
Generics and
Collections in Java

COMP2511, CSE, UNSW
UNSW

SYDNEY

Generics in Java

COMP2511: Design By Contract 2

Generics enable types {classes and interfaces) to be parameters when defining:
• classes,

• interfaces and

• methods.

Benefits
•!• Removes casting and offers stronger type checks at compile time.
•!• Allows implementations of generic algorithms, that work on collections of different types, can

be customized, and are type safe.
•!• Adds stability to your code by making more of your bugs detectable at compile time.

List list = new Arraylist();
list .add(11 hello 11);

String s = (String) 1ist .get(0);

Without Generics

List<String> listG = new Arraylist<String>();
listG .add("hello 11);

String sg = listG .get(0); // no cast

With Generics

~

UNSW
SYDN EY

Generic Types

COMP2511: Design By Contract 3

•!• A generic type is a generic class or interface that is parameterized over types.

•!• A generic class is defined with the following format:

class name< T1, T2, ... , Tn > { /* ... */}

•!• The most commonly used type parameter names are:
❖ E - Element (used extensively by the Java Collections Framework)

❖ K- Key

❖ N - Number

❖ T - Type

❖ V - Value

❖ S,U,V etc. - 2nd, 3rd, 4th types

•!• For example,
Box<lnteger> integerBox = new Box<lnteger>();

OR

Box<lnteger> integerBox = new Box<>();

public class Box {

}

I

private Object ob j ect ;

public void set(Object object) { this .ob Ject = object ; }
public Object get () { return object ; }

Generic version of the Box class.
@p ran <T> the type of the value being boxed

I
public class Box<T> {

}

/ / T stands for 'Type"
private T t ;

public void set(T t } { this . t = t ; }
public T get{) { return t ; }

~

UNSW
SYDNEY

Multiple Type Parameters

COMP2511: Design By Contract 4

•!• A generic class can have multiple type
parameters.

•!• For example, the generic Ordered air class,
which implements the generic Pair interface

•!• Usage examples,

public interface Pair<K, V~ {
public K get Key () ; •
public V getValue();

}

public class OrderedPair<K , V>~implements Pair<K, V~ {
- ur ¢2 •

}

private K key ;
private V value ;

public OrderedPair(K key , V value) {
this . key = key ;
this . value = value ;
}

public K get Key () { return key ; }
public V getValue() { return value ; }

Pair<String, Integer> p1 = new OrderedPair<String, lnteger>("Even", 8);
Pair<String, String> p2 = new OrderedPair<String, String>("hello", "world");

OrderedPair<String, Integer> p1 = new OrderedPair<>("Even", 8);
OrderedPair<String, String> p2 = new OrderedPair<>("hello", "world");

OrderedPair<String, Box<lnteger>> p = new OrderedPair<>("primes", new Box<lnteger>(...));

~

UNSW
SYDN E Y

Generic Methods

COMP2511: Design By Contract 5

Generic methods are methods that introduce their own type parameters.

public class Util {

}

public static <K, V> boolean compare(Pair<K, V> pl , Pair<K, V> p2) {
return pl .getKey().equals(p2 .getKey()) &&

pl .getValue().equals(p2 .getValue{));
}

The complete syntax for invoking this method would be:

Pair< lnteger, String> p1 = new Pair<>(1, "apple");
Pair< lnteger, String> p2 = new Pair<>(2, "pear");
boolean same = Util.<lnteger, String>compare(p1, p2);

The type has been explicitly provided, as shown above.
Generally, this can be left out and the compiler will infer the type that is needed:

Pair<lnteger, String> p1 = new Pair<>(1, "apple");
Pair<lnteger, String> p2 = new Pair<>(2, "pear");
boolean same= Util.compare(p1, p2);

~

UNSW
SYDN E Y

Bounded Type Parameters

COMP2511: Design By Contract 6

•:• There may be times when you want to restrict the types that can be used as type
arguments in a parameterized type.

