
Software Design
and Architecture
(OO Design & Programming)

Course Introduction
Term 2, 2025
COMP2511, CSE, UNSW

Our Team
Course Convenor and Lecturer [Week 01 to 05]:

Dr Ashesh Mahidadia (a.mahidadia@unsw.edu.au)

Lecturer [Week 07 to 10]:
Dr Jesse Laeuchli (j.laeuchli@unsw.edu.au)

Course Admin Team:
Alvin Cherk, Sai Nair, Michael Mospan, Grace Kan, Daniel Khuu

Tutors:

25+ passionate tutors!

Course Account Email: cs2511@cse.unsw.edu.au
(Unless you specifically require to contact a member of the admin team,
please use the above email for any queries related to the course.)

Software Design and Architecture
(OO Design & Programming) 2

Alvin Sai

Ashesh Jesse

Course Context

Software Design and Architecture
(OO Design & Programming) 3

The Story So Far: Course Context

COMP1511: Solving problems with computers, the wonder and joy of programming

COMP1521: Getting right down into the silicon

COMP1531: Solving problems in a team; programming in the large

COMP2521: Solving problems at scale using data structures and algorithms

COMP2511???

Software Design and Architecture
(OO Design & Programming) 4

COMP2511

v We can write code, but how do we write good code?

v Designing elegant and beautiful software.

v Shades of Grey - things aren't clear cut; writing good software is an art.

v Grow from a programmer into a software engineer by following a systematic design and

development strategy.

Software Design and Architecture
(OO Design & Programming) 5

COMP 2511 Major Themes

v Analyse characteristics of elegantly written software, and learn how to create and

maintain well-designed codebases

v Apply widely used Software Design and Architectural Patterns to create extensible,

flexible, maintainable and reusable software systems

v Apply the principles of Object-Oriented Design to solve problems.

Software Design and Architecture
(OO Design & Programming) 6

COMP 2511 Major Themes

v Create medium-scale systems from scratch, and work on existing systems as part of the

Software Development Life Cycle.

v For specific software development scenarios, evaluate different design and architectural

paradigms and methodologies based on their origins and suitability.

v Create software solutions using an enterprise programming language within an

integrated development environment (IDE).

Software Design and Architecture
(OO Design & Programming) 7

Credit teaching material

v No textbook, the lecture slides cover the required topics.

v However, you are strongly encouraged to read additional material and the reference books.

v In the lecture notes, some content and ideas are drawn from:
• Head First Design Patterns , by Elisabeth Freeman and Kathy Sierra, The State University of New Jersey
• Head First Software Architecture, by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc.
• Fundamentals of Software Architecture, 2nd Edition, by Mark Richards, Neal Ford
• Refactoring: Improving the design of existing code, by Martin Fowler
• Material from many popular websites.

Software Design and Architecture
(OO Design & Programming) 8

How do we obtain our educational objectives?

v Lectures: 4-hour lectures (9 weeks)

v Tutorials:
v A 1-hour tutorial session per week, which is scheduled before the lab.
v Online Tutorials/Labs will be run via MS Teams .
v Tutorials are understanding-driven - interactive examples to illustrate concepts

discussed in lectures
v Solutions and recording to tutorials posted at the end of each week

Software Design and Architecture
(OO Design & Programming) 9

How do we obtain our educational objectives?

v Labs:

v 2 hours each week, straight after tutorial
v Like most CSE core courses

v Lab retros posted after due date on course website

v Online Run via MS Teams

Software Design and Architecture
(OO Design & Programming) 10

Assessments

Coursework (15%)

v Your coursework mark is made up of marks associated with the lab exercises.

v There are seven labs, each worth ten marks.

v We will cap total coursework marks at 60 (which will translate to 15%),
leaving one lab as a buffer.

v If you attend all seven labs, we will add all seven lab marks and
cap the total coursework marks to 60.

v The specific marking criteria for each lab will be outlined in the respective specifications.

v A general guide for the criteria that your tutor/lab assistant will use to assess you is available
on the class webpage.

v You (students) must get your lab manually marked each week

Software Design and Architecture
(OO Design & Programming) 12

Assignment I (15%)

v The marking criteria for the assignment will be outlined in the specification which will be

released Tuesday of Week 2.

v Due Friday 3pm Week 5.

v Completed individually.

Software Design and Architecture
(OO Design & Programming) 13

Assignment II (20 %)

v The marking criteria for the project will be outlined in the specification which will be
released Thursday Week 5.

v Pairs formed within your tutorial.

v Groups formed by end of Week 3.

v Due Friday 3pm week 10

v If you're facing challenges with your partner, measures are in place to assist you.
However, please ensure your tutor is informed as soon as the issue arises.

Software Design and Architecture
(OO Design & Programming) 14

Final Exam (50%)

v In 25T2 the COMP2511 exam will be held in person in the CSE Labs, and invigilated.

v All students are required to take the final exam in person, even if they have enrolled in online
classes. In 25T2, there will be no online exams.

v Hurdle : In order to pass the course, it is required for the student to achieve a minimum of 40%
(20 out of 50) marks in the final examination.

v Students are eligible for a Supplementary Exam if and only if:

Ø Students cannot attend the final exam due to illness or misadventure.
Students must formally apply for a special consideration, and it must
be approved by the respective authority.

Software Design and Architecture
(OO Design & Programming) 15

Assumed Knowledge

v Confident programmers

o Familiar with C and Python/JS programming concepts

v Able to work in a team

o Git

o Working with others

v Understand basic testing principles

v Understand basic software engineering design principles (DRY, KISS)

Software Design and Architecture
(OO Design & Programming) 16

Assumed Knowledge

v What we don't assume:

o Knowledge of Java

o Understanding of Object-Oriented Programming

v This is not a Java course

Software Design and Architecture
(OO Design & Programming) 17

Course philosophy

v A step up from first year courses

v Challenging but achievable

v Develop skills in time management, teamwork as well as critical thinking

v Highly rewarding

Software Design and Architecture
(OO Design & Programming) 18

Support

v Supporting you is our job :)

v Help Sessions

o Lots of them with fantastic tutors

o Feedback on work, help with problems, clarifying ideas

o You are expected to have done your own research and debugging before arriving

Software Design and Architecture
(OO Design & Programming) 19

Support

v Course Forum
o Ask questions and everyone can see the answers!
o Make private posts for sharing code
o Response time

v Course Account - cs2511@cse.unsw.edu.au
o Sensitive/personal information

v During the project - your tutor

v Go to help sessions for help on concepts

v Post on the forum if you need more immediate lab feedback

v There are no late extensions on labs unless in extenuating circumstances, email
cs2511@cse.unsw.edu.au

Software Design and Architecture
(OO Design & Programming) 20

Support - UNSW

v Special Consideration -
https://student.unsw.edu.au/special-consideration

v Equitable Learning Services -
https://student.unsw.edu.au/els

Software Design and Architecture
(OO Design & Programming) 21

Mental Health & Wellbeing

v UNSW Psychology & Wellness - https://student.unsw.edu.au/mhc

v UNSW Student Advisors - https://student.unsw.edu.au/advisors

v Reach out to us at cs2511@cse.unsw.edu.au

v Check in with each other

v Talk to someone

Software Design and Architecture
(OO Design & Programming) 22

https://student.unsw.edu.au/mhc
https://student.unsw.edu.au/advisors

Technology Stack

v Java Version – JDK 17

v VSCode

v Gradle 8.8

v Gitlab (+ CI pipelines)

Software Design and Architecture
(OO Design & Programming) 23

Feedback

v We love feedback :)

v Changes made to the course this term based on constructive student feedback

v We always want to continuously improve

o This term, we are incorporating software architecture topics to enhance
the course’s relevance to real-world applications.

v Feedback form

v Course account

Software Design and Architecture
(OO Design & Programming) 24

Respect

v Yourselves, each other, course staff

Software Design and Architecture
(OO Design & Programming) 25

It's time to lift off for 25T2 !!!!

Software Design and Architecture
(OO Design & Programming) 26

OOP in Java

COMP2511, CSE, UNSW
UNSW

SYDNEY

The Java Platform

COMP2511: OOP in Java 2

[

Object Oriented

Distributed

Java Code
(.java)

l
[

[Simple l
~ u ~ Multi-threaded

[JAVA]~
r:;:::> rl Platform-

~ Independent

Memory
Secure l Management

In Java compiler LI, _ ______,

Java Byte
Code

(.class)

~

UNSW
SYDNEY

OOP in Java

v Object Oriented Programming (OOP) v Inheritance in OOP

v Introduction to Classes and Objects v Subclasses and Inheritance

v Abstract Classes

v Single Inheritance versus Multiple Inheritance

v Interfaces

v Method Forwarding (Has-a relationship) v Method Overriding (Polymorphism)

v Method Overloading

v Constructors

COMP2511: OOP in Java 3 ~

UNSW
SYDN EY

Object Oriented Programming (OOP)

COMP2511: OOP in Java 4

In procedural programming languages (like 'C'), programming tends to be action-oriented,

whereas in Java - programming is object-oriented.

In procedural programming,

• groups of actions that perform some task are formed into functions and functions are grouped to
form programs.

In OOP,

• programmers concentrate on creating their own user-defined types called classes.

• each class contains data as well as the set of methods (procedures) that manipulate the data.

• an instance of a user-defined type (i.e. a class) is called an object.

• OOP encapsulates data (attributes) and methods (behaviours) into objects, the data and methods
of an object are intimately tied together.

• Objects have the property of information hiding.

~

UNSW
SYDN E Y

Inheritance in Object Oriented Programming (OOP)

COMP2511: OOP in Java 5

•:• Inheritance is a form of software reusability in which new classes are created from the
existing classes by absorbing their attributes and behaviours.

•:• Instead of defining completely (separate) new class, the programmer can designate
that the new class is to inherit attributes and behaviours of the existing class (called
superclass). The new class is referred to as subclass.

•:• Programmer can add more attributes and behaviours to the subclass, hence,
normally subclasses have more features than their super classes.

~

UNSW
SYDN E Y

Inheritance in Object Oriented Programming (OOP)

COMP2511: OOP in Java 6

Inheritance relationships form tree-like hierarchical structures. For example,

Student Person

UndergraduateStudent PostgraduateStudent -------Employee

/ ~ I
SalesPerson Engineer Secretary Graduate UnderGrad

Sales anager Projl ctManager

Loan D .. IM 1stnct anager

---------- I --------Carloan Homelmprovementloan Mortgageloan
Sh

/\
Point Rectangle Circle

Account

---------- I --------CheckingAccount SavingsAccount LoansAccount

I
Graphical Rectangle Graphica/Circle

~

UNSW
SYDN E Y

“Is-a” - Inheritance relationship

COMP2511: OOP in Java 7

•!• In an "is-a" relationship, an object of a subclass may also be treated as an object of the
superclass.

•!• For example, UndergraduateStudent can be treated as Student too.

•!• You should use inheritance to model "is-a" relationship.

Very Important:

•!• Don't use inheritance unless all or most inherited attributes and methods make sense.

•!• For example, mathematically a circle is-a (an) oval, however you should not inherit a class circle
from a class oval. A class oval can have one method to set width and another to set height.

~

UNSW
SYDN E Y

“Has-a” - Association relationship

COMP2511: OOP in Java 8

•!• In a "has-a" relationship, a class object has an object of another class to store its state or do its
work, i.e. it " has-a" reference to that other object.

•!• For example, a Rectangle ls-NOT-a Line.
However, we may use a Line to draw a Rectangle.

•!• The "has-a" relationship is quite different from an " is-a" relationship.

•!• "Has-a" relationships are examples of creating new classes by composition of existing classes (as
oppose to extending classes).

Very Important:

•!• Getting "ls-a" versus "Has-a" relationships correct is both subtle and potentially critical. You
should consider all possible future usages of the classes before finalising the hierarchy.

•!• It is possible that obvious solutions may not work for some applications.

~

UNSW
SYDN E Y

Designing a Class

COMP2511: OOP in Java 9

• Think carefully about the functionality (methods) a class should offer.

• Always try to keep data private (local).

• Consider different ways an object may be created .

• Creating an object may require different actions such as initializations.

• Always initialize data.

• If the object is no longer in use, free up all the associated resources.

• Break up classes with too many responsibilities.

• In 00, classes are often closely related. "Factor out" common attributes and behaviours
and place these in a class. Then use suitable relationships between classes (for example,
"is-a" or "has-a").

~

UNSW
SYDN E Y

Introduction to Classes and Objects

COMP2511: OOP in Java 10

•:• A class is a collection of data and methods {procedures) that operate on that data.

•:• For example,

a circle can be described by the x, y position of its centre and by its radius.

•:• We can define some useful methods (procedures) for circles,

compute circumference, compute area, check whether pointes are inside the circle,
etc.

•:• By defining the Circle class {as below), we can create a new data type.

~

UNSW
SYDN E Y

The Class Circle

For simplicity, the methods for getter and
setters are not shown in the code.

COMP2511: OOP in Java 11

public class Circle {

}

protected static final double pi = 3.14159;
protected int x, y ;
protected int r ;

//Very~ pl con true or
public Circle(}{

this .x = 1;
this .y = 1;
this . r = 1;

}
// Anal e 1 le constructo
public Circle(int x, int y , int r {

this .x = x;
this .y = y ;
this . r = r ;

}

/ - -

B lo re urn h circumfer nee
-· ar
-/

public double circumference() {
return 2 pi r ;

}
public double area () {

return pi r r
}

~

UNSW
SYDN EY

Objects are Instances of a class

COMP2511: OOP in Java 12

In Java, objects are created by instantiating a class.

For example,

Circle c;
c = new Circle () ;

OR

Circle c = new Circle () ;

~

UNSW
SYDN EY

Accessing Object Data

COMP2511: OOP in Java 13

We can access data fields of an object.

For example,

Circle c = new Circle () ;

II Initialize our circle to have centre (2, 5)

II and radius 1.

II Assuming, x, y and rare not private

c.x = 2;
c.y = S;
c.r = 1;

~

UNSW
SYDN EY

Using Object Methods

COMP2511: OOP in Java 14

To access the methods of an object, we can use the same syntax as accessing the data of
an object:

Circle c = new Circle () ;
double a;

c.r = 2; // assuming r is not private

a = c.area();

//Note that its not: a= area(c) ;

~

UNSW
SYDN EY

Subclasses and Inheritance:
First Approach

COMP2511: OOP in Java 15

We want to implement Graphica/Circle.

This can be achieved in at least 3 different ways.

First Approach:

••• •

••• •

••• •

In this approach we are creating the
new separate class for Graphica/Circle and
re-writing the code already available in the class
Circle.

For example, we re-write the methods area and
circumference.

Hence, this approach is NOT elegant, in fact its
the worst possible solution.
Note again, its the worst possible solution!

// The class of graphical circles

public class GraphicalCircle {
int x , y ;
int r ;
Color outline, fill;

public double circumference() {
return 2 * 3 . 14159 * r ;

}

public double area ({
return 3 . 14159 * r ~ r ;

}

public void draw(Graphics g) {
g.setColor(outline);
g.draWOval(x-r, y-r, 2*r, 2*r);
g.setColor(fill);
g.fillOval(x-r, y-r, 2*r, 2*r);

}

~

UNSW
SYDNEY

Subclasses and Inheritance:
Second Approach

COMP2511: OOP in Java 16

•!• We want to implement GraphicalCircle so
t hat it can make use of the code in the class
Circle.

•!• This approach uses "has-a" relationship.

•!• That means, a GraphicalCircle has a
(mathematical) Circle.

•!• It uses methods from the class Circle (area
and circumference) to define some of the
new methods.

•!• This technique is also known as method
forwarding.

public class GraphicalCircle2 {
//heres he ah circle
Circle c ;
// ne ne graphics variables go here
Color outline , fill ;

//Vey s1 ple cons ructor
public GraphicalCircle2() {

}

c = new Circle();
this .outline = Color. black ;
this . fill = Color. white ;

// Another s1 ple constructor
public GraphicalCircle2(int x , int y, int r ,

Col or o , Color f) {
c = new Circle(x, y , r);
this .outline = o;
this . fill = f ;

}

I I dra ire hod , using obJec c '
public void draw(Graphics g) {

g.setColor(outline);
g .drawOval(c . x . C . r , c . y . C . r , 2 C . r ,
g .setColor(fill);
g.fillOval(c . x . C . r , c .y . C . r , 2 C . r ,

}

2 c.r);

2 c.r);

~

UNSW
SYDN E Y

Subclasses and Inheritance:
Third Approach – Extending a
Class

COMP2511: OOP in Java 17

•!• We can say that GraphicalCircle is-a Circle.

•!• Hence, we can define GraphicalCircle as an
extension, or subclass of Circle.

•!• The subclass GraphicalCircle inherits all the
variables and methods of its superclass Circle.

import java.awt.Color;
import java.awt.Graphics;

public class GraphicalCircle extends Circle {

Color outline , fill ;

}

public GraphicalCircle(){

}

super ();
this .outline = Color. black ;
this . fill = Color. white ;

// Another siMple canst uctor
public GraphicalCircle(int x, int y ,

}

int r , Color o, Color f){
super (x, y , r);
this .outline = o; this . fill = f ;

public void draw(Graphics g) {
g.setColor(outline);
g.drawOval(x- r , y- r , 2 r , 2 r);
g.setColor(fill);
g.fillOval(x- r , y - r , 2 r , 2 r);

}

~

UNSW
SYDN EY

Subclasses and Inheritance: Example

COMP2511: OOP in Java 18

We can assign an instance of GraphicCircle to a Circle variable. For example,

GraphicCircle gc = new GraphicCircle();

double area - gc.area();

Circle c = gc;
II we cannot call draw method for "c".

Important:

•!• Considering the variable "c" is of type Circle,

•!• we can only access attributes and methods available in the class Circle.

•!• we cannot call draw method for "c".

~

UNSW
SYDN E Y

Super classes, Objects, and the Class Hierarchy

COMP2511: OOP in Java 19

•!• Every class has a superclass.

•!• If we don't define the superclass, by default, the superclass is the class Object.

Object Class:

•!• Its the only class that does not have a superclass.

•!• The methods defined by Object can be called by any Java object (instance}.

•!• Often we need to override the following methods:
• toString ()

o read the API at https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html#toString()

• equals()
o read the API at

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html#equals(java.lang.Object)

• hasCode ()

~

UNSW
SYDN E Y

Abstract Classes

COMP2511: OOP in Java 20

Using abstract classes,

•:• we can declare classes that define only part of an implementation,

•:• leaving extended classes to provide specific implementation of some or all the
methods.

The benefit of an abstract class

•:• is that methods may be declared such that the programmer knows the interface
definition of an object,

•:• however, methods can be implemented differently in different subclasses of the
abstract class.

~

UNSW
SYDN E Y

Abstract Classes

COMP2511: OOP in Java 21

Some rules about abstract classes:

•:• An abstract class is a class that is declared abstract.

•:• If a class includes abstract methods, then the class itself must be declared abstract.

•:• An abstract class cannot be instantiated.

•:• A subclass of an abstract class can be instantiated if it overrides each of the abstract
methods of its superclass and provides an implementation for all of them.

•:• If a subclass of an abstract class does not implement all the abstract methods it
inherits, that subclass is itself abstract.

