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•!• An exception is an event, which occurs during the execution of a program, that disrupts the 
normal flow of the program's instructions. 

•!• When error occurs, an exception object is created and given to the runtime system, this is called 
throwing an exception. 

•!• The runtime system searches the call stack for a method that contains a block of code that can 
handle the exception. 

•!• The exception handler chosen is said to catch the exception. 
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The Three Kinds of Exceptions 

•:• Checked exception (IOException, SQLException, etc.) 

•:• Error (VirtualMachineError, OutOfMemoryError, etc.) 

•:• Runtime exception (ArraylndexOutOfBoundsExceptions, ArithmeticException, etc.) 

Checked vs. Unchecked Exceptions 

•:• An exception's type determines whether it's checked or unchecked. 

•:• All classes that are subclasses of RuntimeException (typically caused by defects in your 
program's code) or Error (typically 'system' issues) are unchecked exceptions. 

•:• All classes that inherit from class Exception but not directly or indirectly from class 
RuntimeException are considered to be checked exceptions. 
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Exceptions in Java

v Good introduction on Exceptions at 
https://docs.oracle.com/javase/tutorial/essential/exceptions/index.html

v Unchecked Exceptions — The Controversy 
https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html
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Hierarchy of Java Exceptions
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, 

Checked Exceptions Throwable 

Unchecked Exceptions 
Exception Error 

Runtime Exception IOException Thread Death VirtualMachineError 

ClassCastException NullPointerException ArithmeticException 

lndexOutOfBoundsException NoSuchElementException 

ArraylndexOutOfBoundsException lnputMismatchException 

From the book "Java How to Program, Early Objects•, 11th Edition, by Paul J. Deltel; Harvey Deltel 
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try 

catch 

finally 

public void writelist() { 
PrintWriter out = null ; 

} 

try { 
System. out .println( "Entering 11 + " try statement" ); 

out = new PrintWriter( new FileWriter( "OutFile.txt 11 )); 

for ( int i = 0; i < SIZE ; i ++) { 
out .println( "Value at: 11 + i + 11 =" + list .get( i )); 

} 
catch (IndexOutOfBoundsException e ) { 

System. err .println( "Caught IndexOutOfBoundsException: '' + e .getMessage()); 

} catch (IOException e ) { 

} 

System. err .println( "Caught IOException: " + e .getMessage()); 

finally { 
if (out != null ) { 

System. out .println( 11 Closing PrintWriter 11 ); 

out .close(); 
} else { 

System. out . p rintln ( 11 P rintWri te r not open 11 ) ; 

} 
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•:• We can also create user defined exceptions. 

•:• All exceptions must be a child of Throwable. 

•:• A checked exception need to extend the Exception class, 

but not directly or indirectly from class RuntimeException. 

•:• An unchecked exception {like a runtime exception) need to extend the 

RuntimeException class. 
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User Defined / Custom Checked Exception
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• Normally we define a checked exception, by extending the Exception class. 

class MyException extends Exception { 

} 

public MyException(String message){ 

super ( message); 

} 
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User Defined / Custom Exceptions: A Simple Example
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try { 
out= new PrintWriter( new FileWriter( "myData.txt" )); 
for (int i=0; i<SIZE; i++){ 

int idx = i + 5; 

if (idx >= SIZE){ 
throw new MyException( "1dx is out of index range!" ); 

} 

} 
out.println(list.get(idx)); 

} 

catch (IOException e){ 
System. out. println ( " In wr1 teln .... 11 ); 

} 
catch (MyException e){ 
• System.ou t .println(e.getMessage()); 
} 
catch (Exception e){ 

System.out.println( " In writeln, Exception 

} 

ti ) • 
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Exceptions in Inheritance
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•!• If a subclass method overrides a superclass method, 

a subclass's throws clause can contain a subset of 

a superclass's throws clause. 

It must not throw more exceptions I 

•!• Exceptions are part of an API documentation and contract. 
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Demo: Exceptions in Java 
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Demo ………
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Assertions in Java
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• An assertion is a statement in the Java that enables you to test your assumptions about your 
program. Assertions are useful for checking: 

• Preconditions, Post-conditions, and Class Invariants (DbC!) 

• Internal Invariants and Control-Flow Invariants 

• You should not use assertions: 

• for argument checking in public methods. 

• to do any work that your application requires for correct operation. 

• Evaluating assertions should not result in side effects. 

• The following document shows how to use assertions in Java 

https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html 

Important: for backward compatibility, by default, Java disables assertion validation feature. 
It needs to be explicitly enabled using the following command line argument: 

• -enableassertions command line argument, or 

• -ea command line argument 
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Assert : Example
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I .• 
Sets the refresh in erval (which must correspond to a legal frame rate}. 

@param interval refresh interval in milliseconds. 
·/ 
private void setRefreshinterval( int interval} { 
// Confirm adherence o precondition in nonpublic ethod 
assert interval> 0 && interval<= 1000/MAX REFRESH RATE 

// Set the refresh interval 

interval; 

~ 

UNSW 
SYDN EY 



Exceptions: Summary Points
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•!• Consider your exception-handling and error-recovery strategy in the design process. 

•!• Sometimes you can prevent an exception by validating data first. 

•!• If an exception can be handled meaningfully in a method, the method should catch the 
exception rather than declare it. 

•!• If a subclass method overrides a superclass method, a subclass's throws clause can contain a 
subset of a superclass's throws clause. It must not throw more exceptions! 

•!• Programmers should handle checked exceptions. 

•!• If unchecked exceptions are expected, you must handle them gracefully. 

•!• Only the first matching catch is executed, so select your catching class(es) carefully. 

•!• Exceptions are part of an API documentation and contract. 

•!• Assertions can be used to check preconditions, post-conditions and invariants. 
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