•:• For example, a method that operates on numbers might only want to accept instances
of Number or its subclasses.

public <:!l exten s Number> void inspect(U u){
System. out . printl ("lJ : " + u . getClass (). get Name());

}

public class atural umber<T extends Inteqer> {

~

UNSW
SYDN E Y

Multiple Bounds

COMP2511: Design By Contract 7

•!• A type parameter can have multiple bounds:

< T extends B1 & B2 & B3 >

•!• A type variable with multiple bounds is a subtype of all the types listed in the bound.

•!• Note that B1, B2, B3, etc. in the above refer to interfaces or a class. There can be at

most one class (single inheritance), and the rest (or all) will be interfaces.

•!• If one of the bounds is a class, it must be specified first .

~

UNSW
SYDN E Y

Generic Methods and Bounded Type Parameters

COMP2511: Design By Contract 8

public static <T> int countGreaterThan(T[J anArray , T elem) {
int count = 0;

}

for (T e : anArray)
if (e >_tlg_m) / compiler erro X - invalid

++count ;
return count ;

public interface Comparable<T> {
public int compareTo(T o);

}

public static <T extends Comparable<T>> int countGreaterThan(T[] anArray , T elem
int count = 0;
for (T e : anArray)

if (e .compareTo(elem) > 0) Val"d
++count ;

return count ;
}

~

UNSW
SYDN EY

Generics, Inheritance, and Subtypes

COMP2511: Design By Contract 9

•!• Consider the following method:

public void boxTest(Box<Number> n) { /* ... */}

•!• What type of argument does it accept?

•!• Are you a II owed to pass in
Box<lnteger> or Box<Double> ?

•!• The answer is "no", because Box<lnteger> and
Box<Double> are not subtypes of Box<Number>.

•!• This is a common misunderstanding when it comes to
programming with generics.

Number

lnllger

Bax<Number> Baxclntilger>

~

UNSW
SYDN E Y

Generic Classes and Subtyping

COMP2511: Design By Contract 10

•!• You can subtype a generic class or interface by extending or
implementing it.

•!• The relationship between the type parameters of one class or interface
and the type parameters of another are determined by the extends and
implements clauses.

•!• Arraylist<E> implements List<E>, and List<E> extends Collection<E>.

•!• So Arraylist<String> is a subtype of List <String>,
which is a subtype of Collection<String>.

•!• So long as you do not vary the type argument,
the subtyping relationship is preserved between the types.

interface PayloadList<E,P> extends List<E> {
void setPayload(int index, P val);

}

CollectloncStrtrQ>

Ult<S1rlng>

Collecnon<strlng>

t
Usl<Strlng>

t --
ArraylJst<strlno>

PayloadList<String , String>

PayloadList<String , Integer>
Payloecl.Jat<Strlng, string> PayloadLlakStrlng, lnlager> PlyloadUslcS111ng, Emlption>

I PayloadList<String , Exception>

~

UNSW
SYDNEY

Wildcards: Upper bounded

COMP2511: Design By Contract 11

••• •

••• •

••• •

••• •

In generic code, the question mark(?), called the wildcard, represents an unknown
type .

The wildcard can be used in a variety of situations: as the type of a parameter, field, or
local variable; sometimes as a return type .

The upper bounded wildcard, < ? extends Foo >, where Foo is any type, matches
Foo and any subtype of Foo .

You can specify an upper bound for a wildcard, or you can specify a lower bound, but
you cannot specify both.

public static void process(List<? extends Foo> list) {
for (Foo elem: list) {

I I ...

}

}
public static double sumOfList(List<? extends Number> list) {

doubles= 0.0;

}

for (Number n: list)

s += n.doubleValue();

returns;

~

UNSW
SYDNEY

Wildcards: Unbounded

COMP2511: Design By Contract 12

•!• The unbounded wildcard type is specified using the wildcard character (?),
for example, List<?>. This is called a list of unknown type.

public static void printList(List<Object> list) {

}

for (Object elem: list)
System . out.println(elem +

System.out.println();

n n) ; It prints only a list of Object instances;
it cannot print List<lnteger>, List<String>,
List<Double>, and so on

_j

public static void printList(List<?> list) {7
for (Object elem: list) • I

System.out.print(elem + " "); To write a generic printlist
System.out.println(); method, use List<?>

}

~

UNSW
SYDN E Y

Wildcards: Lower Bounded

COMP2511: Design By Contract 13

•!• An upper bounded wildcard restricts the unknown type to be a specific type or a
subtype of that type and is represented using the extends keyword.