~

UNSW
SYDN E Y

Abstract Class: Example

COMP2511: OOP in Java 22

Circle

public abstract class Shape {

public abstract double area();
public abstract double circumference();

}

public class Circle extends Shape {

} .

protected static final double pi = 3 . 14159;
protected int x , y;
protected int r ;

II Very si ple co structor
public Circle(){

this .x = 1;
this .y = 1;
this . r = 1;

}
II Ao he si ple constructor
public Circle(int x, int y , int r){

this . x = x ;
this . y = y ;
this . r = r ;

}

I
Below, methods that return the circu ference
area of h c1rcl

-1
public double circumference() {

return 2 pi r ;
}
public double

return pi
}

area () {
r r

~

UNSW
SYDNEY

Abstract Class: Example

COMP2511: OOP in Java 23

Circle

public abstract class Shape {

public abstract double area();
public abstract double circumference();

}

public class R c angle extends Shape {

protected double width , height ;

public Rec angle() {

}

wid h = 1.0;
height = 1.0;

}

public Rec angle(double , double h) {
this .width =
this .height - h;

}

public double area(){
return width height ;

}

public double circumference() {
return 2 (width height);

}

~

UNSW
SYDN EY

Abstract Class: Example

COMP2511: OOP in Java 24

Some points to note:

•!• As Shape is an abstract class, we cannot
instantiate it.

•!• Instantiations of Circle and Rectangle can be
assigned to variables of Shape.
No cast is necessary

•!• In other words, subclasses of Shape can be
assigned to elements of an array of Shape.
No cast is necessary.

Circle

We can now write code like this:

// create an array to holds apes
Shape[] shapes = new Shape[4];
shapes [0] = new Circle(4, 6, 2);
shapes [l] = new Rec angle(l.0, 3.0);
shapes [2] = new Rectangle(4.0, 2.0);
shapes [3] = new GraphicalCircle(l, 1, 6,

Color. green , Color.yellow);

double o al area = 0;
for (int i = 0; 1 < shapes . length ; i) {

•!• We can invoke area() and circumference() // compu e he area o t __ 1apes

methods for Shape objects. --------t-L-}->~ __ t_o-ta_l_ a_r-ea--=- sh_a_p_e_s_[1_·]_._a_r_e_a _o_; ___ __J

~

UNSW
SYDNEY

Single Inheritance versus Multiple Inheritance

COMP2511: OOP in Java 25

• In Java, a new class can extend exactly one superclass - a
model known as single inheritance.

• Some object-oriented languages employ multiple
inheritance, where a new class can have two or more super
classes.

• In multiple inheritance, problems arise when a superclass's
behaviour is inherited in two/multiple ways.

• Single inheritance precludes some useful and correct
designs.

• In Java, interface in the class hierarchy can be used to add
multiple inheritance, more discussions on this later.

Diamond inheritance
problem

~

UNSW
SYDN E Y

Interfaces in Java

COMP2511: OOP in Java 26

•:• Interfaces are like abstract classes, but with few important differences.

•:• All the methods defined within an interface are implicitly abstract. {We don't need to
use abstract keyword, however, to improve clarity one can use abstract keyword).

•:• Variables declared in an interface must be static and final, that means,
they must be constants.

•:• Just like a class extends its superclass, it also can optionally implements an interface.

•:• In order to implement an interface, a class must first declare the interface in an
implements clause, and then it must provide an implementation for all of the abstract
methods of the interface.

•:• A class can " implements" more than one interfaces.

•:• More discussions on " interfaces" later in the course.

~

UNSW
SYDN E Y

Interfaces in Java: Example

COMP2511: OOP in Java 27

JJ~s
Cir~ R~ngle

Drawable

I
DrawableCircle DrawableRectangle

public interface Drawable {

}

public void setColor(Color c);
public void setPosition(double x, double y);
public void draw(Graphics g);

public class DrawableRectangle
extends Rectangle
implements Drawable {

}

private Color c;
private double x, y;

// Here are implementations of the
// mehtods in Drawable
// we also inherit all public methods
// of Rectangle

public void setColor(Color c) { this.c = c;}
public void setPosition(double x, double y){

this.x = x; this.y = y;}
public void draw(Graphics g) {

g.drawRect(x,y,w,h,c); }

~

UNSW
SYDN EY

COMP2511: OOP in Java 28

Using Interfaces: Example

•!• When a class implements an
interface, instance of that class can
also be assigned to variables of the
interface type.

Shape[] shapes= new Shape[3];
Drawable [] drawables = new Drawable (3] ;

DrawableCircle de= new DrawableCircle(l.1);
DrawableSquare ds = new DrawableSquare(2.5);
DrawableRectangle dr = new DrawableRectangle(2.3,
4. 5) ;

II The shapes can be assigned to both arrays
shapes [O] = de; dr wabl s [O] = de;
shapes [l] = ds; dr ables [l] = ds;
shapes [2] = d~· drawables [2] = dr;

II We can invoke abstract method
II in Drawable and Shapes

double total_area = O;
for(int i=O; i< shapes .length; i++) {

}

total_area += shapes [i] .area();

dr wabl [i] .setPosition(i*lO.O, i*l0.0);

II assume that graphic area 'g' is
II defined somewhere
drawables [i] .draw(g);

~

UNSW
SYDN EY

Implementing Multiple Interfaces

COMP2511: OOP in Java 29

A class can implements more than one interfaces. For example,

Shapes
/

Drawable Scalable Movable

Circle Rectangle

j /
DrawableCircle DrawableRectangle

I
DrawableScalableRectangle

public class DrawableScalableRectangle
extends DrawableRectangle
implements Movable, Scalable {

// methods go here

}

~

UNSW
SYDNEY

Extending Interfaces

COMP2511: OOP in Java 30

•:• Interfaces can have sub-interfaces, just like classes can have subclasses.

•:• A sub-interface inherits all the abstract methods and constants of its super-interface,
and may define new abstract methods and constants.

•:• Interfaces can extend more than one interface at a time. For example,

public interface Transformable
extends Scalable,Rotable,Reflectable {}

public interface DrawingObject
extends Drawable, Transformable{}

public class Shape implements DrawingObject {
. . . }

~

UNSW
SYDNEY

COMP2511: OOP in Java 31

Method Forwarding A

I\
X

Q R

•:• Suppose class C extends class A, and also implements interface X.

•:• As all the methods defined in interface X are abstract, class C needs to implement all
these methods.

•:• However, there are three implementations of X (in P,Q,R).

•:• In class C, we may want to use one of these implementations, that means, we may
want to use some or all methods implemented in P, Q or R.

•:• Say, we want to use methods implemented in P. We can do this by creating an object
of type class Pin class C, and through this object access all the methods implemented
in P.

•:• Note that, in class C, we do need to provide required stubs for all the methods in the
interface X. In the body of the methods we may simply call methods of class P via the
object of class P.

•:• This approach is also known as method forwarding.

~

UNSW
SYDN E Y

Methods Overriding (Polymorphism)

COMP2511: OOP in Java 32

•!• When a class defines a method using the same name, return type,
and by the number, type, and position of its arguments as a method in its superclass,
the method in the class overrides the method in the superclass.

•!• If a method is invoked for an object of the class, it's the new definition of the method
that is called, and not the superclass's old definition.

Polymorphism

• An object's ability to decide what method to apply to itself, depending on where
it is in the inheritance hierarchy, is usually called polymorphism.

~

UNSW
SYDN E Y

Methods Overriding: Example

COMP2511: OOP in Java 33

In the example below,

•!• if pis an instance of class B,
p.f() refers to f() in class B.

•!• However, if p is an instance of class A,
p.f() refers to f() in class A.

The example also shows how to refer to the overridden method using super keyword.

class A {
inti - 1;
int f() { return i;}

}

class B extends A {
inti;

}

int f () {
i = super.i + 1;
return super.£() + i;

}

// shadows i from A
// overrides f(} from A
II retrives i from A
// invokes f(} from A

~

UNSW
SYDNEY

Methods Overriding: Example

COMP2511: OOP in Java 34

Suppose class C is a subclass of class B, and class Bis a subclass of class A.

Class A and class C both define method f ().

From class C, we can refer to the overridden method by,

super . f ()

This is because class B inherits method f () from class A.

However,

•:• if all the three classes define f (), then
calling super . f () in class C invokes class B's definition of the method.

•:• Importantly, in this case, there is no way to invoke A. f () from within class C.

•:• Note that super. super. f () is NOT legal Java syntax.

~

UNSW
SYDN E Y

Method Overloading

COMP2511: OOP in Java 35

Defining methods with the same name and different argument or return types is called
method overloading.

In Java,

•!• a method is distinguished by its method signature - its name, return type, and by the
number, type, and position of its arguments

For example,
double add(int, int)

double add(int, double)
double add(float, int)

double add(int, int, int)
double add(int, double, int)

~

UNSW
SYDN E Y

Data Hiding and Encapsulation

COMP2511: OOP in Java 36

We can hide the data within the class and make it available only through the methods.

This can help in maintaining the consistency of the data for an object, that means the state
of an object.

Visibility Modifiers

Java provides five access modifiers (for variables/methods/classes),
•!• public - visible to the world

•!• private - visible to the class only

•!• protected - visible to the package and all subclasses

•!• No modifier (default) - visible to the package

~

UNSW
SYDN E Y

Constructors

COMP2511: OOP in Java 37

•!• Good practice to define the required constructors for all classes.

•!• If a constructor is not defined in a class,
o no-argument constructor is implicitly inserted.

o this no-argument constructor invokes the superclass's no-argument constructor.

o if the parent class (superclass) doesn't have a visible constructor with no-argument,
it results in a compilation error.

•!• If the first statement in a constructor is not a call to super() or this(),
a call to super() is implicitly inserted.

•!• If a constructor is defined with one or more arguments,
no-argument constructor is not inserted in that class.

•!• A class can have multiple constructors, with different signatures.

•!• The word "this" can be used to call another constructor in the same class.

~

UNSW
SYDN E Y

Diamond Inheritance Problem: A Possible Solution

COMP2511: OOP in Java 38

Using multiple inheritance (in C++):

we achieve the following:
• In class Z, we can use methods and

variables defined in X, Wand Y.

/
X

w

y

/
z

• Objects of classes Z and Y can be assigned to variables of type Y.
• and more ...

Using single inheritance in Java:
w

/
X v ?'

class W {} /
interface IY { } z
class X extends W { }
class Y extends W implements IV { }
class Z extends X implements IY { }

we achieve the following:

IY ,

• In class Z, we can use methods and variables defined in X and W.
In class Z, if we want to use methods implemented in class Y, we
can use method forwarding technique. That means, in class Z, we
can create an object of type class Y, and via this object we can
access (in class Z) all the methods defined in class Y.

• Objects of classes Z and Y can be assigned to variables of type IY
(instead of Y).

• and more

~

UNSW
SYDNEY

Some References to Java Tutorials

v https://docs.oracle.com/javase/tutorial/

v https://www.w3schools.com/java/default.asp

v https://www.tutorialspoint.com/java/index.htm

COMP2511: OOP in Java 39 ~

UNSW
SYDN EY

https://docs.oracle.com/javase/tutorial/
https://www.w3schools.com/java/default.asp
https://www.tutorialspoint.com/java/index.htm

Domain Modelling

COMP2511, CSE, UNSW
UNSW

SYDNEY

Domain Models

COMP2511: Domain Modelling 2

• Domain Models are used to visually represent important domain concepts and
relationships between them.

• Domain Models help clarify and communicate important domain specific concepts and
are used during the requirements gathering and designing phase.

• Domain modeling is the activity of expressing related domain concepts into a domain
model.

• Domain models are also often referred to as conceptual models or domain object models.

• We will be use Unified Modeling Language (UML) c ass diagrams to represent domain
models.

• There are many different modelling frameworks, like: UML, Entity-Relationship, Mind
maps, Context maps, Concept diagrams. etc.

~

UNSW
SYDN E Y

Requirements Analysis vs Domain modelling

COMP2511: Domain Modelling 3

• Requirements analysis determines external behaviour
"What are the features of the system-to-be and who requires these features (actors) "

• Domain modelling determines {internal behavior) -
"how elements of system-to-be interact to produce the external behaviour''

• Requirements analysis and domain modelling are mutually dependent - domain
modelling supports clarification of requirements, whereas requirements help building up
the model.

~

UNSW
SYDN E Y

What is a domain?

COMP2511: Domain Modelling 4

• Domain -A sphere of knowledge particular to the problem being solved

• Domain expert - A person expert in the domain

• For example, in the domain of cake decorating, cake decorators are the domain experts

~

UNSW
SYDN E Y

Problem

COMP2511: Domain Modelling 5

A motivating example:

• Tourists have schedules that involve at least one and possibly several cities

• Hotels have a variety of rooms of different grades: standard and premium

• Tours are booked at either a standard or premium rate, indicating the grade of hotel
room

• In each city of their tour, a tourist is booked into a hotel room of the chosen grade

• Each room booking made by a tourist has an arrival date and a departure date

• Hotels are identified by a name (e.g. Melbourne Hyatt) and rooms by a number

• Tourists may book, cancel or update schedules in their tour

~

UNSW
SYDN E Y

Ubiquitous language

COMP2511: Domain Modelling 6

• Things in our design must represent real things in the domain expert's mental model.

• For example, if the domain expert calls something an "order" then in our domain model
(and ultimately our implementation) we should have something called an Order.

• Similarly, our domain model should not contain an OrderHelper, OrderManager, etc.

• Technical details do not form part of the domain model as they are not part of the
design.

~

UNSW
SYDN E Y

Noun/verb analysis

COMP2511: Domain Modelling 7

• Finding the ubiquitous language of the domain by finding the nouns and verbs in the
requirements

• The nouns are possible entities in the domain model and the verbs possible behaviours

~

UNSW
SYDN E Y

Problem

COMP2511: Domain Modelling 8

• The nouns and verbs:

• Tourists have schedules that involve at least one and possibly several cities

• Hotels have a variety of rooms of different grades: standard and premium

• Tours are booked at either a standard or premium rate, indicating the grade of
hotel room

• In each city of their tour, a tourist is booked into a hotel room of the chosen grade

• Each room booking made by a tourist has an arrival date and a departure date

• Hotels are identified by a name (e.g. Melbourne Hyatt} and rooms by a number

• Tourists may book, cancel or update schedules in their tour

~

UNSW
SYDN E Y

UML Class diagrams: Perspectives

COMP2511: Domain Modelling 9

* Above diagram is from: https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/

_c_l _I c_
Conceptual Specification

+getValua(): Value

Implementation

~

UNSW
SYDN EY

UML Class diagrams: Relationships

COMP2511: Domain Modelling 10

* Above diagram is from: https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/

J---tE
]---{
]-----------------{

]-----------------{

P--tE
J• E

Association

Inheritance

Realization

Dependency

Aggregation

Composition

~

UNSW
SYDNEY

UML Class diagrams

COMP2511: Domain Modelling 11

nd n

• The loosest form of relationship. A class in some way depends on another.

• A class "uses" another class in some way. When undirected, it is not yet clear in what
direction dependency occurs.

• Refines association by indicating which class has knowledge of the other

~

UNSW
SYDN E Y

UML Class diagrams

COMP2511: Domain Modelling 12

<>-------
• A class contains another class (e.g. a course contains students). Note that the diamond it

at the end with the containing class.

• Like aggregation, but the contained class is integral to the containing class. The contained
class cannot exist outside of the container (e.g. the leg of a chair)

~

UNSW
SYDN E Y

UML Diagram Types

COMP2511: Domain Modelling 13

UML Diagram Type

Structural Diagrams

l
Composite Structure

Diagram

Package
Diagram

Object Diagram

Profile
Diagram

Deployment
Diagrams

Class
Diagram

Component
Diagram

Behavioral Diagrams

State Machine
Diagram

Use Case
Diagram

Timing Diagram

l

Activitij
Diagram

Communication
Diagram

Sequence
Diagram

Interaction
Overview Diagram

~

UNSW
SYDN E Y

Examples

COMP2511: Domain Modelling 14

Account

LoanAccount ChequeAccount

OVerDraftAccount

SavingsAccount

~

UNSW
SYDNEY

Examples

COMP2511: Domain Modelling 15

I class (class diagram)

Account
-name: String
-balance: float

+getBalance(): float
+getName() : String
+with Draw(float)
+deposit(float)

object instances (object
diagram)

al:Account
name= "John Smith"
balance = 40000

a2:Account
name= "Joe Bloggs"
balance = 50000

~

UNSW
SYDNEY

Representing classes in UML

COMP2511: Domain Modelling 16

Account
-name: String
-accountNo: int
-balance:float

+getBalance(): float
+setBalance(): float

-

This means ~
"inheritance'' I

SavingsAccount
-saverlnterest: float

+calcinterest(): float

~

UNSW
SYDNEY

Representing classes in UML

COMP2511: Domain Modelling 17

class Rectangle extends Shape adding
attributes height, width

class Rectangle overrides method
getArea() to provide its own
implementation

Shae
-name: String

+getName(): String
+setName(String)
+getArea(): float

Rectan le
-height: float
-width: float

+getArea(): float
+getWidth(): int
+getHeight(): int

~

UNSW
SYDNEY

Representing Association in UML

COMP2511: Domain Modelling 18

Class 1 Association

Dog 1 belongs

►

Professor 1 teaches

►

Class 2

1 Owner

0 .. * Course

~

UNSW
SYDNEY

Representing Association in UML

COMP2511: Domain Modelling 19

• Associations can model a 11has-a11 relationship where one class
"contains" another class

• Associations can further be refined as:
Aggregation relationship (hollow diamond symbol◊): The contained item is an
element of a collection but it can also exist on its own, e.g., a lecturer in a
university or a student at a university

Lab
contains

0---- Computers

Composition relationship (filled diamond symbol ♦ in UML
diagrams): The contained item is an integral part of the containing
item, such as a leg in a desk, or engine in a car

Order
~ has Line Items

~

UNSW
SYDNEY

Representing Association in UML

COMP2511: Domain Modelling 20

Car 1 -.. consists of
y >---------t--------t

1 Engine

►

Book 1 ► 1..• Pages
........

Vehicle Truck

<]

• Aggregation - "has-a" relationship
where the part can exist without
container

• Composition - "is-composed-of"
relationship where part cannot live
without container

• Inheritance - "is-a-kind-of"
relationship

~

UNSW
SYDNEY

Class Diagram Example: Order System

COMP2511: Domain Modelling 21

* Above diagram is from: https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/

Attribute - - ►

Class
I
I
T

Custom•
-IIM'l8:Slring
-acttess

Multiplicity
I
I
I
I
T
1

♦

I
I

O .. •

Association

Abstract Class -

Generalization

I
Caah

-c:ashTendered: float

Aggregation

Ont•
-date:date
-status : Siring

+ca1cSub Tota~)
+calcTax()
+calcT~)
+calcTotalWeight()

1

1.- ♦

.. Pay,,.,,,

-amount : float

~
--+

Check

-flM'l8 : Siring
.ban(ID :Stmg

+authorized()

I Role
I I
I
't !
~ tine item

f-._,..; 1.- ♦

Operation

Ont..o.tal
-quantity
taxStatus : Stmg .

+ca1cSub Tota~)
+calcWeight()
+calcTax()

'--------,

C radll

-nurooer: String
Stmg •type:

-eicp[)ate

+authoriz ed()

o.:

Item

-shippa1gWeight
-de9cr1>tlon : String

1 ,,- +getPriceFol01&1tity()
+getTax()
+inStock()

~

UNSW
SYDN EY

Class Diagram Example: GUI

COMP2511: Domain Modelling 22

* Above diagram is from: https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/

<<entity>> Note
F,_ I
~ t

Dependency IThe main window of Ile application.~
I
I <<entity>> .

•

r- -·---
Window •

I
«entity>> ------------------

~pen() IEwN 1 ~ ,
re ~) ...

