<K, V> {
st

S

private K key;
private V value;

public OrderedPair(K key, V value) {
this.key = key;
this.value = value;

}

public K getKey() { return key; }
public V getValue() { return value; }

% Usage examples,

Pair<String, Integer> p1 = new OrderedPair<String, Integer>("Even", 8);
Pair<String, String> p2 = new OrderedPair<String, String>("hello", "world");

OrderedPair<String, Integer> p1 = new OrderedPair<>("Even", 8);
OrderedPair<String, String> p2 = new OrderedPair<>("hello", "world");

OrderedPair<String, Box<Integer>> p = new OrderedPair<>("primes", new Box<Integer>(...));

COMP2511: Design By Contract

Generic Methods

Generic methods are methods that introduce their own type parameters.

‘public class Util {
public static <K, V> boolean compare(Pair<K, V> pl, Pair<K, V> p2) {
return pl.getKey().equals(p2.getKey()) &&
pl.getValue().equals(p2.getValue());

}

1}
|
The complete syntax for invoking this method would be:
Pair<Integer, String> p1 = new Pair<>(1, "apple");

Pair<Integer, String> p2 = new Pair<>(2, "pear");
boolean same = Util.<Integer, String>compare(p1, p2);

The type has been explicitly provided, as shown above.

Generally, this can be left out and the compiler will infer the type that is needed:

Pair<Integer, String> p1 = new Pair<>(1, "apple");
Pair<Integer, String> p2 = new Pair<>(2, "pear");
boolean same = Util.compare(p1, p2);

COMP2511: Design By Contract

SSSSSS

Bounded Type Parameters

** There may be times when you want to restrict the types that can be used as type
arguments in a parameterized type.

** For example, a method that operates on numbers might only want to accept instances
of Number or its subclasses. /

public <U extends Number> void inspect(U Lf){
System.out.println("U: " + u.getClass().getName());
}

public class NaturalNumber<T extends Integer> {

o«
COMP2511: Design By Contract

VVVVVV

Multiple Bounds

%* A type parameter can have multiple bounds:

< TextendsB1 & B2 & B3 >
» A type variable with multiple bounds is a subtype of all the types listed in the bound.

»* Note that B1, B2, B3, etc. in the above refer to interfaces or a class. There can be at

most one class (single inheritance), and the rest (or all) will be interfaces.

%* If one of the bounds is a class, it must be specified first.

COMP2511: Design By Contract

VVVVVV

Generic Methods and Bounded Type Parameters

public static <T> int countGreaterThan(T[] anArray, T elem) {
int count = 0;
for (T e : anArray)
if (e_> elem) // compiler erro X =jinvalid
++count;
return count;

¥

public interface Comparable<T> {
public int compareTo(T o0);
}

public static <T extends Comparable<T>> int countGreaterThan(T[] anArray, T elem
int count = 0;
for (T e : anArray)
if (e.compareTo(elem) > 0) Valid
++count;
return count;

Generics, Inheritance, and Subtypes

»* Consider the following method:

public void boxTest(Box<Number>n) { /* ... */ }

Number
** What type of argument does it accept? “I
ger
+** Are you allowed to pass in
Box<Integer> or Box<Double> ?
¢ The answer is "no", because Box<Integer> and | |
Box<Double> are not subtypes of Box<Numbers>. | BoxcNumber> | Boxdinteger>
** This is a common misunderstanding when it comes to
programming with generics.
R
COMP2511: Design By Contract 9 =F

SSSSSS

Generic Classes and Subtyping

. _ _ _ Collection<String>
%* You can subtype a generic class or interface by extending or $
implementing it. List<String>
** The relationship between the type parameters of one class or interface t
and the type parameters of another are determined by the extends and ArrayList<String>
implements clauses.
¢ ArrayList<E> implements List<E>, and List<E> extends Collection<E>.
% So ArrayList<String> is a subtype of List<String>,
which is a subtype of Collection<String>.
** So long as you do not vary the type argument,
the subtyping relationship is preserved between the types.
interface PayloadList<E,P> extends List<E> { =
void setPayload(int index, P val); I $ Lot
| List<String>
} | i |
PayloadList<String,String> PayloadListeString, String> | PayloadList<Siring, Integer> | PayloadList<String, Exception>
PayloadList<String, Integer>

PayloadList<String,Exception>

COMP2511: Design By Contract

Wildcards: Upper bounded

¢ In generic code, the question mark (?), called the wildcard, represents an unknown
type.

