Domain Modelling

COMP2511, CSE, UNSW

Domain Models

* Domain Models are used to visually represent important domain concepts and
relationships between them.

* Domain Models help clarify and communicate important domain specific concepts and
are used during the requirements gathering and designing phase.

* Domain modeling is the activity of expressing related domain concepts into a domain
model.

* Domain models are also often referred to as conceptual models or domain object models.

* We will be use Unified Modeling Language (UML) class diagrams to represent domain
models.

* There are many different modelling frameworks, like: UML, Entity-Relationship, Mind
maps, Context maps, Concept diagrams. etc.

COMP2511: Domain Modelling 2

VVVVVV

Requirements Analysis vs Domain modelling

* Requirements analysis determines external behaviour
“What are the features of the system-to-be and who requires these features (actors)”

* Domain modelling determines (internal behavior) —
“how elements of system-to-be interact to produce the external behaviour”

* Requirements analysis and domain modelling are mutually dependent - domain
modelling supports clarification of requirements, whereas requirements help building up
the model.

COMP2511: Domain Modelling

VVVVVV

What is a domain?

 Domain — A sphere of knowledge particular to the problem being solved

 Domain expert — A person expert in the domain

* For example, in the domain of cake decorating, cake decorators are the domain experts

COMP2511: Domain Modelling

SSSSSS

Problem

A motivating example:

* Tourists have schedules that involve at least one and possibly several cities

Hotels have a variety of rooms of different grades: standard and premium

Tours are booked at either a standard or premium rate, indicating the grade of hotel
room

In each city of their tour, a tourist is booked into a hotel room of the chosen grade

Each room booking made by a tourist has an arrival date and a departure date

Hotels are identified by a name (e.g. Melbourne Hyatt) and rooms by a number

Tourists may book, cancel or update schedules in their tour

COMP2511: Domain Modelling

SSSSSS

Ubiquitous language

Things in our design must represent real things in the domain expert’s mental model.

For example, if the domain expert calls something an "order" then in our domain model
(and ultimately our implementation) we should have something called an Order.

Similarly, our domain model should not contain an OrderHelper, OrderManager, etc.

Technical details do not form part of the domain model as they are not part of the
design.

COMP2511: Domain Modelling

SSSSSS

Noun/verb analysis

* Finding the ubiquitous language of the domain by finding the nouns and verbs in the
requirements

* The nouns are possible entities in the domain model and the verbs possible behaviours

Problem

* The nouns and verbs:

* Tourists have schedules that involve at least one and possibly several cities

Hotels have a variety of rooms of different grades: standard and premium

Tours are booked at either a standard or premium rate, indicating the grade of
hotel room

In each city of their tour, a tourist is booked into a hotel room of the chosen grade

Each room booking made by a tourist has an arrival date and a departure date

Hotels are identified by a name (e.g. Melbourne Hyatt) and rooms by a number

Tourists may book, cancel or update schedules in their tour

COMP2511: Domain Modelling

SSSSSS

UML Class diagrams: Perspectives

Conceptual Specification Implementation

* Above diagram is from: https://www.visual-paradigm.com/qguide/uml-unified-modeling-language/uml-class-diagram-tutorial/

UML Class diagrams: Relationships

l l Association
I >l Inheritance
I """"""""" ’l Readlization
I""""""""">I Dependency
g [Asoroor
I‘ [Composition

* Above diagram is from: https://www.visual-paradigm.com/qguide/uml-unified-modeling-language/uml-class-diagram-tutorial/

UML Class diagrams

B —— >

* The loosest form of relationship. A class in some way depends on another.

Association

* A class "uses" another class in some way. When undirected, it is not yet clear in what
direction dependency occurs.

Directed >
Association

* Refines association by indicating which class has knowledge of the other

UML Class diagrams

Aggregation S

A class contains another class (e.g. a course contains students). Note that the diamond it
at the end with the containing class.

Composition P

* Like aggregation, but the contained class is integral to the containing class. The contained
class cannot exist outside of the container (e.g. the leg of a chair)

COMP2511: Domain Modelling

SSSSSS

UML Diagram Types

UML Diagram Type

!

Structural Diagrams

l

Gomposite Structure

Diagram
Package Profile
Diagram Diagram

Object Diagram

Deployment
Diagrams

Class
Diagram

Gomponent
Diagram

Behavioral Diagrams

State Machine
Diagram

Use Case
Diagram

Timing Diagram

COMP2511: Domain Modelling

GCommunication

Diagram

Sequence
Diagram

Interaction

Overview Diagram

Examples

Examples

class (class diagram)

Account

-name: String
-balance: float

+getBalance(): float
+getName() : String
+withDraw(float)
+deposit(float)

COMP2511: Domain Modelling

object instances (object
diagram)

al:Account

name = “John Smith”
balance = 40000

a2:Account

name = “Joe Bloggs”
balance = 50000

Representing classes in UML

Account

-name: String
-accountNo: int
-balance:float

+getBalance(): float
+setBalance(): float

This means
“inheritance”