~ilplly0 I
..-iarldllEvenl() Aggregation Class

Boundary Class ? I I
I

Attribute
II .. I

<<conbol>> <<bounda,y>> <<bounda,y>> « ..,.ly>>
DrawtnaConlHt ConaaleWlndDw - -- Cln:le

l+setPoi'tt() 1-,a&us : bl
+ciea,Saeen()

Association --►
!-<Mier : uflligned inl

~•tVerticalSlze() - •iaafin ladus : bl): dO&mllt
~•tHori210nta1Slze()

I
<<conllol>>

I
~

... DalaConnler +selCenllr()

I +saRadiUIII()

Control class t
Operation

«entity>>
S,,.,. +- ~ - Ab stract Class

~IIIW() . l .. 18H()
..w,CM()
1 ... 1zeo

~ +--Gen

«entity>>
-

1 «entity>>
_..-..
__.. ... Point .

Composition

eralizalion

I
«entity>>
Polygon

~

UNSW
SYDNEY

Attributes vs. Classes

COMP2511: Domain Modelling 23

•!• The most common confusion - should it be an attribute or a class?

o when creating a domain model, often we need to decide whether to represent
something as an attribute or a conceptual class.

•!• If a concept is not representable by a number or a string,
most likely it is a class.

•!• For example:

o a lab mark can be represented by a number, so we should represent it as an attribute

o a student cannot be represented by a number or a string~ so we should represent it
as a class

~

UNSW
SYDN E Y

Attributes vs. Classes

COMP2511: Domain Modelling 24

- Flight - Flight

+ originAirport: String + originAirport: Airport
+ destinationAirport: String + destinationAirport: Airport
....
....

- Sale - Sale

+ storeName: String + store: Store
+ amount : double + amount: double
....
....

- Airport

+ name: String
+ phoneNumber: String
....
. ...

'=' Store

+ name: String
+ phoneNumber: String
....
. ...

~

UNSW
SYDNEY

What is wrong with the following?

COMP2511: Domain Modelling 25

+ Title:

+ Code:

+ UOC

Course

+ Term: String

+ Lecturers [] :

+ Sessions D :

+ Students(]:

Object:Course

Tile - "lnro to computing•
Code= COMP1511 1'

UOC=6
erm -19T1
ect rers [)

Sessio s a
Students O

Qbject:Course

Qllject:Course

Tile= "lnro to computing"
Code= "CO P1511 "
UOC=6
erm -19T2
ecturers (]

Sessions[]
Students 0

Qbject:Course

TIie = lnro to computing•
Code= "COMP1511 11

UOC=6
Tem-19T3
Lecturers D
s ssions a
Students[]

QbJect:Course

T e Data Structures and Algoritms• Ti e - Da a Structures and Algoritms"
Code - COMP2521" Code - ''CO P2521 "

UOC-6 UOC=6
Term 19T1 Term -19T2
Lecturers O Lecturers 0
Sessions D Sessions a
Students St dens (I

~

UNSW
SYDN E Y

A Possible solution

COMP2511: Domain Modelling 26

+ Trtle :

+ Code:

+ UOC

Course

+ PreReq O:

+ CourseOfferings: □

1 toJ

CourseOtrerlng

+ Term:

+ Sessions O :

+ Lecturers [I •

+ Students O:

QbJect;Couru

Tile • "1nm to compuhng"
Code - "COMP1511 "
UOC=6
Prereq 11

CourseOfferings D

Term= 19T1
Lecturers a
Se ion O
StudentsO

Qbject;Coucu

Term :19T2
ecturers a

Ses ons 0
Students □

Tile • "Data Structures and Algorithms•
Code • "COMP2521 "
uoc - s
PreReq □

CourseOfferlngs D

Term• 19T1
Lectur rs a
Sos ions(]
Sudents O

Term o: 19T2
Lecturers 0
Ses ·on O
Students □

Term• 19T3
lecturers 0
s sionsO
Students 0

g

g

~

UNSW
SYDNEY

References

v A very detailed description of UML

o https://www.uml-diagrams.org/

v Books that go into detail on Domain Driven Design

o Domain-Driven Design: Tackling Complexity in the Heart of Software by Eric Evans.

o Domain Modeling Made Functional: Tackle Software Complexity with Domain-Driven

Design and F# by Scott Wlaschin.

COMP2511: Domain Modelling 27 ~

UNSW
SYDN EY

Design By
Contract

COMP2511, CSE, UNSW
UNSW

SYDNEY

Defensive Programming Vs Design by Contract

COMP2511: Design By Contract 2

Defens"ve programming:

Tries to address unforeseen circumstances, in order to ensure the continuing functionality of the software
element. For example, it makes the software behave in a predictable manner despite unexpected inputs
or user actions.

• often used where high availability, safety or security is needed.

• results in redundant checks {both client and supplier may perform checks),
more complex software for maintenance.

• difficult to locate errors, considering there is no clear demarcation of responsibilities.

• may safeguard against errors that will never be encountered, thus incurring run-time and
maintenance costs.

Design by Contract:

At the design time, responsibilities are clearly assigned to different software elements, clearly
documented and enforced during the development using unit testing and/or language support.

• clear demarcation of responsibilities helps prevent redundant checks,
resulting in simpler code and easier maintenance.

• crashes if the required conditions are not satisfied! May not be suitable for high availability
applications.

~

UNSW
SYDNEY

Design by Contract (DbC)

COMP2511: Design By Contract 3

Design by Contract (DbC)
v Bertrand Meyer coined the term for his design of the Eiffel programming language (in 1986).

Design by Contract (DbC) has its roots in work on formal specification, formal verification and
Hoare logic.

v In business, when two parties (supplier and client) interact with each other, often they write and
sign contracts to clarify the obligations and expectations. For example,

COMP2511: Design By Contract 3

Obligations Benefits
Client (Must ensure precondition) (May benefit from post-condition)

Be at the Santa Barbara airport at
least 5 minutes before scheduled
departure time. Bring only
acceptable baggage. Pay ticket price.

Reach Chicago.

Supplier (Must ensure post-condition) (May assume pre-condition)
Bring customer to Chicago. No need to carry passenger who is late, has

unacceptable baggage, or has not paid ticket
price.

The example is from https://www.eiffel.com/values/design-by-contract/introduction/

~

UNSW
SYDNEY

Design by Contract (DbC)

COMP2511: Design By Contract 4

Every software element should define a specification (or a contract) that governs its interaction

with the rest of the software components.

A contract should address the following three questions:

•!• Pre-condition - what does the contract expect?

If the precondition is true, it can avoid handling cases outside of the precondition.

For exam pie, expected argument value (mark>=O) and (marks<= 10 0).

•!• Post-condition - what does the contract guarantee?

Return value(s) is guaranteed, provided the precondition is true.

For example: correct return value representing a grade.

•!• Invariant - what does the contract maintain?

Some values must satisfy constraints, before and after the execution (say of the method).
For example: a value of mark remains between zero and 100.

~

UNSW
SYDNEY

Design by Contract (DbC)

COMP2511: Design By Contract 5

A contrac (precondition, post-condition and invariant) should be,

•!• declarative and must no include implementation details.

•!• as far as possible: precise, formal and verifiable.

~

UNSW
SYDNEY

Benefits of Design by Contract (DbC)

COMP2511: Design By Contract 6

•!• Do not need to do error checking for conditions that not satisfy the preconditions I

•!• Prevents redundant validation tasks.

•!• Given the preconditions are satisfied, clients can expect the specified post-conditions.

•!• Responsibilities are clearly assigned, this helps in locating errors and resulting in easier

code maintenance.

•!• Helps in cleaner and faster development.

~

UNSW
SYDNEY

Design by Contract (DbC) : Implementation Issues

COMP2511: Design By Contract 7

•!• Some programming languages (like Eiffel) offer native support for DbC.

•!• Java does not have native support for DbC, there are various libraries to support DbC.

•!• In the absence of a native language support, unit testing is used to test the contracts
(preconditions, post-conditions and invariants).

•!• Often preconditions, post-conditions and invariants are included in the documentation.

•!• As indicated earlier, contracts should be,

• declarative and must not include implementation details.

• as far as possible: precise, formal and verifiable.

~

UNSW
SYDNEY

Design by Contract : Example using Eiffel

COMP2511: Design By Contract 8

class DICTIONARY [ELEMENT]

feature

put (x : ELEMENT; key : STRING) is

Insert x so that it will be retrievable
-- through key .

Precondition - require
' count <= capacity ~

not key.empty

ensure

Postcondition - has (X)
~ item (key) = X

count = old count + 1

end

invariant Interface specifications of other features ...

invariant

end

0 <= count

count<= capacity

~

UNSW
SYDNEY

Design by Contract: Examples in Java

COMP2511: Design By Contract 9

/ -
l e o c le l

n sqr - sq
l >- 0
l - sq qr

c doub e squar Roo

I
OU 0 e d

oun > 0
bl nc - old b l

pu C o d pos · (dou

s re roo
l

(doub lu

d n o h accou

C 0

e a ou) ;

I

I

pub C C s

g >-

S ud {

~

UNSW
SYDNEY

Pre-Conditions

COMP2511: Design By Contract 10

•!• A pre-condition is a condition or predicate that must always be true just prior to the execution of
some section of code

•!• If a precondition is violated, the effect of the section of code becomes undefined and thus may
or may not carry out its intended work.

•!• Security problems can arise due to incorrect pre-conditions.

•!• Often, preconditions are included in the documentation of the affected section of code.

•!• Preconditions are sometimes tested using guards or assertions within the code itself, and some
languages have specific syntactic constructions for testing .

•:• In Design by Contract, a software element can assume that preconditions are satisfied,
resulting in removal of redundant error checking code.

•!• See the next slide for the examples.

~

UNSW
SYDNEY

Pre-Conditions: Examples

COMP2511: Design By Contract 11

I

·/

@pre (mark >=e) and (mark<=le0)
ca r mark

public void printGradeObC(double mark) {

}

if (mark < se l {
System. out .println("Fail");

}
else {

System. out .println("Pass");
}

Incorrect behaviour if mark
'---------- is outside the expected range

I
Get S udent at i ' th position
@pre i < nu ber of students
@pr i student' s position
~ etur student at i ' th position

· /
public Student getSt udentDbC(int i) {

return students .get(i);

} Throws runtime exception
'--------------1 if (i >= number_of_students)

Design by Contract
No additional error checking for pre-conditions

I

I

@pre (mark >=0) and (mark<=lee)
param mark

public void printGradeDefensive(double mar) {

}

if ((mark < 0) 11 (mark > H)f))){
System. out .println("Error ");

}

if (mark < 50) {
System. out .println("Fail");

}
else {

System. out .println("Pass ");
}

Defensive Programming:
Additional error checking for pre-conditions

~

UNSW
SYDNEY

Pre-Conditions in Inheritance

COMP2511: Design By Contract 12

•!• An implementation or redefinition (method overriding) of an inherited method
must comply with the inherited contract for the method.

•!• Preconditions may be weakened (relaxed) in a subclass, but it must comply with the inherited
contract.

•!• An implementation or redefinition may lessen the obligation of the client, but not increase it.

•!• For example, I

·;

@pre (theta >=0) and (theta<= 90)
pr theta - angle to calculate tr jectory

~return traJectory at angle theta

public double calculateTrajectory (double theta) {

Weaker Pre-condition Stronger Pre-condition
---------"

I
pre (heta >=0} and (theta<= 188) pre (theta >=0} and (theta <=45)
pr m theta angle to c lculate r jec ory pr m het angle to calculate tr jectory
r turn trajectory a angle theta return traJectory at angle theta

• I ·;
public double calcula teTrajectory (double theta } { public double calculateTrajectory(double theta) {

~

UNSW
SYDNEY

Post-Conditions

COMP2511: Design By Contract 13

•!• A post-condition is a condition or predicate that must always be true just after the execution of

some section of code

•!• The post-condition for any routine is a declaration of the properties which are guaranteed upon

completion of the routine's executionl11.

•!• Often, preconditions are included in the documentation of the affected section of code.

•!• Post-conditions are sometimes tested using guards or assertions within the code itself, and some

languages have specific syntactic constructions for testing .

•!• In Design by Contract, the properties declared by the post-condition(s) are assured, provided the
software element is called in a state in which its pre-condition(s) were true.

[1) Meyer, Bertrand, Object-Oriented Software Construction, second edition, Prentice Hall, 1997.

I -
@param value to calculate square roo

re urn sqrt - square root of the value
pre value>- El

@pos value; sqr • sqrt
-/
public double squareRoot (double val ue);

~

UNSW
SYDNEY

Post-Conditions in Inheritance

COMP2511: Design By Contract 14

•!• An implementation or redefinition (method overriding) of an inherited method
must comply with the inherited contract for the method.

•!• Post-conditions may be strengthened (more restricted) in a subclass, but it must comply with the

in he rited contract.

•!• An implementation or redefinition (overridden method) may increase the benefits it provides to

the client, but not decrease it.

•!• For example,

•!• the original contract requires returning a set.

•!• the redefinition (overridden method) returns sorted set, offering more benefit to a client.

~

UNSW
SYDNEY

Class Invariant

COMP2511: Design By Contract 15

•!• The class invariant constrains the state (i.e. values of certain variables) stored in the object.

•!• Class invariants are established during construction and constantly maintained between calls to
public methods. Methods of the class must make sure that the class invariants are satisfied/
preserved.

•!• Within a method: code within a method may break invariants as long as the invariants are
restored before a public method ends.

•!• Class invariants help programmers to rely on a valid state, avoiding risk of inaccurate/ invalid
data. Also helps in locating errors during testing.

Class invariants in Inheritance
•!• Class invariants are inherited, that means,

"the invariants of all the parents of a class apply to the class itself." !

•!• A subclass can access implementation data of the parents, however, must always satisfy the
invariants of all the parents - preventing invalid states!

~

UNSW
SYDNEY

END

COMP2511: Design By Contract 16 ~

UNSW
SYDNEY

Exceptions in Java

COMP2511, CSE, UNSW
UNSW

SYDNEY

Exceptions in Java

COMP2511: Design By Contract 2

•!• An exception is an event, which occurs during the execution of a program, that disrupts the
normal flow of the program's instructions.

•!• When error occurs, an exception object is created and given to the runtime system, this is called
throwing an exception.

•!• The runtime system searches the call stack for a method that contains a block of code that can
handle the exception.

•!• The exception handler chosen is said to catch the exception.

Method where error occurred

Method without an exception
handler

I Method with an excep on
handler

C in

The call stack.

Method call

Method call

Method call

Throws exception

Forwards exception

Catch some
o er exception

Method where error occurred

Method without an exception
handler

in

Searching the call stack for
the exception handler.

Looking for
appropriate
handler

Looking for
appropnate
handler

~

UNSW
SYDN E Y

Exceptions in Java

COMP2511: Design By Contract 3

The Three Kinds of Exceptions

•:• Checked exception (IOException, SQLException, etc.)

•:• Error (VirtualMachineError, OutOfMemoryError, etc.)

•:• Runtime exception (ArraylndexOutOfBoundsExceptions, ArithmeticException, etc.)

Checked vs. Unchecked Exceptions

•:• An exception's type determines whether it's checked or unchecked.

•:• All classes that are subclasses of RuntimeException (typically caused by defects in your
program's code) or Error (typically 'system' issues) are unchecked exceptions.

•:• All classes that inherit from class Exception but not directly or indirectly from class
RuntimeException are considered to be checked exceptions.

~

UNSW
SYDN E Y

Exceptions in Java

v Good introduction on Exceptions at
https://docs.oracle.com/javase/tutorial/essential/exceptions/index.html

v Unchecked Exceptions — The Controversy
https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

COMP2511: Design By Contract 4 ~

UNSW
SYDN EY

https://docs.oracle.com/javase/tutorial/essential/exceptions/index.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

Hierarchy of Java Exceptions

COMP2511: Design By Contract 5

,

Checked Exceptions Throwable

Unchecked Exceptions
Exception Error

Runtime Exception IOException Thread Death VirtualMachineError

ClassCastException NullPointerException ArithmeticException

lndexOutOfBoundsException NoSuchElementException

ArraylndexOutOfBoundsException lnputMismatchException

From the book "Java How to Program, Early Objects•, 11th Edition, by Paul J. Deltel; Harvey Deltel

~

UNSW
SYDN E Y

Example

COMP2511: Design By Contract 6

try

catch

finally

public void writelist() {
PrintWriter out = null ;

}

try {
System. out .println("Entering 11 + " try statement");

out = new PrintWriter(new FileWriter("OutFile.txt 11));

for (int i = 0; i < SIZE ; i ++) {
out .println("Value at: 11 + i + 11 =" + list .get(i));

}
catch (IndexOutOfBoundsException e) {

System. err .println("Caught IndexOutOfBoundsException: '' + e .getMessage());

} catch (IOException e) {

}

System. err .println("Caught IOException: " + e .getMessage());

finally {
if (out != null) {

System. out .println(11 Closing PrintWriter 11);

out .close();
} else {

System. out . p rintln (11 P rintWri te r not open 11) ;

}

~

UNSW
SYDN EY

User Defined Exceptions in Java

COMP2511: Design By Contract 7

•:• We can also create user defined exceptions.

•:• All exceptions must be a child of Throwable.

•:• A checked exception need to extend the Exception class,

but not directly or indirectly from class RuntimeException.

•:• An unchecked exception {like a runtime exception) need to extend the

RuntimeException class.

~

UNSW
SYDN E Y

User Defined / Custom Checked Exception

COMP2511: Design By Contract 8

• Normally we define a checked exception, by extending the Exception class.

class MyException extends Exception {

}

public MyException(String message){

super (message);

}

~

UNSW
SYDN EY

User Defined / Custom Exceptions: A Simple Example

COMP2511: Design By Contract 9

try {
out= new PrintWriter(new FileWriter("myData.txt"));
for (int i=0; i<SIZE; i++){

int idx = i + 5;

if (idx >= SIZE){
throw new MyException("1dx is out of index range!");

}

}
out.println(list.get(idx));

}

catch (IOException e){
System. out. println (" In wr1 teln 11);

}
catch (MyException e){
• System.ou t .println(e.getMessage());
}
catch (Exception e){

System.out.println(" In writeln, Exception

}

ti) •
• • • • I

~

UNSW
SYDN EY

Exceptions in Inheritance

COMP2511: Design By Contract 10

•!• If a subclass method overrides a superclass method,

a subclass's throws clause can contain a subset of

a superclass's throws clause.

It must not throw more exceptions I

•!• Exceptions are part of an API documentation and contract.

~

UNSW
SYDN E Y

Demo: Exceptions in Java

COMP2511: Design By Contract 11

Demo ………

~

UNSW
SYDN EY

Assertions in Java

COMP2511: Design By Contract 12

• An assertion is a statement in the Java that enables you to test your assumptions about your
program. Assertions are useful for checking:

• Preconditions, Post-conditions, and Class Invariants (DbC!)

• Internal Invariants and Control-Flow Invariants

• You should not use assertions:

• for argument checking in public methods.

• to do any work that your application requires for correct operation.

• Evaluating assertions should not result in side effects.

• The following document shows how to use assertions in Java

https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

Important: for backward compatibility, by default, Java disables assertion validation feature.
It needs to be explicitly enabled using the following command line argument:

• -enableassertions command line argument, or

• -ea command line argument

~

UNSW
SYDN E Y

Assert : Example

COMP2511: Design By Contract 13

I .•
Sets the refresh in erval (which must correspond to a legal frame rate}.

@param interval refresh interval in milliseconds.
·/
private void setRefreshinterval(int interval} {
// Confirm adherence o precondition in nonpublic ethod
assert interval> 0 && interval<= 1000/MAX REFRESH RATE

// Set the refresh interval

interval;

~

UNSW
SYDN EY

Exceptions: Summary Points

COMP2511: Design By Contract 14

•!• Consider your exception-handling and error-recovery strategy in the design process.

