
Exceptions in Java

COMP2511, CSE, UNSW
UNSW

SYDNEY

Exceptions in Java

COMP2511: Design By Contract 2

•!• An exception is an event, which occurs during the execution of a program, that disrupts the
normal flow of the program's instructions.

•!• When error occurs, an exception object is created and given to the runtime system, this is called
throwing an exception.

•!• The runtime system searches the call stack for a method that contains a block of code that can
handle the exception.

•!• The exception handler chosen is said to catch the exception.

Method where error occurred

Method without an exception
handler

I Method with an excep on
handler

C in

The call stack.

Method call

Method call

Method call

Throws exception

Forwards exception

Catch some
o er exception

Method where error occurred

Method without an exception
handler

in

Searching the call stack for
the exception handler.

Looking for
appropriate
handler

Looking for
appropnate
handler

~

UNSW
SYDN E Y

Exceptions in Java

COMP2511: Design By Contract 3

The Three Kinds of Exceptions

•:• Checked exception (IOException, SQLException, etc.)

•:• Error (VirtualMachineError, OutOfMemoryError, etc.)

•:• Runtime exception (ArraylndexOutOfBoundsExceptions, ArithmeticException, etc.)

Checked vs. Unchecked Exceptions

•:• An exception's type determines whether it's checked or unchecked.

•:• All classes that are subclasses of RuntimeException (typically caused by defects in your
program's code) or Error (typically 'system' issues) are unchecked exceptions.

•:• All classes that inherit from class Exception but not directly or indirectly from class
RuntimeException are considered to be checked exceptions.

~

UNSW
SYDN E Y

Exceptions in Java

v Good introduction on Exceptions at
https://docs.oracle.com/javase/tutorial/essential/exceptions/index.html

v Unchecked Exceptions — The Controversy
https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

COMP2511: Design By Contract 4 ~

UNSW
SYDN EY

https://docs.oracle.com/javase/tutorial/essential/exceptions/index.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

Hierarchy of Java Exceptions

COMP2511: Design By Contract 5

,

Checked Exceptions Throwable

Unchecked Exceptions
Exception Error

Runtime Exception IOException Thread Death VirtualMachineError

ClassCastException NullPointerException ArithmeticException

lndexOutOfBoundsException NoSuchElementException

ArraylndexOutOfBoundsException lnputMismatchException

From the book "Java How to Program, Early Objects•, 11th Edition, by Paul J. Deltel; Harvey Deltel

~

UNSW
SYDN E Y

Example

COMP2511: Design By Contract 6

try

catch

finally

public void writelist() {
PrintWriter out = null ;

}

try {
System. out .println("Entering 11 + " try statement");

out = new PrintWriter(new FileWriter("OutFile.txt 11));

for (int i = 0; i < SIZE ; i ++) {
out .println("Value at: 11 + i + 11 =" + list .get(i));

}
catch (IndexOutOfBoundsException e) {

System. err .println("Caught IndexOutOfBoundsException: '' + e .getMessage());

} catch (IOException e) {

}

System. err .println("Caught IOException: " + e .getMessage());

finally {
if (out != null) {

System. out .println(11 Closing PrintWriter 11);

out .close();
} else {

System. out . p rintln (11 P rintWri te r not open 11) ;

}

~

UNSW
SYDN EY

User Defined Exceptions in Java

COMP2511: Design By Contract 7

•:• We can also create user defined exceptions.

•:• All exceptions must be a child of Throwable.

•:• A checked exception need to extend the Exception class,

but not directly or indirectly from class RuntimeException.

•:• An unchecked exception {like a runtime exception) need to extend the

RuntimeException class.

~

UNSW
SYDN E Y

User Defined / Custom Checked Exception

COMP2511: Design By Contract 8

• Normally we define a checked exception, by extending the Exception class.

class MyException extends Exception {

}

public MyException(String message){

super (message);

}

~

UNSW
SYDN EY

User Defined / Custom Exceptions: A Simple Example

COMP2511: Design By Contract 9

try {
out= new PrintWriter(new FileWriter("myData.txt"));
for (int i=0; i<SIZE; i++){

int idx = i + 5;

if (idx >= SIZE){
throw new MyException("1dx is out of index range!");

}

}
out.println(list.get(idx));

}

catch (IOException e){
System. out. println (" In wr1 teln 11);

}
catch (MyException e){
• System.ou t .println(e.getMessage());
}
catch (Exception e){

System.out.println(" In writeln, Exception

}

ti) •
• • • • I

~

UNSW
SYDN EY

Exceptions in Inheritance

COMP2511: Design By Contract 10

•!• If a subclass method overrides a superclass method,

a subclass's throws clause can contain a subset of

a superclass's throws clause.

It must not throw more exceptions I

•!• Exceptions are part of an API documentation and contract.

~

UNSW
SYDN E Y

Demo: Exceptions in Java

COMP2511: Design By Contract 11

Demo ………

~

UNSW
SYDN EY

Assertions in Java

COMP2511: Design By Contract 12

• An assertion is a statement in the Java that enables you to test your assumptions about your
program. Assertions are useful for checking:

• Preconditions, Post-conditions, and Class Invariants (DbC!)

• Internal Invariants and Control-Flow Invariants

• You should not use assertions:

• for argument checking in public methods.

• to do any work that your application requires for correct operation.

• Evaluating assertions should not result in side effects.

• The following document shows how to use assertions in Java

https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

Important: for backward compatibility, by default, Java disables assertion validation feature.
It needs to be explicitly enabled using the following command line argument:

• -enableassertions command line argument, or

• -ea command line argument

~

UNSW
SYDN E Y

Assert : Example

COMP2511: Design By Contract 13

I .•
Sets the refresh in erval (which must correspond to a legal frame rate}.

@param interval refresh interval in milliseconds.
·/
private void setRefreshinterval(int interval} {
// Confirm adherence o precondition in nonpublic ethod
assert interval> 0 && interval<= 1000/MAX REFRESH RATE

// Set the refresh interval

interval;

~

UNSW
SYDN EY

Exceptions: Summary Points

COMP2511: Design By Contract 14

•!• Consider your exception-handling and error-recovery strategy in the design process.

•!• Sometimes you can prevent an exception by validating data first.

•!• If an exception can be handled meaningfully in a method, the method should catch the
exception rather than declare it.

•!• If a subclass method overrides a superclass method, a subclass's throws clause can contain a
subset of a superclass's throws clause. It must not throw more exceptions!

•!• Programmers should handle checked exceptions.

•!• If unchecked exceptions are expected, you must handle them gracefully.

•!• Only the first matching catch is executed, so select your catching class(es) carefully.

•!• Exceptions are part of an API documentation and contract.

•!• Assertions can be used to check preconditions, post-conditions and invariants.

~

UNSW
SYDN E Y