SavingsAccount

-saverInterest: float

+calcInterest(): float

COMP2511: Domain Modelling

SSSSSS

Representing classes in UML

class Rectangle extends Shape adding
attributes height , width

class Rectangle overrides method
getArea() to provide its own
implementation

Shape

-name: String

+getName(): String
+setName(String)
+getArea(): float

T

Rectangle

™~

-height: float
-width: float

+getArea(): float
+getWidth(): int
+getHeight(): int

COMP2511: Domain Modelling

SSSSSS

Representing Association in UML

Class 1 Association Class 2

Dog 1 belongs 1 | Owner
>

Professor | 1 teaches 0.*| Course
>

COMP2511: Domain Modelling

Representing Association in UML

* Associations can model a “has-a” relationship where one class
“contains” another class

* Associations can further be refined as:

Aggregation relationship (hollow diamond symbol ¢): The contained item is an
element of a collection but it can also exist on its own, e.g., a lecturer in a
university or a student at a university

contains (
[Lab Jo L Computers J

Composition relationship (filled diamond symbol ¢ in UML
diagrams): The contained item is an integral part of the containing
item, such as a leg in a desk, or engine in a car

has
L Order }0 [Line Items J

COMP2511: Domain Modelling 19

Representing Association in UML

Car ,1\ consists of 1 | Engine s
>

Book T 1.* | Pages

Vehicle Truck .

COMP2511: Domain Modelling

Aggregation - “has-a” relationship
where the part can exist without
container

Composition — “is-composed-of”
relationship where part cannot live
without container

Inheritance — “is-a-kind-of”
relationship

20

Class Diagram Example: Order System

Muttiplicity oereaation
I ggreg

Class
I Role

o -

Attribute — — » o
[

Association Operation

Abstract Class —

Generalization =— — -

* Above diagram is from: https://www.visual-paradigm.com/qguide/uml-unified-modeling-language/uml-class-diagram-tutorial/

Class Diagram Example: GUI

Dependency

= Abstract Class

Aggregation Class
<+ — = Generalization

Aftribute : | ‘

A -

Association = = = »

A
|

Control class |
Operation Composition

* Above diagram is from: https://www.visual-paradigm.com/qguide/uml-unified-modeling-language/uml-class-diagram-tutorial/

Attributes vs. Classes

\/

% The most common confusion — should it be an attribute or a class?

o when creating a domain model, often we need to decide whether to represent
something as an attribute or a conceptual class.

\/

** If a concept is not representable by a number or a string,
most likely it is a class.

% For example:
o alab mark can be represented by a number, so we should represent it as an attribute

o astudent cannot be represented by a number or a string, so we should represent it
as a class

COMP2511: Domain Modelling 23

VVVVVV

= Flight

+ originAirport: String
+ destinationAirport: String

= Sale

+ storeName: String
+ amount : double

Attributes vs. Classes

Better

=

Better

==y

= Flight

+ originAirport: Airport
+ destinationAirport: Airport

- Airport

+ name: String
+ phoneNumber: String

= Sale

+ store: Store
+ amount: double

- Store

+ name: String
+ phoneNumber: String

COMP2511: Domain Modelling

What is wrong with the following?

+ Title:

+ Code:
+UOC

+ Term: String
+ Lecturers [] :
+ Sessions [] :
+ Students [):

Object:Course

Tile = "Inro to computing"”
Code = "COMP1511"
UOC =6

Term = 19T1

Object:Course

Object:Course

Tile = "Inro to computing"
Code = "COMP1511"
UOC =6

Tile = "Inro to computing"
Code = "COMP1511"
UoC=6

Term = 19T2 Term = 19T3
Lecturers [] Lecturers [] Lecturers []
Sessions [] Sessions [] Sessions []
Students [] Students [] Students []
Object:Course Object:Course

Tile = "Data Structures and Algoritms" Tile = "Data Structures and Algoritms"

Code = "COMP2521" Code = "COMP2521"

UOC =6 UOC =6

Term = 19T1 Term = 19T2

Lecturers [] Lecturers []

Sessions [] Sessions []

Students [] Students []

A Possible solution

- Course Object:Course
+ Tide: Tile = "Inro to computing”
3 Code = "COMP1511"
+ Code: UOC =6
+UoC Prereq]
+PreReq (] : CourseOfferings []
+ CourseOfferings: []
%’ Object:CourseOffering Object:CourseOffering Object:CourseOffering
1to
Term = 19T1 Term = 19T2 Term =19T3
Lecturers [] Lecturers [] Lecturers []
Sessions [] Sessions [] Sessions []
= CourseOffering Students [] Students [] Students []
+ Term:
Object:Course
+ Sessions [] :
Tile = "Data Structures and Algorithms"
+ Lecturers [] : Code = "COMP2521"
UOC =6
+ Students []: PreReq []
CourseOfferings []
Object:CourseOffering Object:CourseOffering Object:CourseOffering
Term = 19T1 Term = 19T2 Term = 19T3
Lecturers [] Lecturers [] Lecturers []
Sessions [] Sessions [] Sessions []
Students [] Students) Students []

References

** A very detailed description of UML

o https://www.uml-diagrams.org/

** Books that go into detail on Domain Driven Design
o Domain-Driven Design: Tackling Complexity in the Heart of Software by Eric Evans.

o Domain Modeling Made Functional: Tackle Software Complexity with Domain-Driven

Design and F# by Scott Wlaschin.

COMP2511: Domain Modelling 27