•!• Sometimes you can prevent an exception by validating data first.

•!• If an exception can be handled meaningfully in a method, the method should catch the
exception rather than declare it.

•!• If a subclass method overrides a superclass method, a subclass's throws clause can contain a
subset of a superclass's throws clause. It must not throw more exceptions!

•!• Programmers should handle checked exceptions.

•!• If unchecked exceptions are expected, you must handle them gracefully.

•!• Only the first matching catch is executed, so select your catching class(es) carefully.

•!• Exceptions are part of an API documentation and contract.

•!• Assertions can be used to check preconditions, post-conditions and invariants.

~

UNSW
SYDN E Y

Generics and
Collections in Java

COMP2511, CSE, UNSW
UNSW

SYDNEY

Generics in Java

COMP2511: Design By Contract 2

Generics enable types {classes and interfaces) to be parameters when defining:
• classes,

• interfaces and

• methods.

Benefits
•!• Removes casting and offers stronger type checks at compile time.
•!• Allows implementations of generic algorithms, that work on collections of different types, can

be customized, and are type safe.
•!• Adds stability to your code by making more of your bugs detectable at compile time.

List list = new Arraylist();
list .add(11 hello 11);

String s = (String) 1ist .get(0);

Without Generics

List<String> listG = new Arraylist<String>();
listG .add("hello 11);

String sg = listG .get(0); // no cast

With Generics

~

UNSW
SYDN EY

Generic Types

COMP2511: Design By Contract 3

•!• A generic type is a generic class or interface that is parameterized over types.

•!• A generic class is defined with the following format:

class name< T1, T2, ... , Tn > { /* ... */}

•!• The most commonly used type parameter names are:
❖ E - Element (used extensively by the Java Collections Framework)

❖ K- Key

❖ N - Number

❖ T - Type

❖ V - Value

❖ S,U,V etc. - 2nd, 3rd, 4th types

•!• For example,
Box<lnteger> integerBox = new Box<lnteger>();

OR

Box<lnteger> integerBox = new Box<>();

public class Box {

}

I

private Object ob j ect ;

public void set(Object object) { this .ob Ject = object ; }
public Object get () { return object ; }

Generic version of the Box class.
@p ran <T> the type of the value being boxed

I
public class Box<T> {

}

/ / T stands for 'Type"
private T t ;

public void set(T t } { this . t = t ; }
public T get{) { return t ; }

~

UNSW
SYDNEY

Multiple Type Parameters

COMP2511: Design By Contract 4

•!• A generic class can have multiple type
parameters.

•!• For example, the generic Ordered air class,
which implements the generic Pair interface

•!• Usage examples,

public interface Pair<K, V~ {
public K get Key () ; •
public V getValue();

}

public class OrderedPair<K , V>~implements Pair<K, V~ {
- ur ¢2 •

}

private K key ;
private V value ;

public OrderedPair(K key , V value) {
this . key = key ;
this . value = value ;
}

public K get Key () { return key ; }
public V getValue() { return value ; }

Pair<String, Integer> p1 = new OrderedPair<String, lnteger>("Even", 8);
Pair<String, String> p2 = new OrderedPair<String, String>("hello", "world");

OrderedPair<String, Integer> p1 = new OrderedPair<>("Even", 8);
OrderedPair<String, String> p2 = new OrderedPair<>("hello", "world");

OrderedPair<String, Box<lnteger>> p = new OrderedPair<>("primes", new Box<lnteger>(...));

~

UNSW
SYDN E Y

Generic Methods

COMP2511: Design By Contract 5

Generic methods are methods that introduce their own type parameters.

public class Util {

}

public static <K, V> boolean compare(Pair<K, V> pl , Pair<K, V> p2) {
return pl .getKey().equals(p2 .getKey()) &&

pl .getValue().equals(p2 .getValue{));
}

The complete syntax for invoking this method would be:

Pair< lnteger, String> p1 = new Pair<>(1, "apple");
Pair< lnteger, String> p2 = new Pair<>(2, "pear");
boolean same = Util.<lnteger, String>compare(p1, p2);

The type has been explicitly provided, as shown above.
Generally, this can be left out and the compiler will infer the type that is needed:

Pair<lnteger, String> p1 = new Pair<>(1, "apple");
Pair<lnteger, String> p2 = new Pair<>(2, "pear");
boolean same= Util.compare(p1, p2);

~

UNSW
SYDN E Y

Bounded Type Parameters

COMP2511: Design By Contract 6

•:• There may be times when you want to restrict the types that can be used as type
arguments in a parameterized type.

•:• For example, a method that operates on numbers might only want to accept instances
of Number or its subclasses.

public <:!l exten s Number> void inspect(U u){
System. out . printl ("lJ : " + u . getClass (). get Name());

}

public class atural umber<T extends Inteqer> {

~

UNSW
SYDN E Y

Multiple Bounds

COMP2511: Design By Contract 7

•!• A type parameter can have multiple bounds:

< T extends B1 & B2 & B3 >

•!• A type variable with multiple bounds is a subtype of all the types listed in the bound.

•!• Note that B1, B2, B3, etc. in the above refer to interfaces or a class. There can be at

most one class (single inheritance), and the rest (or all) will be interfaces.

•!• If one of the bounds is a class, it must be specified first .

~

UNSW
SYDN E Y

Generic Methods and Bounded Type Parameters

COMP2511: Design By Contract 8

public static <T> int countGreaterThan(T[J anArray , T elem) {
int count = 0;

}

for (T e : anArray)
if (e >_tlg_m) / compiler erro X - invalid

++count ;
return count ;

public interface Comparable<T> {
public int compareTo(T o);

}

public static <T extends Comparable<T>> int countGreaterThan(T[] anArray , T elem
int count = 0;
for (T e : anArray)

if (e .compareTo(elem) > 0) Val"d
++count ;

return count ;
}

~

UNSW
SYDN EY

Generics, Inheritance, and Subtypes

COMP2511: Design By Contract 9

•!• Consider the following method:

public void boxTest(Box<Number> n) { /* ... */}

•!• What type of argument does it accept?

•!• Are you a II owed to pass in
Box<lnteger> or Box<Double> ?

•!• The answer is "no", because Box<lnteger> and
Box<Double> are not subtypes of Box<Number>.

•!• This is a common misunderstanding when it comes to
programming with generics.

Number

lnllger

Bax<Number> Baxclntilger>

~

UNSW
SYDN E Y

Generic Classes and Subtyping

COMP2511: Design By Contract 10

•!• You can subtype a generic class or interface by extending or
implementing it.

•!• The relationship between the type parameters of one class or interface
and the type parameters of another are determined by the extends and
implements clauses.

•!• Arraylist<E> implements List<E>, and List<E> extends Collection<E>.

•!• So Arraylist<String> is a subtype of List <String>,
which is a subtype of Collection<String>.

•!• So long as you do not vary the type argument,
the subtyping relationship is preserved between the types.

interface PayloadList<E,P> extends List<E> {
void setPayload(int index, P val);

}

CollectloncStrtrQ>

Ult<S1rlng>

Collecnon<strlng>

t
Usl<Strlng>

t --
ArraylJst<strlno>

PayloadList<String , String>

PayloadList<String , Integer>
Payloecl.Jat<Strlng, string> PayloadLlakStrlng, lnlager> PlyloadUslcS111ng, Emlption>

I PayloadList<String , Exception>

~

UNSW
SYDNEY

Wildcards: Upper bounded

COMP2511: Design By Contract 11

••• •

••• •

••• •

••• •

In generic code, the question mark(?), called the wildcard, represents an unknown
type .

The wildcard can be used in a variety of situations: as the type of a parameter, field, or
local variable; sometimes as a return type .

The upper bounded wildcard, < ? extends Foo >, where Foo is any type, matches
Foo and any subtype of Foo .

You can specify an upper bound for a wildcard, or you can specify a lower bound, but
you cannot specify both.

public static void process(List<? extends Foo> list) {
for (Foo elem: list) {

I I ...

}

}
public static double sumOfList(List<? extends Number> list) {

doubles= 0.0;

}

for (Number n: list)

s += n.doubleValue();

returns;

~

UNSW
SYDNEY

Wildcards: Unbounded

COMP2511: Design By Contract 12

•!• The unbounded wildcard type is specified using the wildcard character (?),
for example, List<?>. This is called a list of unknown type.

public static void printList(List<Object> list) {

}

for (Object elem: list)
System . out.println(elem +

System.out.println();

n n) ; It prints only a list of Object instances;
it cannot print List<lnteger>, List<String>,
List<Double>, and so on

_j

public static void printList(List<?> list) {7
for (Object elem: list) • I

System.out.print(elem + " "); To write a generic printlist
System.out.println(); method, use List<?>

}

~

UNSW
SYDN E Y

Wildcards: Lower Bounded

COMP2511: Design By Contract 13

•!• An upper bounded wildcard restricts the unknown type to be a specific type or a
subtype of that type and is represented using the extends keyword.

•!• A lower bounded wildcard is expressed using the wildcard character('?'), following by
the super keyword, followed by its lower bound: < ? super A >.

•!• To write the method that works on lists of Integer and the super types of Integer, such
as Integer, Number, and Object, you would specify List<? Super Integer>.

•!• The term List<lnteger> is more restrictive than List<? super Integer>.

public static void addNumbers(List<? super Integer> list) {

for (inti= l; i <= 10; i++) {

list.add(i);

}

}

~

UNSW
SYDN E Y

Wildcards and Subtyping

COMP2511: Design By Contract 14

•!• Although Integer is a subtype of Number,
List<lnteger> is not a subtype of List<Number> and,
these two types are not related .

•!• The common parent of
List<Number> and List<lnteger> is
L. ., 1st<.>.

UskNurnber>

Ult<? extandl Number> ~ Ult<? ac,er Integer>

Lllk? --• Integer>

Ult<lnllger> <Number>

A hierarchy of several generic List class declarations.

[List<?>

Ustc:lntagar>

~

UNSW
SYDN E Y

Collections in Java

COMP2511: Design By Contract 15

A collections framework is a unified architecture for representing and manipulating
collections. A collection is simply an object that groups multiple elements into a single unit.

All collections frameworks contain the following:

•:• Interfaces : allows collections to be manipulated independently of the details of their
representation.

•:• Implementations : concrete implementations of the collection interfaces.

•:• Algorithms: the methods that perform useful computations, such as searching and
sorting, on objects that implement collection interfaces.

• The algorithms are said to be polymorphic: that is, the same method can be used
on many different implementations of the appropriate collection interface.

~

UNSW
SYDN E Y

Core Collection Interfaces:

COMP2511: Design By Contract 16

•!• The core collection interfaces encapsulate different types of collections

•!• The interfaces allow collections to be manipulated independently of the details of their
representation.

The core collection interfaces.

~

UNSW
SYDN E Y

The Collection Interface

COMP2511: Design By Contract 17

More at : https://docs.oracle.com/javase/tutorial/collections/interfaces/collection.html

•!• A Collection represents a group of objects known as its elements.

•!• The Collection interface is used to pass around collections of objects where maximum
generality is desired.

•!• For example, by convention all general-purpose collection implementations have a
constructor that takes a Collection argument.

•!• The Collection interface contains methods that perform basic operations, such as
• int size(),

• boolean isEmpty(),
• boolean contains{Object element),

• boolean add{E element),
• boolean remove{Object element),

• Iterator< E> iterator{),
• many more .. .

~

UNSW
SYDN E Y

https://docs.oracle.com/javase/tutorial/collections/interfaces/collection.html

Collection Implementations

COMP2511: Design By Contract 18

v Overview of the Collections Framework at the following page:
 https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html

•!• The general purpose implementations are summarized in the following table:

Interface Hash Table
Set HashSet
List

Deque

Map HashMag

Resizable Array Ba la need Tree Linked List Hash Table+ Linked List
TreeSet LinkedHashSet

Arravlist Linkedlist
ArravDeaue Linkedlist

TreeMag LinkedHashMag

Implemented Classes in the Java Collection,
Read their APls.

~

UNSW
SYDN E Y

https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html

Wrappers for the Collection classes

COMP2511: Design By Contract 19

v https://docs.oracle.com/javase/tutorial/collections/implementations/wrapper.html

~

UNSW
SYDN EY

https://docs.oracle.com/javase/tutorial/collections/implementations/wrapper.html

Demo: Collections Framework

COMP2511: Design By Contract 20

Demo ……

~

UNSW
SYDN EY

COMP2511: Design By Contract 21

End

~

UNSW
SYDN EY

Junit Testing in
Java

COMP2511, CSE, UNSW
UNSW

SYDNEY

Software Testing

COMP2511: Junit Testing 2

•!• Different types of testing:
o Object Oriented Design document describes responsibilities of classes and methods (APls) ➔ Unit Testing

o System Design Document ➔ Integration Testing

o Requirements Analysis Document ➔ System Testing

o Client Expectation ➔ Acceptance Testing

•!• Unit Testing is also useful for refactoring tasks.

•!• In this course, we will focus on Unit testing.

~

UNSW
SYDNEY

JUnit

COMP2511: Junit Testing 3

•:• JUnit is a popular unit testing {open source) framework for testing Java programs.

•:• Most popular IDEs facilitate easy ·ntegration of Junit.

•:• Basic Ju nit Terminology:

o Test Case - Java class containing test methods

o Test Method - a method that executes the test code, annotated with @Test, in a Test
Case

o Asserts - asserts or assert statements check an expected result versus the actual result

o Test Suites - collection of several Test Cases

~

UNSW
SYDNEY

COMP2511: Junit Testing 4

cu
::::s
'-
t:
cu u,
u,
n:,

-. u, -n:,
::::s
CJ"

LLI
~
cu
u,
u,
n:,
•• cu -a.
E
n:,

~ ... ·-c
:::::,
"'""'

I
Tests for Pine pple on Piazza

16 @author Nick Patr1 eos
I

public class PiazzaTest {

@Test
21 public void testExa pleUsage () {

37

Thread funThread = f oru . publish ("The Real Question - Pineapple on Piazza" , "

funTh "izza" "codin" "social" "hobbies"
assertTrue(

Array . equals (n w String [] { "coding" , "hobbies" , "p zza" , "soci l"

fun Th read. pub lishPost ("Yuck!") ;

fun Th r ad. publ.lshPost ("Yes, pineapple on pizza is the absolute best") ;
funThre d. pubtishPost ("I hin you issp ll d p zza btw");
funThread. publishPost ("I 'll JUSt fix th t tot"):

assertEquals(S, funTh read . getPosts (). size ()); >----------------------
@Test
public void testSe rchByT g() {

Piazzaforu foru = new Piazzaforu11("CCJ1P2511"):

x rcis 7");

o likes pineapple on piazza?"):

Thre d tabThread • foru .publish ("Lab 81" , "How do I do th piazza
Thre d ss gn ntThread • forum. publish ("Assign nt" , "Are w b c
labThread. setTags (new String () { "Java" }) ;

assignmentThread . setTags (new String[] { "Java" }) ;

1n bl ckout7");

}

}

forum. searchB Ta
assertEquats("L b 01" , searchRes ut s. get (8). g
assertEquals("Assignment" , searchResults . get (l) .getTJ.tle());

~

UNSW
SYDNEY

COMP2511: Junit Testing 5

C
0 ·-..
Q.
cu u
)C

LLI
•• cu -Q.

E 29

~
LLI .. ·-C
::,
'"""'

e

public ct s ArchaicFsTest {
@Test
public void te1tCdinvelidOir

ArchaicFitaSystN fs • n
ctory (I (

Arch icFitaSy te■ (I ;

}

/I Tr o ~

ssertThrows (U
o invalid

oSuchFi\eException. cl s , (I -► (

fs. cd ("/us r/b111/coo l-stuff" I;
}I;

@Test
public void testCdVe\idDirectory () (

ArchaicFiteSyst• fs • new ArchaicFileSyste■ ();

}

assertDoesNotThrow(() -> (

}I;

fs. dir("/u r/bin/cool- stuff , true , fet e);
fs .cd ("/usr/b1.n/cool-stuff" I;

@Test
public void testCdAroundPeths () {

}

ArchaicFiteSyst• fs • new ArchaicFiteSyste■ ();

assertDoesNotThrow(() -> (

}I;

fs. dir ("/usr/bin/coot- stuff , true, fet e);
fs. cd ("/us r/b111/coot-stuft");
assertEqua ls("/usr/b n/coot- s off" , ts . cwd());
fs.cd (" . . ");
assertEquals("/usr/bin" , ts . Old (I) ;

fs. cd (", , /bin/ .. ") ;
ssertEqu ts(" /usr" , fs.cwd()) ;

@Test
public void tester eteFite() {

}

ArchaicFi\eSyst• fs • new ArchaicFi\eSyste■ () ;

assertDoesNotThrow(() -> {

)) ;

fs. r teTofl e ("test. xt" , "y Conten " , En et. of(Fit.Writ ptions. CREATE , Fi\ Writ Options. TRLtKATE));
ssertEqu ls(y Content" , fs. e dFro File ("test . txt)) ;

fs. wn.teToF1le ("test. txt" , " ew Content" , Enu■Set . of (Fi\eWriteOptions. JRLNCATE));
assertEquals(' ew Con ent" , fs.readFr0111File (est . txt"));

~

UNSW
SYDNEY

Junit: Dynamic and parameterized tests

For information on Dynamic and parameterized tests,
o see the tutorial at https://www.vogella.com/tutorials/JUnit/article.html

v For more information on JUnit, read the user guide at:
o https://junit.org/junit5/docs/current/user-guide/

COMP2511: Junit Testing 6 ~

UNSW
SYDNEY

https://www.vogella.com/tutorials/JUnit/article.html
https://junit.org/junit5/docs/current/user-guide/

End

COMP2511: Junit Testing 7 ~

UNSW
SYDNEY

Software Design
Principles

COMP2511, CSE, UNSW

What Goes Wrong in Software Design?

v Initial design is clean and elegant, often well-structured.

v Over time, design degrades due to evolving requirements and rushed changes.

v Known as "software rot", this process makes code hard to maintain and evolve.

Symptoms:

o Rigidity: Small changes cause widespread impact.

o Fragility: One change breaks unrelated parts.

o Immobility: Useful components can’t be reused easily.

o Viscosity: Environment or process encourages hacks over clean design.

COMO2511: Software Design Principles 2

Rigidity and Fragility

Rigidity: System resists change due to interdependencies.
Example: A login module change forces updates in unrelated reporting or database
modules.
Impact: Managers hesitate to allow even minor fixes.

Fragility: Changes result in unexpected breakages.
Example: Fixing an email validator crashes the profile picture upload feature.
Impact: Developer trust and morale drop; testing becomes difficult.

Observation: The above are due to poor dependency management, not just evolving
requirements.

COMO2511: Software Design Principles 3

Immobility and Viscosity

Immobility: Modules can't be reused due to tight coupling.
Example: A "UserNotification" class depends on web framework internals, so we
cannot reuse in CLI app.

Design viscosity: Easier to do the wrong thing (hack) than the right thing.
Environmental viscosity: Long compile/test cycles encourage shortcuts.

Example: Hack a feature with global variables instead of refactoring due to 20-
minute build time.

Observation: Most symptoms of rot are caused by bad dependency structures.

COMO2511: Software Design Principles 4

What Are Software Design Principles?

v They provide guidelines to develop systems that are maintainable, flexible, reusable,
and robust.

v Adhering to these principles helps to mitigate common software engineering issues
such as design rot (degradation) and ensures software remains scalable and adaptable
over time.

v Changing requirements don’t have to ruin design.

v Good design anticipates change, however, bad design breaks under it.