% The wildcard can be used in a variety of situations: as the type of a parameter, field, or
local variable; sometimes as a return type.

¢ The upper bounded wildcard, < ? extends Foo >, where Foo is any type, matches
Foo and any subtype of Foo .

% You can specify an upper bound for a wildcard, or you can specify a lower bound, but
you cannot specify both.

public static void process(List<? extends Foo> list) {
for (Foo elem : list) {
Il ses
} public static double sumOfList(List<? extends Number> list) {
} double s = 0.0;

for (Number n : list)
s += n.doubleValue();

return s;

COMP2511: Design By Contract 11

Wildcards: Unbounded

» The unbounded wildcard type is specified using the wildcard character (?),
for example, List< ? >. This is called a list of unknown type.

public static void printList(List<Object> list) {

for (Object elem : list) 3) :)
Sva b out D Tt el W It prints only a list of Object instances;

System.out.println(); it cannot print List<Integer>, List<String>,

} List<Double>, and so on
J

public static void printList(List<?> list) {
for (Object elem: list)
System.out.print(elem + " "); To write a generic printList
System.out.println(); method, use List<?>

) |

COMP2511: Design By Contract

Wildcards: Lower Bounded

»* An upper bounded wildcard restricts the unknown type to be a specific type or a
subtype of that type and is represented using the extends keyword.

** Alower bounded wildcard is expressed using the wildcard character ('?'), following by
the super keyword, followed by its lower bound: < ? super A >.

% To write the method that works on lists of Integer and the super types of Integer, such
as Integer, Number, and Object, you would specify List<? Super Integer>.

¢ The term List<Integer> is more restrictive than List<? super Integer>.

public static void addNumbers(List<? super Integer> list) {
for (int i = 1; i <= 10; i++) {
list.add(i);
}

COMP2511: Design By Contract 13
Sy UNSW

VVVVVV

Wildcards and Subtyping

*» Although Integer is a subtype of Number,
List<Integer> is not a subtype of List<Number> and,

these two types are not related.

+* The common parent of
List<Number> and List<Integer> is

List<?>. %

A hierarchy of several generic List class declarations.

Collections in Java

A collections framework is a unified architecture for representing and manipulating

collections. A collection is simply an object that groups multiple elements into a single unit.

All collections frameworks contain the following:

** Interfaces: allows collections to be manipulated independently of the details of their
representation.

** Implementations: concrete implementations of the collection interfaces.

% Algorithms: the methods that perform useful computations, such as searching and
sorting, on objects that implement collection interfaces.

* The algorithms are said to be polymorphic: that is, the same method can be used
on many different implementations of the appropriate collection interface.

COMP2511: Design By Contract

VVVVVV

Core Collection Interfaces:

*» The core collection interfaces encapsulate different types of collections

¢ The interfaces allow collections to be manipulated independently of the details of their
representation.

I e

The core collection interfaces.

The Collection Interface

** A Collection represents a group of objects known as its elements.

** The Collection interface is used to pass around collections of objects where maximum
generality is desired.

\/

%* For example, by convention all general-purpose collection implementations have a
constructor that takes a Collection argument.

** The Collection interface contains methods that perform basic operations, such as
* int size(),
* boolean isEmpty(),
* boolean contains(Object element),
* boolean add(E element),
* boolean remove(Object element),
* lIterator<E> iterator(),
¢ many more ...

More at : https://docs.oracle.com/javase/tutorial/collections/interfaces/collection.html

COMP2511: Design By Contract 17
o UNSW

SSSSSS

https://docs.oracle.com/javase/tutorial/collections/interfaces/collection.html

Collection Implementations

/

** The general purpose implementations are summarized in the following table:

Interface Hash Table Resizable Array Balanced Tree Linked List Hash Table + Linked List

Set HashSet TreeSet LinkedHashSet
List ArrayList LinkedList

Deque ArrayDeque LinkedList
Map HashMap TreeMap LinkedHashMap

1‘
Implemented Classes in the Java Collection,
Read their APlIs.

% Overview of the Collections Framework at the following page:
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html

COMP2511: Design By Contract 18

YYYYYY

https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html

Wrappers for the Collection classes

“ https://docs.oracle.com/javase/tutorial/collections/implementations/wrapper.html

COMP2511: Design By Contract 19

https://docs.oracle.com/javase/tutorial/collections/implementations/wrapper.html

Demo: Collections Framework

End