•!• A lower bounded wildcard is expressed using the wildcard character('?'), following by
the super keyword, followed by its lower bound: < ? super A >.

•!• To write the method that works on lists of Integer and the super types of Integer, such
as Integer, Number, and Object, you would specify List<? Super Integer>.

•!• The term List<lnteger> is more restrictive than List<? super Integer>.

public static void addNumbers(List<? super Integer> list) {

for (inti= l; i <= 10; i++) {

list.add(i);

}

}

~

UNSW
SYDN E Y

Wildcards and Subtyping

COMP2511: Design By Contract 14

•!• Although Integer is a subtype of Number,
List<lnteger> is not a subtype of List<Number> and,
these two types are not related .

•!• The common parent of
List<Number> and List<lnteger> is
L. ., 1st<.>.

UskNurnber>

Ult<? extandl Number> ~ Ult<? ac,er Integer>

Lllk? --• Integer>

Ult<lnllger> <Number>

A hierarchy of several generic List class declarations.

[List<?>

Ustc:lntagar>

~

UNSW
SYDN E Y

Collections in Java

COMP2511: Design By Contract 15

A collections framework is a unified architecture for representing and manipulating
collections. A collection is simply an object that groups multiple elements into a single unit.

All collections frameworks contain the following:

•:• Interfaces : allows collections to be manipulated independently of the details of their
representation.

•:• Implementations : concrete implementations of the collection interfaces.

•:• Algorithms: the methods that perform useful computations, such as searching and
sorting, on objects that implement collection interfaces.

• The algorithms are said to be polymorphic: that is, the same method can be used
on many different implementations of the appropriate collection interface.

~

UNSW
SYDN E Y

Core Collection Interfaces:

COMP2511: Design By Contract 16

•!• The core collection interfaces encapsulate different types of collections

•!• The interfaces allow collections to be manipulated independently of the details of their
representation.

The core collection interfaces.

~

UNSW
SYDN E Y

The Collection Interface

COMP2511: Design By Contract 17

More at : https://docs.oracle.com/javase/tutorial/collections/interfaces/collection.html

•!• A Collection represents a group of objects known as its elements.

•!• The Collection interface is used to pass around collections of objects where maximum
generality is desired.

•!• For example, by convention all general-purpose collection implementations have a
constructor that takes a Collection argument.

•!• The Collection interface contains methods that perform basic operations, such as
• int size(),

• boolean isEmpty(),
• boolean contains{Object element),

• boolean add{E element),
• boolean remove{Object element),

• Iterator< E> iterator{),
• many more .. .

~

UNSW
SYDN E Y

https://docs.oracle.com/javase/tutorial/collections/interfaces/collection.html

Collection Implementations

COMP2511: Design By Contract 18

v Overview of the Collections Framework at the following page:
 https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html

•!• The general purpose implementations are summarized in the following table:

Interface Hash Table
Set HashSet
List

Deque

Map HashMag

Resizable Array Ba la need Tree Linked List Hash Table+ Linked List
TreeSet LinkedHashSet

Arravlist Linkedlist
ArravDeaue Linkedlist

TreeMag LinkedHashMag

Implemented Classes in the Java Collection,
Read their APls.

~

UNSW
SYDN E Y

https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html

Wrappers for the Collection classes

COMP2511: Design By Contract 19

v https://docs.oracle.com/javase/tutorial/collections/implementations/wrapper.html

~

UNSW
SYDN EY

https://docs.oracle.com/javase/tutorial/collections/implementations/wrapper.html

Demo: Collections Framework

COMP2511: Design By Contract 20

Demo ……

~

UNSW
SYDN EY

COMP2511: Design By Contract 21

End

~

UNSW
SYDN EY