COMO2511: Software Design Principles 5

Importance of Software Design Principles

v Maintainability: Software should be easy to update and enhance without extensive

refactoring (re-engineering).

v Flexibility: Systems should adapt smoothly to changing requirements.

v Reusability: Components and modules should be designed to be easily reusable across

various parts of the application or even in different projects.

v Robustness: The software should handle errors gracefully and maintain functionality

under different circumstances.

COMO2511: Software Design Principles 6

SOLID Principles (1)

An acronym that represents five crucial principles for object-oriented design:

Single Responsibility Principle (SRP):
o A class should have only one reason to change, focusing on a single functionality.

Open/Closed Principle (OCP):
o Software entities should be open for extension but closed for modification.

Liskov Substitution Principle (LSP):
o Objects of a superclass should be replaceable with objects of subclasses without affecting the

correctness of the program.

COMO2511: Software Design Principles 7

SOLID Principles (2)

Interface Segregation Principle (ISP):
o Clients should not be forced to depend on interfaces they do not use; favor many specific

interfaces over a single general-purpose one.

Dependency Inversion Principle (DIP):
o Depend on abstractions, not concrete implementations. Higher-level modules should not

depend on lower-level modules but rather on abstractions.

COMO2511: Software Design Principles 8

Why Follow These Principles?

v Preventing Software Rot: Avoid the deterioration of the software design
over time.

v Ease of Maintenance: Reduce the cost and effort involved in updating and
managing code.

v Enhanced Productivity: Developers spend less time debugging and
refactoring, more on innovation and delivering value.

v Improved Collaboration: Clear, principle-driven design aids team
communication and collaboration.

COMO2511: Software Design Principles 9

Real-world Example

Consider an online payment system:

Without design principles:
v Payment methods (Credit Card, PayPal, Crypto, etc.) tightly coupled in the

codebase, making additions or modifications challenging and error-prone.

Applying SOLID principles:
v Each payment method is encapsulated within its class (SRP).
v Adding new payment methods requires implementing a payment interface

without altering existing code (OCP, DIP).
v Users of payment classes aren't exposed to methods irrelevant to them (ISP).

COMO2511: Software Design Principles 10

Good Design

“Change in software is constant, good design embraces it!”

v Following structured design principles ultimately results in higher-quality,
longer-lasting software.

COMO2511: Software Design Principles 11

Software Cohesion and Coupling

v Cohesion: The degree to which elements of a module/class belong together.

v Coupling: The degree of interdependence between software modules.

v High cohesion and low coupling are hallmarks of good software design.

COMO2511: Software Design Principles 12

What is Cohesion?

v Cohesion: The degree to which elements of a module/class belong together.

v High Cohesion: Elements of the module work towards a single purpose.

v Low Cohesion: Elements are unrelated or loosely related.

v Aim for high cohesion for maintainability and readability.

COMO2511: Software Design Principles 13

Examples of Cohesion

Class: InvoiceProcessor

o Methods: calculateTotal(), applyDiscount(), generateInvoice()

o All methods related to processing an invoice.

Benefits: Easier to understand and maintain, Reusable

COMO2511: Software Design Principles 14

Class: UtilityClass

o Methods: readFile(), sendEmail(), sortArray()

o Functions unrelated to one another.

Problems: Hard to maintain, Difficult to test, Not reusable as a unit

High Cohesion

Low Cohesion

What is Coupling?

v Coupling: The degree of interdependence between software modules.

v Tight Coupling: Modules heavily dependent on each other.

v Loose Coupling: Modules operate independently with minimal dependencies.

v Aim for loose coupling to enable flexibility and reuse.

COMO2511: Software Design Principles 15

Types of Coupling

Some of the important types of coupling are:

v Data Coupling: Modules share data through parameters.

v Control Coupling: One module controls the flow of another (e.g., flags).

v External Coupling: Modules depend on externally imposed data formats.

v Common Coupling: Shared global variables.

v Content Coupling: One module modifies data of another.

COMO2511: Software Design Principles 16

Examples of Coupling

Modules: UserInterface, BusinessLogic, DataAccess

o Each layer interacts through interfaces.

Benefits: Easy to change or replace components, Improved testability

COMO2511: Software Design Principles 17

Class A calls methods of Class B directly and modifies its state.

Problems: Difficult to reuse or refactor, Ripple effects from changes

Low Coupling

High Coupling

Design Tips for High Cohesion

v Use the Single Responsibility Principle (SRP), as far as possible.

v Group related functionalities.

v Avoid “God classes”.

v Refactor when a class or method grows too large.

COMO2511: Software Design Principles 18

Design Tips for Low Coupling

v Minimize shared data

v Use interfaces and abstractions

v Apply Dependency Injection

v Use event-driven or observer patterns, for loosely dynamically coupled systems

COMO2511: Software Design Principles 19

When to Use Design Principles?

v Design principles help to remove design smells: needless complexity.

v However, they should not be used when there are no design smells.

v It is a mistake to blindly accept a principle just because it is one.

v Avoid over-adherence, it can create a new design smell: needless complexity.

COMO2511: Software Design Principles 20

Design Principle:

Principle of Least Knowledge (Law of Demeter)

v The Principle of Least Knowledge (also called the Law of Demeter) suggest that a

module (or object) should only talk to its immediate "friends", and not to strangers.

v In simpler terms: “Only call methods on objects you directly know.”

v Formal Rule
A method M of an object O may only invoke methods that belong to:

1) O itself
2) M's parameters
3) Any objects created/instantiated within M
4) O’s direct fields (its own instance variables)

COMO2511: Software Design Principles 21

Design Principle:

Principle of Least Knowledge (Law of Demeter)

v Minimises coupling: Prevents objects from becoming overly dependent on

others' internal structure.

v Enhances maintainability: Changes in one class are less likely to ripple

through the system.

v Improves encapsulation: Objects hide their data better and expose

minimal necessary interfaces.

COMO2511: Software Design Principles 22

Code Example – Violating LoD (Tightly Coupled)

COMO2511: Software Design Principles 23

Violates LoD,
accessing a “stranger” (engine)

Code Example – Respecting LoD (Loosely Coupled)

COMO2511: Software Design Principles 24

Car mediates access

Talks only to its direct friend

Definition of LSP (Liskov Substitution Principle)

"Objects of a superclass should be replaceable with
objects of a subclass without breaking the application.”

- Barbara Liskov, 1987

v This ensures a subclass behaves in ways that do not surprise or violate the expectations
set by the parent class.

v Formally:
“Let S be a subtype of T. Then, objects of type T may be replaced with
objects of type S without altering any of the desirable properties of the program.”

COMO2511: Software Design Principles 25

Real-World Analogy: LSP

v Superclass: Bird
Subclass: Penguin

v Birds can fly, therefore fly() is in the base (super) class Bird.

v Penguins are birds, but they cannot fly.

v Problem: Substituting Penguin for Bird breaks the program!

COMO2511: Software Design Principles 26

Examples: LSP

COMO2511: Software Design Principles 27

Violating LSP

Fixing the Violation

Example: LSP (Shape Hierarchy)

COMO2511: Software Design Principles 28

After refactoring

We cannot substitute Square for Rectangle,
may break logic expecting width != height.

Why LSP Matters

v Encourages correct hierarchy modelling

v Enables safe polymorphism

v Reduces unexpected behaviour at runtime

v Facilitates reusability and maintainability

v Think of LSP as a contract: subclasses must honour the guarantees of their parents.

COMO2511: Software Design Principles 29

Introduction to Covariance and Contravariance

v Covariance and Contravariance describe how types behave in inheritance when

method overriding.

v Covariance: Return type can be more specific (subtype)

v Contravariance: Parameter types can be more general (supertype)

COMO2511: Software Design Principles 30

Covariant Return Types

v Allows the return type in an overridden

method to be a subtype of the original.

v Enables more specific results while

remaining compatible.

COMO2511: Software Design Principles 31

Contravariance in Parameters

v Contravariant parameters accept supertypes of the original type.
v This is not allowed in typical method overriding (Java, C++).

COMO2511: Software Design Principles 32

Not Overriding,
But results in Overloading!
Now there are two methods,
one each for Number and Integer types.

Rules Summary for Method Overriding

COMO2511: Software Design Principles 33

Aspect Rule in OOP Overriding
Method Name Must match
Parameters Must be identical
Return Type Covariant allowed
Exceptions Can be narrower
Access Modifier Can be more open

End

COMO2511: Software Design Principles 34

Refactoring

COMP2511, CSE, UNSW

Introduction to Refactoring

v Refactoring is the process of restructuring existing code
without changing its external behavior.

v Aim is to:
o improve internal structure/design, readability, and

maintainability
o help detect bugs.
o increase development speed.
o help conform to design principles and eliminate design/code

smells.

COMP2511: Refactoring 2

When to Refactor

v Before adding new features if current structure is not suitable.

v While fixing bugs.

v During code reviews.

COMP2511: Refactoring 3

Code Smells

v Code smells are indicators of potential design issues.
v They hint at poor design but do not guarantee defects.
v Refactoring addresses code smells.

Common Code Smells:

COMP2511: Refactoring 4

Duplicated Code Shotgun Surgery
Long Method Feature Envy
Large Class Lazy Classes
Long Parameter List Data Classes
Divergent Change

Refactoring Cycle

v Step 1: Identify code smell.

v Step 2: Write tests to confirm current behaviour.

v Step 3: Apply small refactoring step.

v Step 4: Re-run tests.

v Step 5: Repeat.

COMP2511: Refactoring 5

Refactoring Technique: Extract Method

v Identify logical chunks of code and
extract into separate methods.

v Benefits: improves readability,
reduces duplication.

COMP2511: Refactoring 6

Before

After

Refactoring Technique: Move Method

v Move methods to the class whose data they use most.

COMP2511: Refactoring 7

Move getDiscount to Product class.

Refactoring Technique: Replace Temp with Query

v Move expressions into methods instead of temporary variables.

COMP2511: Refactoring 8

Refactoring Technique: Replace Conditional with
Polymorphism
v Switch or if-else chains based on type codes are hard to maintain and violate OOP

principles.
o Adding a new type requires changes to every switch statement.
o Increases rigidity and breaks Open/Closed Principle.

Solution:
o Replace switch statements with inheritance.
o Define a superclass with an abstract method and implement this method in subclasses, each

representing a case of the switch.

COMP2511: Refactoring 9

Refactoring Technique: Replace Conditional with
Polymorphism
v Use polymorphism instead of conditionals.

COMP2511: Refactoring 10

Refactoring Using Composition

v Favor composition over inheritance.

COMP2511: Refactoring 11

Instead of extending Logger class,
use composition (has-a relation) and method forwarding.

Design Smell: Refused Bequest

Refused Bequest: subclass inherits inappropriate behavior.

COMP2511: Refactoring 12

Problem: Refused Bequest — Camel shouldn't inherit getModel().

Push Down getModel()

Smell: Long Parameter List

v To avoid long parameter lists, encapsulate related parameters into a data class and pass
an instance of that class instead.

COMP2511: Refactoring 13

Smell: Large Method/Class

v Large Method: method with many lines doing multiple things.
v Refactor: use Extract Method to create new method(s)

v Large Class: Class with 20+ methods and many fields.
v Refactor: use Extract Class to separate concerns.

COMP2511: Refactoring 14

Smell: Similar Code Fragments

Case 1: Same code in multiple methods of the same class
o Use Extract Method and invoke it from each place.

Case 2: Same code in two subclasses of the same level
o Use Extract Method in both subclasses, Use Pull Up Field or Pull Up Method to unify code in the

superclass.
o If inside constructors: use Pull Up Constructor Body.
o For similar but not identical code: use Template Method.
o If algorithms differ, use Strategy Pattern.

Case 3: Duplicate code in unrelated classes
o Use Extract Superclass to unify shared logic.

COMP2511: Refactoring 15

Smell: Feature Envy

v A method is more interested in another class’s data than its own.

Symptoms
o The method invokes several methods on another object to calculate a value.
o Causes unnecessary coupling and breaks encapsulation.

Solution: Move the method to the class that owns the data (Move Method).
o If only part of the method accesses external data: use Extract Method followed by Move

Method.
o If multiple external classes are involved: identify which one holds the majority of used data

and move the method there.

COMP2511: Refactoring 16

Smell: Divergent Change

v A class is changed in many unrelated ways for different
reasons.

v Violates Single Responsibility Principle.
v Increases risk of regression bugs due to unrelated

modifications

Solution:

o Identify the reasons for change and separate them into
cohesive classes.

o Use Extract Class to encapsulate each responsibility.

COMP2511: Refactoring 17

Smell: Shotgun Surgery
v A small change requires updating many different classes.

v Makes code brittle and hard to maintain.

Solution:

o Consolidate related changes into a single class.
o Use Move Method, Move Field, or Inline Class to localize the change.

COMP2511: Refactoring 18

Divergent Change and Shotgun Surgery

v Divergent Change = One class changes for many unrelated reasons.

v Shotgun Surgery = One change spreads across many classes.

v Both can be addressed with refactoring to improve modularity and reduce fragility.

COMP2511: Refactoring 19

Useful Links

https://refactoring.guru/refactoring/smells

https://www.refactoring.com/catalog/

COMP2511: Refactoring 25

https://refactoring.guru/refactoring/smells
https://www.refactoring.com/catalog/

Demo

The Video Rental System

COMP2511: Refactoring 26

End

COMP2511: Refactoring 27

Introduction to
Software Patterns
and
Strategy Pattern

COMP2511, CSE, UNSW

What Are Design Patterns?

❖ Proven solutions to common software design problems.

❖ Reusable templates that help structure software.

❖ Provide shared vocabulary for developers.

COMP2511: Introduction to Patterns and Strategy Pattern 2

Why Use Design Patterns?

❖ Serve as a template or a guide for addressing important software design issues.

❖ Is not a complete implementation, but rather a flexible guideline for addressing recurring design

challenges.

❖ Captures design expertise, making it easier to share and reuse across projects.

❖ Offers a common vocabulary that enhances communication among developers.

❖ Improve code readability and reusability

❖ Promote best practices and industry standards

❖ Facilitate maintainability and scalability

COMP2511: Introduction to Patterns and Strategy Pattern 3

Mastering Design Patterns – An Art & Craft

❖ Develop a strong working knowledge of various patterns.

❖ Understand clearly the problems they can effectively solve.

❖ Recognize accurately when a specific problem can benefit from applying a pattern.

COMP2511: Introduction to Patterns and Strategy Pattern 4

Origins and History of Design Patterns

❖ The concept stems from architecture, originally introduced by Christopher Alexander and

colleagues, who identified around 250 design patterns for building construction.

❖ Adapted to software by the "Gang of Four" (GoF): Gamma, Helm, Johnson, Vlissides

❖ GoF Book (1994): Design Patterns: Elements of Reusable Object-Oriented Software

COMP2511: Introduction to Patterns and Strategy Pattern 5

Key Elements of a Design Pattern:

❖ Name: Identifier for pattern

❖ Problem: Context and issue

❖ Solution: General design

❖ Consequences: Results and trade-offs

COMP2511: Introduction to Patterns and Strategy Pattern 6

When NOT to Use Patterns

❖ When patterns add unnecessary complexity

❖ When simpler solutions suffice

❖ Avoid "pattern abuse" or "overengineering"

COMP2511: Introduction to Patterns and Strategy Pattern 7

Design Patterns vs. Algorithms

❖ Algorithms solve computational problems

❖ Design Patterns solve design/architectural problems

❖ Example:

o Algorithm: QuickSort

o Pattern: Strategy to switch sorting algorithms

COMP2511: Introduction to Patterns and Strategy Pattern 8

Design Patterns and Software Principles

❖ Closely tied to SOLID principles:
o Single Responsibility

o Open/Closed

o Liskov Substitution

o Interface Segregation

o Dependency Inversion

❖ Patterns tries to address SOLID principles

COMP2511: Introduction to Patterns and Strategy Pattern 9

Problem Statement

Design Problem:
For simulation, represent a car with varying types of engines and brakes.

❖ A Car class should support, along with other behaviours:

o 4 types of engines (e.g., Petrol, Diesel, Electric, Hybrid)

o 5 types of brakes (e.g., Disc, Drum, Regenerative, ABS, Air Brakes)

❖ Requirements may change (add or modify engine/brake types)

COMP2511: Introduction to Patterns and Strategy Pattern 10

Implementation with
If-Else

COMP2511: Introduction to Patterns and Strategy Pattern 11

Implementation with
If-Else

COMP2511: Introduction to Patterns and Strategy Pattern 12

Problems with hardcoding logic, it is a bad practice:

❖ Violates the Open-Closed Principle: Class must be modified for every new
brake or engine type.

❖ Adding new behaviour leads to code duplication and potential bugs.

❖ Not scalable: Explosion of if-else or switch blocks.

❖ Code is hard to read and maintain.

Bad
design!

Alternative: Inheritance-Based Design

❖ Consider subclassing for
each combination.

❖ With M engines types and N brakes
types, we need M × N subclasses

❖ Adding a new engine type requires
N new classes, for each brake type.

❖ Inheritance Explosion Problem!
Not scalable

❖ Tightly couples engine and brake
behaviour

❖ Hard to test and reuse logic

COMP2511: Introduction to Patterns and Strategy Pattern 13

Inheritance
Explosion!

Strategy Pattern: Motivation

❖ Hardcoding algorithm logic in a class makes it inflexible.

❖ Example: A Car class with multiple engine and brake behaviours.

❖ Problems:

o What if we need to represent all possible unique combinations of brakes and engines?

o What if we need to change engine/brake behaviour at runtime?

COMP2511: Introduction to Patterns and Strategy Pattern 14

Strategy Pattern

❖ Define a family of algorithms (e.g. family of engine algorithms).

❖ Encapsulate each algorithm in a separate strategy class
(e.g. a class for petrol engine, a class for electric engine, etc.).

❖ Make algorithms interchangeable in the context object (e.g. in a car object).

❖ Vary behaviour without changing the context class.

COMP2511: Introduction to Patterns and Strategy Pattern 15

Alternative: Using Strategy Pattern (1)

❖ A Car class contains an object of type
BrakeStrategy.

❖ BrakeStrategy is an interface that defines a
method such as apply() to encapsulate brake
behaviour.

❖ Various concrete classes like DiscBrake, ABSBrake,
etc. implement the BrakeStrategy interface to
represent different braking strategies.

❖ The Car class delegates its braking strategy to the
associated BrakeStrategy object/instance.

COMP2511: Introduction to Patterns and Strategy Pattern 16

Concrete classes

Alternative: Using Strategy Pattern (2)

❖ Similarly, a Car class contains an object of type
EngineStrategy.

❖ EngineStrategy is an interface that defines a
method such as start() to encapsulate engine
behaviour.

❖ Various concrete classes like ElectricEngine,
PetrolEngine, etc. implement the EngineStrategy
interface to represent different engine strategies.

❖ The Car class delegates its engine strategy to the
associated EngineStrategy object/instance.

COMP2511: Introduction to Patterns and Strategy Pattern 17

Concrete classes

Using the Strategy-Based Car

COMP2511: Introduction to Patterns and Strategy Pattern 18

Strategy Pattern to the Rescue

Use composition to encapsulate engine and brake behaviour:

❖ Encapsulate variations

❖ Add more classes for new engine and brake types

❖ Use method overriding to change behaviour of the existing engine/brake

❖ Adheres to Open-Closed Principle (e.g. no need to change Car class for the above)

COMP2511: Introduction to Patterns and Strategy Pattern 19

Video Rental Example: Using Inheritance

❖ The Movie is defined as an interface.

❖ Each concrete movie class (RegularMovie, ChildrenMovie,
NewReleaseMovie) handles both the movie class and its
pricing logic, resulting in tight coupling.

❖ However, a movie’s classification or its pricing can change
during its lifetime.

❖ Modifying a movie’s class or pricing behaviour at runtime is
not straightforward in this design.

❖ This approach is not ideal; we can refactor and improve it
using the Strategy Pattern, which allows dynamic selection of
pricing behaviour.

COMP2511: Introduction to Patterns and Strategy Pattern 20

Video Rental Example: Using Strategy Pattern

❖ A Movie class contains a reference to a Price strategy
object.

❖ Price is an interface that defines methods such as
getCharge(days) to encapsulate pricing behaviour.

❖ Various concrete classes like ChildrenPrice, RegularPrice,
and NewReleasePrice implement the Price interface to
represent different pricing strategies.

❖ The Movie class delegates its pricing logic to the associated
Price strategy instance.

❖ To change the pricing behaviour of a movie, simply assign a
different Price strategy object, making the design flexible
and maintainable.

COMP2511: Introduction to Patterns and Strategy Pattern 21

Benefits of Strategy Pattern

❖ Promotes Composition over Inheritance: Allows behaviours to be combined and reused without

deep inheritance hierarchies.

❖ Supports Runtime Behaviour Change: Strategies can be swapped dynamically at runtime to
adapt to changing context (e.g., a hybrid car switching between electric and petrol engines).

❖ Encourages Separation of Concerns: Keeps the Car class focused on orchestration while
delegating specific behaviours to strategy classes.

❖ Enables Open-Closed Principle: New strategies can be added without changing existing code,
reducing the risk of introducing bugs.

❖ Encourages modular design.

❖ Scalable and reusable components

COMP2511: Introduction to Patterns and Strategy Pattern 22

Composite
Pattern

COMP2511, CSE, UNSW
UNSW

SYDNEY

Composite Pattern

These lecture notes use material from the reference book “Head First Design Patterns”.

COMP2511: Composite Pattern 2 ~

UNSW
SYDNEY

Composite Pattern: Motivation and Intent

COMP2511: Composite Pattern 3

• In 00 programming, a composite is an object designed as a composition of one-or-more similar
objects (exhibiting similar functionality).

• Aim is to be able to manipulate a single instance of the object just as we would manipulate a
group of them. For example,

• operation to resize a group of Shapes should be same as resizing a single Shape.

• calculating size of a file should be same as a directory.

• No discrimination between a Single (leaf) Vs a Composite (group) object.

• If we discriminate between a single object and a group of object,
code will become more complex and therefore, more error prone.

~

UNSW
SYDNEY

Composite Pattern: More Examples

COMP2511: Composite Pattern 4

Calculate the total price of an individual part or a complete subcomponent (consisting of many
parts) without having to treat part and subcomponent differently.

Chassis
subcomponent

Disk

Processor Memory

A text document can be organized as part-whole hierarchy consisting of

• characters, pictures, lines, pages, etc. (parts) and

• lines, pages, document, etc. (wholes).

• Display a line, page or the entire document (consisting of many pages) uniformly using the same
operation/ method.

~

UNSW
SYDNEY

Composite Pattern: Possible Solution

COMP2511: Composite Pattern 5

Client

Leaf

+ operation 1 ()
+ operabon2()

<<Interface>>
Component

+ operation1 ()
+ operation2()

Composite

+ operation 1 ()
+ operation2()
+ add(Component c)
+ remove(Component c)
+ getChild(lnt Index): Component

L

• Define a unified Component interface for both

:Client J ·[compositel] :Compo ent

/ --.
l ~ leafl composite27

Compone :Compone

/
leag

:Co pone Qeaf4 :J
mpone

Leaf (single I part) objects and Composite (Group I whole) objects.

G leaf2 ~
Compone

lea~ S
~ ompo ent

• A Composite stores a collection of children components (either Leaf and/or Composite
objects).

• Clients can ignore the differences between compositions of objects and individual objects, this
greatly simplifies clients of complex hierarchies and makes them easier to implement, change,
test, and reuse.

~

UNSW
SYDNEY

Composite Pattern: Possible Solution

COMP2511: Composite Pattern 6

• Tree structures are normally used to represent part-whole hierarchies. A multiway tree structure
stores a collection of say Components at each node (children below), to store Leaf objects
and Composite (subtree) objects.

• A Leaf object performs operations directly on the object.

• A Composite object performs operations on its children, and if required, collects return values
and derives the required answers.

Code Segment from the Composite class

Arraylist<Component> children = ne Arraylist<Component>);

@Override
public double calcula eCost {

double answer = this .ge Cost();
for Componen c : children {

ans er = c .calculat eCost);
}

return answer ;
}

For more, read the example
code provided for this week

~

UNSW
SYDNEY

Implementation Issue: Uniformity vs Type Safety

COMP2511: Composite Pattern 7

Two possible approaches to implement child-related operations
(methods like add, remove, getChild, etc.):

Cl ent

Leaf

+ operation10
+ operation20

<<Interface>>
Compon nt

+ operation1Q
+ operation20

..

Composite

+ operatlon10
+ operatlon20
+ add(Component c)
+ remove(Component c)
+ getChild(int "ndex): Co ponen

Design for Type Safety: only define child-related
operations in the Composite class.

See the next slide for more details.

<<Interface>>
Component

operatlo 10
operatlo 2()
add(Co
re

+ getC

.. ..
Leaf

+ operallo 10
+ operation2Q
+ add(Component c)
+ remove(Component c)
+ etC ·1d(lnt index): Componen

Compo te

operatlo 10
operatio 20

+ add(Componen c)
+ remove(Compone t c)
+ getC ild(int index)· Componen

Design for Uniformity: include all child-related
operations in the Component interface.

~

UNSW
SYDNEY

Implementation Issue: Uniformity vs Type Safety

COMP2511: Composite Pattern 8

Design for Uniformity
• include all child-related operations in the Component interface, this means the Leaf class

needs to implement these methods with "do nothing" or "throw exception".

• a client can treat both Leaf and Composite objects uniformly.

• we loose type safety because Leaf and Composite types are not cleanly separated.

• useful for dynamic structures where children types change dynamically (from Leaf to
Composite and vice versa), and a client needs to perform child-related operations regularly.
For example, a document editor application.

Design for Type Safety
• only define child-related operations in the Composite class

• the type system enforces type constraints, so a client cannot perform child-related
operations on a Leaf object.

• a client needs to treat Leaf and Composite objects differently.

• useful for static structures where a client doesn't need to perform child-related operations
on "unknown" objects of type Component.

~

UNSW
SYDNEY

COMP2511: Composite Pattern 9

Composite Pattern: Demo Example
ode discussed/developed in

Read the example c . ded for this week
the lectures, and also prov,

Client

Leal

+ nam ng()
+ cal ateCostO

<<lnterface>>
Component

+ names nng()
ca lateCostQ
add(Component c)

+ remove(Component c)
getC lld(lnt Index): Compone

+ dd(Compone I C)
+ remove(Component c}
+ getCt.ld(int index): Componen

:Cl ent

proc or
: o po"lent

Composite

ng()
stQ

ponent C)
o ponentc)

int index): Compone

m mory
:Co po1en

disk

Componen mainboard - ne
Coponen processor = n
Component m ory = ne
ainboard .add(processor);
ainboard .add(e o y);

Composi e 11 Mainboa rd• , 1 0);
Leaf(Processor 11 , 50
leaf(emory " , 80 ;

Componen chasis - ne Co posite(Chasis , 75
chasis .add(ainboard);

Componen dis - ne Leaf 'Dis , se
chasis .add(disk

Sys em. out .prin ln
Syste .out .pr ·n ln

Sys em. out .println
Sys e .out .prin ln

[0] II

[0] .,

[1] .,
[1] .,

processor .names ring() ;
processor .calcula eCost));

inboard .names r ·ng());
ainboard . calcula eCost (Ll ;

:Co porie t
Sys em. out .prin ln [2] II chasis .nameS ring) ;
Sys e .out .prin ln [2] chasis .calculateCos ()) ;,,

This example uses design for Uniformity (see composite.uniformity).
Sample code also includes design for Type Safety (see composite.typesafe).

~

UNSW
SYDNEY

COMP2511: Composite Pattern 10

public class enuTes Drive {
public static void a1n(String args []) {

enuCo ponen panca eHous enu =
ne enu(· PANCAKE HOUSE MENU · , · area fast •);

enuCo ponen din nu -
ne Menu(•DINER MENU tt , •Lunch N);

enuCo ponent cafe enu -
enu(•CAFE MENU • , •Di nne r");

ponent dessert enu -
n enu(•OESSERT MENU • , 'Dessert of course! ");

MenuComponent coffee enu - ne enuc •coF EE MENU ", S

enuComponent all enus = new enu (' ALL ENus • , 'All

allMenus .add(panca eHouse nu);
all enus .add(dine enu);
all enus .add(caf enu);

panca eHouse enu .add(new enuI e (
•K&B ' s Pancake Breakfast • ,
•Pancakes with scra bled eggs, and toast " ,
tru ,
2. 99));

panca eHouse enu .add(n w nu! e (
•Regular Pancake Breakfast " ,
•Pancakes with fried eggs, sausage u,
false ,
2. 99));

all enus .prin);

Composite Pattern: Demo Example

d'O
d/de\le\ope \

d. scusse . e\<
\e code \ . d tor th\S we

d the e~arnP \ o nro\J\de
Rea and as t'

the \ectures,

All MENUS, All menus co bined

PANCAKE HOUSE ENU, Breakfast

K&B ' s Pancake Breakfast(v), 2.99
-- Pancakes ith scra bled eggs, and toast

Regular Pancake Breakfast, 2.99
-- Pancakes with fr ed eggs, sausage

Blueberry Panca es(v), 3. 9
- - Pancakes ade w th fresh blueberries, and blueberry syrup

affles(v), 3.59
-- Waffles, with your choi ce of blueberries or strawb rri es

DINER ME U, lunch

Vegetarian BLT(v), 2.99
-- (Fakin ') Bacon with lettuce & tomato on whole wheat

BLT, 2.99
-- Bacon with lettuce & tomato on whole wheat

Soup of the day, 3.29
-- A bowl of the soup of the day, with a side of po a o salad

Ho dog, 3.85

~

UNSW
SYDNEY

Demos …….

v Live Demos ...

v Make sure you properly understand the demo example code

available for this week.

COMP2511: Composite Pattern 11 ~

UNSW
SYDNEY

Summary

COMP2511: Composite Pattern 12

• The Composite Pattern provides a structure to hold both individual objects and

composites.

• The Composite Pattern allows clients to treat composites and individua objects

uniformly.

• A Component is any object in a Composite structure. Components may be other

composites or leaf nodes.

• There are many design tradeoffs in implementing Composite. You need to balance

transparency/uniformity and type safety with your needs.

~

UNSW
SYDNEY

Creational
Patterns

COMP2511, CSE, UNSW
UNSW

SYDNEY

Creational Patterns

COMP2511: Creational Patterns 2

Creational patterns provide various object creation mechanisms, which increase
flexibility and reuse of existing code.

•:• Factory Method
o provides an interface for creating objects in a superclass,

but allows subclasses to alter the type of objects that will be created.

•:• Abstract Factory
o let users produce families of related objects

without specifying their concrete classes.

•:• Builder
o let users construct complex objects step by step. The pattern allows users to

produce different types and representations of an object using the same
construction code.

•:• Singleton
o Let users ensure that a class has only one instance,

while providing a global access point to this instance.

~

UNSW
SYDNEY

Factory Method

COMP2511: Creational Patterns 3 ~

UNSW
SYDNEY

Factory Method

COMP2511: Creational Patterns 4

•!• Factory Method is a creational design pattern that uses factory methods to deal with
the problem of creating objects without having to specify the exact class of the object
that will be created.

•!• Problem:
o creating an object directly within the class that requires (uses) the object is inflexible

o it commits the class to a particular object and
o makes it impossible to change the instantiation independently from

(without having to change) the class.

•!• Possible Solution:
o Define a separate operation (factory method) for creating an object.

o Create an object by calling a factory method.

o This enables writing of subclasses to change the way an object is created
(to redefine which class to instantiate).

~

UNSW
SYDNEY

Factory Method : Structure

COMP2511: Creational Patterns 5

Product p • createProductQ
p.doStuffQ

...

Creator

.. + someOperation0

(3)

+ createProduetO: Product

~
I I

ConcreteCreatorA ConcreteCreatorB ,_
... 1 4 t .

'
+ createProductQ: Product + createProductQ. Product

return new ConcreteProductAO

«interface»

- Product
~

+ doStutf0

, ______ i _____ -,
I I

'
Concrete I

ProductA I
2 Co ncrete

ductB Pro

1. The Product declares the interface, which is common to all objects that can be produced by the
creator and its subclasses.

2. Concrete Products are different implementations of the product interface.

3. The Creator class declares the factory method that returns new product objects.

4. Concrete Creators override the base factory method so it returns a different type of product.

~

UNSW
SYDNEY

Factory Method : Example

COMP2511: Creational Patterns 6

Example in Java (MUST read):
https://refactoring.guru/design-patterns/factory-method/java/example

Bu o okButton • createBu onO
o Button onClick(closeDialog)
o Button.re derO

Dialog

...

- - renderO
createButtonO • Button

4
I I

WindowsDi log Web Dialog

... . ..

createButtonQ: Bu on createButtonQ: Button

return n w WindowsBu onO

«interface»

- Button -
renderO

onCl1ckO

, ______ 1 _____
I
I

Windows H
Button B

~

UNSW
SYDNEY

https://refactoring.guru/design-patterns/factory-method/java/example

Factory Method

COMP2511: Creational Patterns 7

For more, read the following:

https://refactoring.guru/design-patterns/factory-method

~

UNSW
SYDNEY

https://refactoring.guru/design-patterns/factory-method

Abstract Factory Pattern

COMP2511: Creational Patterns 8 ~

UNSW
SYDNEY

Abstract Factory Pattern

COMP2511: Creational Patterns 9

Intent: Abstract Factory is a creational design pattern that lets you produce families of
related objects without specifying their concrete classes.

Problem:

Imagine that you're creating a furniture shop simulator. Your code consists of classes that
represent:

•!• A family of related products, say: Chair+ Sofa+ CoffeeTable.

•!• Several variants of this family.
•!• For example, products Chair+ Sofa+ CoffeeTable are available in these variants:

Coffee
Ch ir Sofa 1 ble

I I
I I

Art Deco
I I
I I
I I
I I I

-------- I
I
--------- I

---------- i---I
I

~ t?
I

Victorian .,_ - I I
I I
I I
I I
I I ---------

---------- ---------- ---------I I

lb
I I

0 Modern
I I 9 I I I
I
I I I

---· ----------

~

UNSW
SYDNEY

Abstract Factory Pattern:

COMP2511: Creational Patterns 10

~

«interface
Chair

haslegsQ
+ s tOnQ

I ,---------------,
I I

VictorianChair ModernChair

... ...
haslegsQ hasl..egsQ

+ sitOnQ sitOn0

Possible Solution:

lb

«interface»
FurnitureFactory

createChairQ: Chair
createCoffeeTableQ: CoffeeTable

createSofaQ· Sofa

,--------------~--------------, I I

Victori nFurnitureFactory

+ createChairO: Chair
createCoff TableQ. Coffee Table

+ createSo aQ: So a

ModernFurnitureF ctory

+ creat ChairQ: Chair
createCoffceTabl O: Coff eTable ,;,,

+ createSofaQ: Sofa -+-

~

UNSW
SYDNEY

COMP2511: Creational Patterns 11

Abstract Factory Pattern: Structure 4
ConcreteFactory1

,--------------,-------
' I --------

: : + creat DroductAO: ProductA
I I '+' W + createProductBQ: ProductB

Coner t
ProductA1

Concrete
ProductA2

2

2

Coner
Product81

Concrete
Product82

~ 4
: I
I I

~--------------J ______ _
r turn n
ConaeteProductA20

«interface»

Abstr ctFactory

+ createProductA(): ProductA
er ateProductBO: ProductB

ConcreteFactory2

createProductAO: Prod ctA
+ createProductBO: ProductB

Client

Client(f· AbstractFactory)
someOp rat on0

ProductA pa • actory ere t Prod ctAO

1. Abstract Products declare interfaces for a set of distinct but related products which make up a product family.
2. Concrete Products are various implementations of abstract products, grouped by variants. Each abstract product

(chair/sofa) must be implemented in all given variants (Victorian/Modern).
3. The Abstract Factory interface declares a set of methods for creating each of the abstract products.
4. Concrete Factories implement creation methods of the abstract factory. Each concrete factory corresponds to a specific

variant of products and creates only those product variants.
5. The Client can work with any concrete factory/product variant, as long as it communicates with their objects via abstract

interfaces.

~

UNSW
SYDNEY

Abstract Factory Pattern: Example

COMP2511: Creational Patterns 12

Example in Java (MUST read):
https://refactoring.guru/design-patterns/abstract-factory/java/example

. -----------~-------• I
I I
I I
I I
I I

'f 'f T WioCh""'°"

I Button 11 Checkbox

, M,1. , M ''""'""

~ ~
I
I
I

I I

.

WinFactory

...

+ createButtonO· Button
+ createCheckboxO: Checkbox

«interface»
GUIFactory

+ createButtonO· Bu on

+ createCheckboxQ. Checkbox

MacFactory

•-----------·------- aoo

+ createButtonQ. Button
+ createCheckboxQ: Checkbox

Application

• factory: GUI Factory
button: Button

+ Appl1cation(f: GUIFactory)

+ createUIO
+ paintO

~

UNSW
SYDNEY

https://refactoring.guru/design-patterns/abstract-factory/java/example

Abstract Factory Pattern

COMP2511: Creational Patterns 13

For more, read the following:

https://refactoring.guru/design-patterns/abstract-factory

~

UNSW
SYDNEY

https://refactoring.guru/design-patterns/abstract-factory

End

COMP2511: Creational Patterns 14 ~

UNSW
SYDNEY

Observer Pattern

COMP2511, CSE, UNSW
UNSW

SYDNEY

Observer Pattern

These lecture notes use material from the reference book “Head First Design Patterns”.

COMP2511: Observer Pattern 2 ~

UNSW
SYDNEY

Observer Pattern

COMP2511: Observer Pattern 3

• The Observer Pattern is used to implement distributed event handling systems, in
"event driven" programming.

• In the observer pattern

• an object, called the subject (or observable or publisher), maintains a list of its
dependents, called observers (or subscribers), and

• notifies the observers automatically of any state changes in the subject, usually by
calling one of their methods.

• Many programming languages support the observer pattern,
Graphical User Interface libraries use the observer pattern extensively.

~

UNSW
SYDNEY

Observer Pattern

COMP2511: Observer Pattern 4

• The Observer Pattern defines a one-to-many dependency between objects so that
when one object (subject) changes state, all of its dependents (observers) are
notified and updated automatica y.

• The aim should be to,

• define a one-to-many dependency between objects without making the objects
tightly coupled.

• automatically notify/update an open-ended number of observers (dependent
objects) when the subject changes state

• be able to dynamically add and remove observers

~

UNSW
SYDNEY

Observer Pattern: Possible Solution

COMP2511: Observer Pattern 5

• Define Subject and Observer interfaces, such that when a subject changes state, all
registered observers are notified and updated automatically.

• The responsibility of,

• a subject is to maintain a list of observers and to notify them of
state changes by calling their update () operation.

• observers is to register (and unregister) themse ves on a subject (to get
notified of state changes) and to update their state when they are notified.

• This makes subject and observers loosely coupled.

• Observers can be added and removed independent y at run-time.

• This notification-registration interaction is also known as publish-subscribe.

~

UNSW
SYDNEY

Multiple Observers and Subjects

COMP2511: Observer Pattern 6

Change propagation

Observers / Subscribers / Listeners

Thermometer
(subject)

Hydrometer
(subject)

Observables/ Subjects/ Publishers

~

UNSW
SYDNEY

Observer Pattern: Possible Solution

COMP2511: Observer Pattern 7

«interface»
Subject

attach(Obse er):void
detach (Observer) :void

notify() :void

, . ,
,

,

, ,
. ,

, ,

Thermometer

+ attach(Observer): void

+ de ac (Observer) : void

+ no ifyQ: void

Hydrometer

+ attach(Observer): void

+ de ac (Observer) : vo·d

+ no ifyQ: void

Observer-1

update(Subject): void

Arraylis <Observer.> listObservers = ne Arraylist<Observer.>();

public void notifyObservers() {

}

for (Observer obs : listObservers) {
obs . update(this ;

}

<interface ,,
Observer

update(Subject): void

Observer-2

+ update(Subject): void

Observer-n
• • • •

+ update(Subject): void

Read the example code
discussed/developed in the lectures,
and also provided for this week

~

UNSW
SYDNEY

Passing data: Push or Pull

COMP2511: Observer Pattern 8

The Subject needs to pass (change) data while notifying a change to an Observer. Two
possible options,

Push data
• Subject passes the changed data to its observers, for example:

update (datal, data2, ...)
• All observers must implement the above update method.

Pu data
• Subject passes reference to itself to its observers, and the observers need

to get (pull) the required data from the subject, for example:
update(this)

• Subject needs to provide the required access methods for its observers.
For example, public double getTemperature() ;

~

UNSW
SYDNEY

COMP2511: Observer Pattern 9

public interface Subject {

}

public void regis rObserver(Observer o
public void re oveObserver(Observ r o
public void no · tyObservers

Read the example code
discussed/developed in the lectures,
and also provided for this week

public cla Thermometer · plements Subject {

}
•

Ar aylist<Observer> listObservers = ne Arraylist<Observer>(
double emperatureC = ·.0;

vern.de
public void reg ' sterObserver Observer o {

if ! listObservers .con ains o)) { lis Observers .add(o }
}

verr1d
public void removeObserver Observer o {

lis Observers .re ave o);
}

verr de
public void no ifyObs rv rs) {

for Observer obs : listObservers {
obs .update(this);

}
}

public double getTemperatureC) {
return temperature(;

}

public void setTemperatureC double temperature() {
this . temperature(= e pera ureC ;
no ifyObservers(; ------J Notify Observers

} after every update

~

UNSW
SYDNEY

COMP2511: Observer Pattern 10

public in erface Observer {

}

public void upda (Subjec obJ

Update for
Multiple Subjects

public ct ss DisplayUSA • pl nts Observer {
Sub ' ect subject ;
double te peratureC = 8.9;
double hu idity = 8 .8;

@Ov r .1de
public void update(Subject obj) {

}

if (obJ instanceof Thermo eter) {
update((Thero eter) obj);

}
else if (obj instanceof Hygro eter) {

update((Hygro eter) obj ;
}

public void update(Ther ometer obJ) {
this . te peratureC = obj .getTemperatureC();

Display after an update:----~---1►~ display();

Read the example code
discussed/developed in the lectures,
and also provided for this week

}

}

void update(Hygro eter obj) {
this . hu idity = obj .getHumidity();
display();

public void display() {

}

Syste .out .printf(From DisplayUSA: Te perature is .2f F,
•Humidity is .2f\n • , convertToF(), hu idity);

public double convertToF() {
return (temperature((9.8/5.9) 32);

}

~

UNSW
SYDNEY

COMP2511: Observer Pattern 11

public cl ss Testl {

public static void ain(String[] args) {

}

// Au o-ger ra ed t od s b

Ther ometer ther o a new Ther ometer();
Observer usaD1splay - n W DisplayUSA() ;; '----------~- add/ register
ther o. reg1s erObserver(usaD1splay); ◄

Observer ausDisplay = new DisplayAustralia();
ther o .registerObserver(ausDisplay);

System. out .println(M\n----------------­
ther o .setTempera ureC(38);

thermo.setTe peratureC(38)

System. out .println(M\n----------------- thermo.setTe peratureC(12)
ther o .setTe peratureC(12); <11111◄.-------

= change state

Hygrometer hyg = new Hygro eter();
hyg .registerObserver(usaDisplay);

System. out .pr ntln(~ n----------------­
hyg .setHu idity(77);
System. out .println(•\n-----------------

yg .setHu idity(96);
Sys em. out .println(M\n----------------­

hyg.setHumidity(77)

hyg.setHumidity(96)

thermo.setTe peratureC(35) ------------
thermo .setTempera ureC(35);

~----------~- remove
ther o .re oveObserver(usaDisplay); ◄
System. out .println(w n----------------- hermo.removeObserver(usaD1splay) ------------

System. out .println(w\n----------------- thermo.setTe peratureC(1) ------------ •);
thermo .setTemperatureC(l);
Sys e .out .println(M\n----------------- ------------ • >;

~

UNSW
SYDNEY

Demos ……

COMP2511: Observer Pattern 12

Live Demos ...

v Make sure you properly understand the demo example code available for this week.

~

UNSW
SYDNEY

Observer Pattern: Example

COMP2511: Observer Pattern 13

cd: ObserwrNelllSpublisher E mple - UML Class Dlag m

H ewsPublisher

-subscribers:Arr ',li <Subsaiber>

-lat estN e111S: strl ng

+ ch(subscri ber:Subscriber):void

+det ch(subscriber:Subscriber):void

+notify()bserver }void

for II o in subsa1 bers {
o .u pdate(th1s);

Subscriber-

+ update(ne1 sPublisher: NewsPublisher):void

SMSSubacriber- Emails lbscriber

+ updat e(ne111SPublisher:N el/ISP u I ish er): void p Ubl isher:N el/ISP ublish er): void

void update(NewsPubli sher ne111SPublisher) {

System .out .println neW!.Publisher.getlatestNe n

The above image is from https://www.oodesign.com/observer-pattern.html

~

UNSW
SYD N EY

Observer Pattern: UI Example

COMP2511: Observer Pattern 14

tr

~

UNSW
SYDNEY

Summary

COMP2511: Observer Pattern 15

Advantages:
• Avoids tight coupling between Subject and its Observers.

• This allows the Subject and its Observers to be at different levels of abstractions
in a system.

• Loosely coupled objects are easier to maintain and reuse.

• Allows dynamic registration and deregistration.

Be careful:
• A change in the subject may result in a chain of updates to its observers and in

turn their dependent objects - resulting in a complex update behaviour.

• Need to properly manage such dependencies.

~

UNSW
SYDNEY

Summary

COMP2511: Observer Pattern 16

BULLET POINTS

■ The Ob erver Pattern define a one-to-many relationship between object .

■ ubject , or a w al o know th m, Ob rvable update Ob erv r u ing a common int rfac

■ Ob erver ar loosely coupled in that the Observable knows nothing about them, oth r than that th y
implement the Observer interface.

■ You can pu h or pull data from the Ob ervable when using the pattern (pull is con idered more "correct").

■ Don't depend on a pecific order of notification for your Ob erver .

■ Java has everal implementation of the Ob erver Pattern, including the general purpo e
java.util.Obs rvable.

■ Watch out for issues with the java.util.Ob ervable implementation.

■ Don't be afraid to create your own Ob ervable implementation if needed.

■ wing make hea y u e of the Ob erver Pattern, a do many GUI frameworks.

■ You 'll al o find the pattern in many oth r place , including JavaBean and RMI.

From the reference book: "Head First Design Pattern"

~

UNSW
SYDNEY

Decorator Pattern

COMP2511, CSE, UNSW

~

UNSW
SYDNEY

Decorator Pattern: Intent

COMP2511: Decorator Pattern 2

• "Attach additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to sub-classing for extending functionality."
[GoF]

• Decorator design patterns allow us to selectively add functionality to an object (not the
class) at runtime, based on the requirements.

• Original class is not changed (Open-Closed Principle).

• Inheritance extends behaviors at compile time, additional functionality is bound to all the
instances of that class for their life time.

• The decorator design pattern prefers a composition over an inheritance.
Its a structural pattern, which provides a wrapper to the existing class.

• Objects can be decorated multiple times, in different order, due to the recursion involved
with this design pattern. See the example in the Demo.

• Do not need to implement all possible functionality in a single (complex) class.

~

UNSW
SYDNEY

Decorator Pattern: Structure

COMP2511: Decorator Pattern 3

•!• Client : refers to the Component interface.

•!• Component: defines a common interface for

Component1 and Decorator objects

•!• Component1 : defines objects that get

decorated.

•!• Decorator: maintains a reference to a

Component object, and forwards requests to

this component object (component.operation())

•!• Decorator 1, Decorator 2, ... :

Implement additional functionality

(addBehavior()) to be performed before and/or

after forwarding a request.

«class»

Client

-component : Component

«interface»
- component➔

Component

+operation()

~
«class» «interface»

Componentl Decorator

+operatic n () +operation()

~ ~
«class» «class»

Decorator! Decorator2

+Decoratorl(Component c) +Decorator2(Component c)

+operatic n () +operation()

+add Behavior() +add Behavior()

~

UNSW
SYDNEY

Decorator Pattern: Structure

COMP2511: Decorator Pattern 4

•!• Given that the decorator has the same
supertype as the object it decorates,

we can pass around a decorated object in place
of the original (wrapped) object.

•!• The decorator adds its own behavior either
before and/or after delegating to the object it
decorates to do the rest of the job.

«class»

Client

-component : Component

«interface»
- component➔

Component

+operation()

~
«class» «interface»

Componentl Decorator

+operatic n () +operation()

~ ~
«class» «class»

Decorator! Decorator2

+Decoratorl(Component c) +Decorator2(Component c)

+operatic n () +operation()

+add Behavior() +add Behavior()

~

UNSW
SYDNEY

Decorator Pattern: Example

COMP2511: Decorator Pattern 5

House Blend

cost() cost()

Welcome to Starbuzz Coffee

Beverage

description

getDescriplionO
cost()

II Other useful methods ...

DarkRoast

cos()

Decaf

nc dcst"'1ftiOl'I i~ .v-iablc
,s set '" calh s1.1btlass .lnd holds •
dcsl\"1~ o.f the be cra,c, hkc

"Most f.ucHc11t DarK Ro.)st"

nc ,c-t:Dcstr,rbonO ... ct.hod
v-ct,1.1r11S the dcstv-,fiiOl'I

Espresso

cost()

~

UNSW
SYDNEY

Decorator Pattern: Example

COMP2511: Decorator Pattern 6

HouseBlendWith oosl()

HouseBlend'MthWhl

oosl()
HouseB costO

00110

&venige

desa!pe,on

gel~O
oos,O

OarkRoastWrthStaamedMilk
1nclC1r11mtl

OarkRo.astWrthWhlpandSot

Welcome to Starbuzz Coffee

DecatwlthSteamedMilk

EspmsoWithsteamedMilk
andlloc:ha

DecalWrthSoy

COl!Q

EspressoWithSteamed 'Jk
andWhip

EspressoWithWhipandSoy Each cost method computes the
cost of the coffee along with the

other condiments in the order
1-------1-r--:-:-:-::-------;,-.1 cost()

COSlO COIIQ

~

UNSW
SYDNEY

Decorator Pattern: Example

COMP2511: Decorator Pattern 7

cost()

Espresso

Beverage

getoescr~

costO
II olher use/IA methods

Decaf

COSIO

BeYerage beverage

cost()

getDesc:~

getDesC/1/)lioo()

Beverage beverage

c05l()

gelDesGnpoonQ
cost()

getDesc:ripcmO

Welcome to Starbuzz Coffee

Whip

Beverage beverage

cost()

ge~O

\ 1'?
And ht:\'"C c3\'"C °"'" lol'ld,,.,cnt dct«.lt.«S, not.Ile
they l'lt:t:d to '"'f fc,._c,.,t ,.,o-f: or.ly tostO k.t also
,ctDcst\'"if"bo,.,O We'll sec why ,,., a '"°""c,.,t, .. ---------------,__________________________ _ ________________------------

~

UNSW
SYDNEY

Decorator Pattern: Example

COMP2511: Decorator Pattern 8

Constructing a drink order with Decorators

0 F,YSt. -we ull lost.O O\'I ,the
~hw-ost. dee«b, Wn,y

$1.29

0 Wnif ulls tost.O Of\ Motha .

(y,y.}\\ see o..i '"

~ • {e'fl f•~es.>

f
E) Matha talls t.ost.O °"

DorkRoast

D.1-kRoast. W'Ctun1

its lost., o/t te"h

0 Mot.ha .1dcis ,ls lost., UJ tents,
t.o lhe Ye~lt -h'OO'fl D.'"kRo.1f4,,
.1l'IO l'"Ctun>S -the "C'W wl, fl l'f

~

UNSW
SYD NE y

Decorator Pattern: Code

COMP2511: Decorator Pattern 9

publ ic doubl e cost() {

Beverage beverage = ne Espresso();
System. out .println(beverage .getDescription()

" " beverage .cost());
Syste .out .println(•--------- - --------------- }

double beverage cost = beve rage .cost();
System. out .println("Whipe : beve rage .cost() is : • + beverage cost);
System. out .println(" - adding One hip cost of 8 . 18c ");
System. out .println(" - new cost is : • (0.18 beverage cost));

return 8.18 beverage cost ;

Beverage beverage2 - ne DarkRoas (); L-----.------------------------------~

beverage2 = new Mocha(beverage2);
beverage2 = new ocha(beverage2);
beverage2 = ne hip{ beverage2);
System. out .println(beverage2 .getDescription()

" " beverage2 .cost());

System. out .println("-------------------------­

Beverage beverage3 = ne HouseBlend();
beverage3 = new Soy{ beverage3);
beverage3 = ne ocha(beverage3);
beverage3 = ne hip beverage3);
System. out .println(beverage3 .getDescription()

" " beverage3 .cost());
System. out .println("--------------------------

\ code
d the e){arnP e d . n the \ectures,

Rea /deve\ope ' \<
discussed . ed for this wee
and a\so prov,d

public double cost() {

}

double beverage cost = beverage .cost();
System. out .println("Mocha : beverage .cost () is : " beverage cost);
Syste .out .println(' - adding One ocha cost of 8 . 28c ");
Syste .out .println(" - new cost i s : • (8.28 beverage cost)) ;

return 0.20 beverage_cost ;

~

UNSW
SYDNEY

Decorator Pattern: Java I/O Example

COMP2511: Decorator Pattern 10

LineNu""b rfnputSh-ea"' is
also a tO'fl/. ete dee°""ak.
It adds the ability t -
'°"'"t the line n1.1"'b l'"S as
it reads delta .

B1.1tkeredlny~tSt.YCo"' is
a Gont.rete det.«~-
81.1.f~eYedlnfutSt~aft\ adds

ftc in' hehav1°"" -lo a
F,ldnyv.tSb-ea"': it. ~tteYS
inyut. -lo iMf'(O e ycrtOYn\01'\U•

A tt'l-t f ,le f°"" .-eaciin~

./

~

UNSW
SYDNEY

Decorator Pattern: Java I/O Example

COMP2511: Decorator Pattern 11

FilelnputStream

f PushbacklnputStream

The~ lt'lfiAtStrecl"'s att as the tot'llrett
to fo e)'\ts t clt e ill 'm"clf w·th
detoraks. TheYe are a fe n.ore t

didt"11 t show, like Objettlr\~t.Strecl .

r Filttrl)'\f"tS h-ean.
is a)'\ absb·att
d tlO\" ahw.

umber1nputStream

~

UNSW
SYDNEY

Decorator Pattern: Code

COMP2511: Decorator Pattern 12

InputStream fl - ne FilelnputStrea filename
lnputStream bl - ne BufferedlnputStream(fl);
lnputStrea lCasel = ne LowerCaselnputStrea bl);
lnputStream ro 13 - ne Ro 13(bl);

}

hie (c = ro 13 .read() >= 0 {
System. out .prin ((char) c);

\e code
d the e><arnP d . the \ectures,

Rea ve\ope ,n
d\scussed/ de . d for th\S week
and a\so prov,de

~

UNSW
SYDNEY

Decorator Pattern:

………….. Demo …………

COMP2511: Decorator Pattern 13 ~

UNSW
SYDNEY

End

COMP2511: Decorator Pattern 14 ~

UNSW
SYDNEY

Functional
Paradigm in Java

COMP2511, CSE, UNSW
UNSW

SYDNEY

Java Lambda Expressions

COMP2511: Functional Paradigm in Java 2

•:• Lambda expressions allow us to

•!• easily define anonymous methods,

•!• treat code as data and

•!• pass functionality as method argument.

•:• An anonymous inner class with only one method can be replaced by a lambda .
expression.

•:• Lambda expressions can be used to implement an interface with only one abstract
method. Such interfaces are called Functional Interfaces.

•:• Lambda expressions offer functions as objects - a feature from functional programming.

•:• Lambda expressions are less verbose and offers more flexibility.

~

UNSW
SYDN E Y

Java Lambda Expressions - Syntax

COMP2511: Functional Paradigm in Java 3

A lambda expression consists of the following:

•!• A comma-separated list of formal parameters enclosed in parentheses. No need to provide data
types, they will be inferred. For only one parameter, we can omit the parentheses.

•!• The arrow token, ->
•!• A body, which consists of a single expression or a statement block.

public interf ce MyFunctioninterf ceA {
public int myCompute (int x, int y);

}

public interface MyFunctioninterfaceB {
public boolean myC p(int x, int y);

}

public interface MyFunctioninterfaceC {
public double doSomething (int x);

}

~-----------------------~
MyFunctioninterfac A fl= (x , y) - > x + y;

MyfunctioninterfaceA f2 = (x , y) - > x - y + 200 ;

MyFunctioninterfaceB f3 = (x , y) - > x > y ;

MyfunctioninterfaceC f4 ox-> {

Syste .out . printtn (
Syst m. out . printtn{
Syste .out . printtn (
Syste . out . println (

double y = 1.5 x;
return y + 8.0 ;

};

f 1. myCompute (10, 20)

f2 .myCompute (10 , 20)

f3 .myCmp (l0 , 20)) ;

f4 . doSomething (10)) ;

) ; I prints 30
) ; I prints 190

I I prints false
II prints 23.0

~

UNSW
SYDN EY

Method References

COMP2511: Functional Paradigm in Java 4

We can treat an existing method as an instance of a Functional Interface.

There are multiple ways to refer to a method, using : : operator.

•!• A static method (ClassName : : methName)

•!• An instance method of a particular object (instanceRef : : methName) or

(ClassName : : methName)

•!• A class constructor reference (ClassName : : new)

•!• Etc.

~

UNSW
SYDN E Y

Function Interfaces in Java

COMP2511: Functional Paradigm in Java 5

❖ Functional interfaces, in the package j ava. util. function, provide predefined target types for
lambda expressions and method references.

❖ Each functional interface has a single abstract method, called the functional method for that functional
interface, to which the lambda expression's parameter and return types are matched or adapted.

❖ Functional interfaces can provide a target type in multiple contexts, such as assignment context, method
invocation, etc. For example,

Predicate<String> p = String:: i sEmpty ;

II Collect empty strings
List<String> strEmpt yl is t l = strlist . stream()

. filter (p)

. collect (Collectors . tolist ()):

Syste .out . println ("Number of empty strings:" + st rEmpt ylistl. size ());
II prints 3

II Callee tring ~th l ngth l than ix
{

Lambda expression
List<String> st rEmpt ylist2 = strlist. stream()

. filter (e -> e. length () < 6 }

. collect (Cottectors . tolist ());

Syste . out . println ("Nu ber of strings with length< 6: " + strEmptylist2 . size ());
II prints 4

~

UNSW
SYDN EY

Function Interfaces in Java

COMP2511: Functional Paradigm in Java 6

•!• There are several basic function shapes, including

•!• Function (unary function from T to R),

•!• Consumer (unary function from T to void),

•!• Predicate (unary function from T to boolean), and

•!• Supplier (nilary function to R).

•!• More information at the package summary page

https://docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.html

~

UNSW
SYDN E Y

Function Interfaces in Java: Examples

COMP2511: Functional Paradigm in Java 7

Function<String , Integer> func = x -> x . length ();
Integer answer = func. apply ("Sydney");
Syste .out . println (answer) ; / pr 6

Function<String , Integer> funcl = x -> x . length ();
Function<Integer , Boolean> func2 = x -> x > ;
Boole n result = funcl .andThen (func2). apply ("Sydney");
Syste .out . println (result);

Predicate<Integer> myPass = mark-> ma rk >= 50 ;
List<Integer> listMa rks = Arr ys . as List (5, , 0, 89 , 65 , 10) ;
List<Integer> passMarks = listMarks . stream()

. filter (myPass)

. collect (Collectors. tolist ());

Syste .out . println (passMarks); // prints [50, 89, 65)

Consu er<String> print = x -> Syste . out . println (x) ;
print. accept ("Sydney"); ,, rints Sydney

~

UNSW
SYDN EY

Function Interfaces in Java: Examples

COMP2511: Functional Paradigm in Java 8

II Consumer to mult· 11 _ r, ea
Consu er<List<Integer> > myModifylist = list

for (inti = 0; i < list . size (); i ++)
list . set (i , 5 list. get (i));

};

a list
-> {

List<Integer> list = new Arraylist<Integer> (};
list. add (S);
list. add () ;
list. add (0};

II nt myMo 1sing accept()
myModifylist . accept (list };

II Cor r to displ v ~ 1m
Consu er<List<Integer>> myDisplist = mylist -> {

mylist . stream(} . forEach (e -> System . out . println (e}} ;
};

DispList
myDisplis t . accept (list };

~

UNSW
SYDN EY

Comparator using Lambda Expression: Example

COMP2511: Functional Paradigm in Java 9

J J onymo
Co parator<Customer> myCmpAnonymous = new Co parator<Customer>() {

@Override

} ;

public int compare (Customer ol, Custo er o2) {
return ol. getRewardsPoints () - o2. getRewardsPoints () ;

}

custA. sort (myCmpAnonymous);

11 ·,q L expression - simp 1 (only one lin

Only one line!

custA. sort ((Custo er ol, Custo er o2)->ol. getRewardsPoin s () - o2. getRewardsPoints ());

custA. forEach ((cust) -> Syste .out . println (cust)); w---- Print using Lambda expression

~

UNSW
SYDN EY

Comparator using Lambda Expression: Another
Example

COMP2511: Functional Paradigm in Java 10

//U in
c stA so

rt rn ol.
re

}) :

{

stco ()) {
os code{ o2. e Pos cod () , }

ts () a ds o , ts () ,

Body

~

UNSW
SYDN EY

Pipelines and Streams

COMP2511: Functional Paradigm in Java 11

•!• A pipeline is a sequence of aggregate operations.

•!• The following example prints the male members contained in the collection roster with a
pipeline that consists of the aggregate operations filter and forEach :

roster Using pipeline and aggregate ops:
. stream()
.filter(e -> e.getGender() ==Person.Sex.MALE)
.forEach(e -> System.out.println(e.getName()));

for (Person p: roster) { Traditional approach,
using a for-each loop:

}

if (p.getGender() == Person.Sex.MALE) {
System.out.println(p.getName());

}

•!• Please note that, in a pipeline, operations are loosely coupled, they only rely on their incoming
streams and can be easily rearranged/replaced by other suitable operations.

•!• Just to clarify, the "." (dot) operator in the above syntax has a very different meaning to the "."
(dot) operator used with an ins!~-~f.~.9f a. ~l~ss . .

~

UNSW
SYDNEY

Pipelines and Streams

COMP2511: Functional Paradigm in Java 12

•!• A pipeline contains the following components:

• A source: This could be a collection, an array, a generator function, or an 1/0 channel. Such as
roster in the example.

• Zero or more intermediate operations. An intermediate operation, such as filter, produces a
new stream.

•!• A stream is a sequence of elements. The method stream creates a stream from a collection
(roster).

•!• The filter operation returns a new stream that contains elements that match its predicate. The
filter operation in the example returns a stream that contains all male members in the collection
roster.

•!• A terminal operation. A terminal operation, such as forEach, produces a non-stream result, such
as a primitive value (like a double value), a collection, or in the case of forEach, no value at all.

roster
. stream()
.filter(e -> e.getGender() ==Person.Sex.MALE)
.forEach(e -> Systern.out.println(e.getNarne()));

~

UNSW
SYDN E Y

Pipelines and Streams: Example

COMP2511: Functional Paradigm in Java 13

double average= roster
. stream()
.filter(p -> p.getGender() -- Person.Sex.MALE)
.mapToint(Person::getAge)
.average()
.getAsDouble();

•!• The above example calculates the average age of all male members contained in the collection
roster with a pipeline that consists of the aggregate operations filter, mapTolnt, and average.

•!• The mapTolnt operation returns a new stream of type lntStream (which is a stream that contains
only integer values). The operation applies the function specified in its parameter to each
element in a particular stream.

•!• As expected, the average operation calculates the average value of the elements contained in a
stream of type lntStream.

•!• There are many terminal operations such as average that return one value by combining the
contents of a stream. These operations are called reduction operations; see the section
Reduction for more information at https://docs.oracle.com/javase/tutorial/collections/streams/reduction.html

~

UNSW
SYDN E Y

Pipelines and Streams: Another Example

COMP2511: Functional Paradigm in Java 14

doub e avgNon ptySt r en = s rlist strea' ()
. filter (e -> e. le

ap oint (S rig·
. average ()
. getAs o ble ();

gt ()>
eng h)

)

~

UNSW
SYDN EY

End

COMP2511: Functional Paradigm in Java 15 ~

UNSW
SYDN EY

Singleton Pattern
and Asynchronous
Design

COMP2511, CSE, UNSW
UNSW

SYDNEY

Creational Pattern: Singleton Pattern

COMP2511: Singleton Pattern and Asynchronous Design 2

Creational patterns provide various object creation mechanisms, which increase
flexibility and reuse of existing code.

•:• Factory Method
o provides an interface for creating objects in a superclass,

but allows subclasses to alter the type of objects that will be created.

•:• Abstract Factory
o let users produce families of related objects

without soecifvinR their concrete classes.

•:• Singleton
o Let users ensure that a class has only one instance,

while providing a global access point to this instance.

~

UNSW
SYDN E Y

Singleton Pattern

COMP2511: Singleton Pattern and Asynchronous Design 3

Intent: Singleton is a creational design pattern that lets you ensure that a class has
only one instance, while providing a global access point to this instance.

Problem: A client wants to,

•!• ensure that a class has just a single instance, and

•!• provide a global access point to that instance

Solution:

All implementations of the Singleton have these two steps in common:

•!• Make the default constructor private, to prevent other objects from using the new operator
with the Singleton class.

•!• Create a static creation method that acts as a constructor. Under the hood, this method calls the
private constructor to create an object and saves it in a static field. All following calls to this
method return the cached object.

•!• If your code has access to the Singleton class, then it's able to call the Singleton's static method.

•!• Whenever Singleton's static method is called, the same object is always returned.

~

UNSW
SYDN E Y

Singleton: Structure

COMP2511: Singleton Pattern and Asynchronous Design 4

•!• The Singleton class declares the static

method getlnstance (1) that returns the

same instance of its own class.

•!• The Singleton's constructor should be

hidden from the client code.

•!• Calling the getlnstance {1} method

should be the only way of getting the

Singleton object.

Client

Singleton

-inst nce:Sing leton
- SingletonO

getlnstanceQ: Sing.lgtQn @

if (instance == null) {

}

II o f ou'r er ating an pp I h
II mul I hr ading support, you shou d
II plac a thread ock h r .
instance= new SingletonO

return instance

~

UNSW
SYDN E Y

Singleton: How to Implement

For more information, read:
 https://refactoring.guru/design-patterns/singleton/java/example

COMP2511: Singleton Pattern and Asynchronous Design 5

•!• Add a private static field to the class for storing the singleton instance.

•!• Declare a public static creation method for getting the singleton instance.

•!• Implement "lazy initialization" inside the static method.

o It should create a new object on its first call and put it into the static field.

o The method should always return that instance on all subsequent calls.

•!• Make the constructor of the class private.

o The static method of the class will still be able to call the constructor, but not the
other objects.

•!• In a client, call singleton's static creation method to access the object.

~

UNSW
SYDN E Y

https://refactoring.guru/design-patterns/singleton/java/example
https://refactoring.guru/design-patterns/singleton/java/example
https://refactoring.guru/design-patterns/singleton/java/example
https://refactoring.guru/design-patterns/singleton/java/example
https://refactoring.guru/design-patterns/singleton/java/example

Synchronous vs Asynchronous
Software Design UNSW

SYDNEY

What is Synchronous programming?

COMP2511: Singleton Pattern and Asynchronous Design 7

• In synchronous programming, operations are carried out in order.

• The execution of an operation is dependent upon the completion of the
preceding operation.

• Tasks (functions) A, B, and Care executed in a sequence, often using one thread.

A

B

C

~

UNSW
SYDNEY

What is Asynchronous programming?

COMP2511: Singleton Pattern and Asynchronous Design 8

• In asynchronous programming, operations are carried out independently.

• The execution of an operation is not dependent upon the completion of the
preceding operation.

• Tasks (functions) A, B, and Care executed independently, can use multiple
threads/ resources.

A
Call Back

function for B

C

Cal/Back

function for C

~

UNSW
SYDNEY

Example: Synchronous vs Asynchronous programming

COMP2511: Singleton Pattern and Asynchronous Design 9

Synchronous

function getRecord (key) {
establish database connection
retrieve the record for key
return record;

}

function display (rec){
display rec on the web page

}

rec= getRecord ('Rita');
display(rec)

rec= getRecord ('John');
display(rec)

A

B

Asynchronous

function getRecord (key, callback) {
establish database connection
retrieve the record for key
callback (record);

}

function display (rec){
display rec on the web page

}

getRecord('Rita', display)--1--.
getRecord('John', display)

- ---t-A.

B

~

UNSW
SYDNEY

Kafka: An Example of Asynchronous Software Design

COMP2511: Singleton Pattern and Asynchronous Design 10

❖ Today, streams of data records, including streams of events, are continuously generated by many online applications.

❖ A streaming platform enables the development of applications that can continuously and easily consume and process
streams of data and events.

❖ Apache Kafka (Kafka) is a free and open-source distributed streaming platform useful for building, real time or
asynchronous, event-driven applications.

❖ Kafka offers loose coupling between producers and consumers.

❖ Consumers have the option to either consume an event in real
time or asynchronously at a later time.

❖ Kafka maintains the chronological order of records/events,
ensuring fault tolerance and durability.

❖ To increase scalability, Kafka separates a topic and stores each
partition on a different node.

❖ Producer AP/ - Permits an application to publish streams of l
records/ events.

❖ Consumer AP/ - Permits an application to subscribe to topics

L and processes streams of records/events.

Producer Producer Producer

Kafka Cluster

Topic Topic Topic

IParti~ IPartitio~ r,;;rtrtion j
[Partition J [Partlt~ [Partition

[iirtltlon J [Partlt~ !Partition

@ onsum~

~

UNSW
SYDN E Y

END

COMP2511: Singleton Pattern and Asynchronous Design 11 ~

UNSW
SYDN EY

Software
Architecture

COMP2511, CSE, UNSW

These lecture slides are from the book “Head First Software Architecture”,
by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

Software Architecture as a Metaphor
v While building a house, architectural decisions (rooms, floors, layout) are

crucial and costly to change later.

v A poorly architectural house can lead to substandard and uncomfortable
living conditions.

What is Software Architecture?
v Software architecture defines the fundamental structure of a software system.

v Influences how effectively the software can adapt to changes, scale, perform,
and maintain its reliability.

v Software Architecture diagrams represent relationships between components
(e.g. databases, services, interfaces).

The Four Dimensions of Software
Architecture
1. Architectural Characteristics

2. Architectural Decisions

3. Logical Components

4. Architectural Style

Dimension 1: Architectural Characteristics

v Architectural Characteristics define
fundamental qualities software architecture
must support.

v Commonly used Architectural Characteristics:
o Scalability (support growth)
o Reliability (consistent operation)
o Availability (system uptime)
o Testability (ease of testing components)
o Security

Dimension 2: Architectural Decisions

v Long-term structural decisions influencing software behaviour.

v Architectural Decisions set constraints guiding future development.

Dimension 3: Logical Components

v Functional building blocks representing business features.

Dimension 4: Architectural Styles

v Overall system shape and structural patterns.

v Common styles:
o Layered (clear separation of concerns)
o Microservices (highly scalable and agile)
o Event-driven (responsive and scalable)

v Real-world Examples:
o Netflix adopting microservices.
o Traditional enterprise apps using

layered architecture.

Architecture vs. Design
v Architecture: Structural decisions (hard to change).
v Design: Appearance and detailed decisions (easy to

change).

v Decisions exist on a spectrum from pure
architecture to pure design.

v Strategic decisions (architecture):
Long-term, high impact, high effort.

v Tactical decisions (design):
Short-term, low impact, low effort.

Example:
v Choosing databases (architecture) vs.

UI button colour (design).

Identifying Architectural Decisions
v Questions to consider:

Ø Is it strategic (long-term) or tactical (short-term)?
Ø Effort to change: high or low?
Ø Does it involve significant trade-offs?

Examples:

o Migrating from monolith to microservices
(architecture, strategic).

o Changing background colour of login page (design,
tactical).

Trade-offs in Decision Making
v Architectural decisions often involve

significant trade-offs.

Example:
o Cloud deployment: scalability vs.

cost.
o Async messaging: performance vs.

complexity.
o Choosing between performance

and data consistency.

v Architects handle strategic choices;
developers manage detailed tactical
choices

Summary (1)

v Architecture focuses on structure and system-wide qualities; design is more about code-level
appearance and organization.

v Four essential dimensions of software architecture:
o Architectural Characteristics – Foundation traits like scalability, availability, security.

o Architectural Decisions – Guideposts that define the system's constraints and trade-offs.

o Logical Components – Functional building blocks implemented in code.

o Architectural Style – High-level patterns like layered, event-driven, or microservices.

Summary (2)

v Software architecture is about making informed structural decisions, not just organising code.

v Understand and prioritise architectural characteristics for your system.

v Every architectural decision involves trade-offs, know the “why.”

v Use ADRs to document decisions and ensure long-term clarity.

v Choose an architectural style that supports your system’s most critical characteristics.

v Know when a decision is architectural (system-wide impact) or design-level (local impact).

“Good architecture supports change. Great architecture explains why.”

Architectural
Characteristics

COMP2511, CSE, UNSW

These lecture slides are from the book “Head First Software Architecture”,

by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

COMP2511: Architectural Characteristics 2

What Are Architectural Characteristics?

v Architectural Characteristics define
fundamental qualities software architecture
must support.

v They are often not explicitly defined

v They influence structure, infrastructure, and
quality of the system

v Architectural characteristics guide decisions
like architectural style, deployment, and
scalability.

COMP2511: Architectural Characteristics 3

Some of the Popular Architectural Characteristics

v There is no fixed or exhaustive list — they evolve with time and context

v Many required characteristics are not explicitly stated in the requirements

v Proper domain and contextual understanding is essential to identify them

v They are essential to align architecture with real-world needs, for successful development,
deployment, and future system resilience

o Scalability: Handles growth in traffic or data size

o Availability: Ensures system uptime

o Maintainability: Easy to update, fix, or extend

o Security: Prevents unauthorized access

o Elasticity: Automatically adjusts resources based
on load

o Deployability: Enables safe, frequent updates

o Responsiveness: Provides quick feedback to users

COMP2511: Architectural Characteristics 4

Case Study - Lafter (Sillycon Symposia)

v A fictional tech-comedy conference platform to illustrate architectural thinking.

v Use Case: Participants post jokes/puns, react with "HaHa" or "Giggle," and engage with speakers.

v Functional Needs:
o User registration
o Posting content (jokes/puns)
o Reaction buttons and speaker tools
o Language support (international audience)

v Architectural Constraints:
o Scalability: Must handle traffic bursts during peak conference hours.
o Availability: Downtime would impact live sessions and user interaction.
o Security: Accounts and speaker tools require access control.
o Maintainability: Small team must support system with minimal overhead.

COMP2511: Architectural Characteristics 5

Applying Architectural Thinking to Lafter

v Design Decisions Influenced by Characteristics:
o Choose microservices for independently deployable features (e.g., joke-posting vs. notifications).

o Use cloud-based hosting with autoscaling to manage bursty traffic.

o Implement CI/CD pipelines to ensure rapid, reliable deployments.

o Enable internationalisation to support a multilingual audience.

v Examples of Characteristics Applied:
o Elasticity → Serverless functions for unpredictable joke-post surges

o Responsiveness → Real-time interactions using WebSockets

o Testability → Unit-tested microservices enable quick fixes

COMP2511: Architectural Characteristics 6

Architectural Characteristics vs. Logical Components

v Architectural Characteristics: How the system performs under various constraints

v Logical Components: What the software does (domain behavior)

v Both are essential for structural design

Component: User Registration

Characteristic: Scalability
 (handles thousands of concurrent signups)

Component: Content Posting

Characteristic: Availability
 (system is up when users post jokes)

Component: Admin Dashboard

Characteristic: Security
 (restricts access to authorized users only)

Component: Notifications

Characteristic: Responsiveness
 (sends real-time updates with low latency)

COMP2511: Architectural Characteristics 7

Characteristics Affect Structure

COMP2511: Architectural Characteristics 8

Characteristics Affect Structure

Architectural Impact

o Monolithic vs
Microservices

o Cloud vs On-Premise
deployment

o Etc.

Architectural Characteristics

o Security: May require encryption layers, role-based
access control, audit trails

o Scalability: May need load balancers, stateless services,
database sharding

o Availability: May require failover mechanisms,
replication, redundant systems

o Responsiveness: Might demand caching, asynchronous
processing

o Elasticity: May need autoscaling and container
orchestration

COMP2511: Architectural Characteristics 9

Don’t Overengineer!

v Too many characteristics = complexity
v They are:
o Synergistic (affect each other, improving security may result in low performance)
o Continuously evolving
o Impossible to standardize (performance and responsiveness might indicate the same behavior)

v Limit characteristics to prevent overengineering
o Identifying which characteristics are most critical acts as a filtering mechanism
o Helps eliminate "nice-to-have" features that add unnecessary complexity and cost
o Stay focused on traits essential for success
o Limit to around 7 key characteristics, humans best manage 7 ± 2 items!

COMP2511: Architectural Characteristics 10

Implicit vs Explicit Characteristics

v Explicit: Stated clearly in the requirements document
o "The system must support French and Japanese" → Internationalization
o "Allow only registered users to access admin panel" → Authorization

v Implicit: Not stated, but understood or expected (requires domain/context
understanding)
o Users expect their data to be secure even if not mentioned → Security
o An app must perform well during high traffic without explicit mention →

Performance/Scalability
o A public website is expected to be available 24/7 → High Availability

v Architects must read between the lines to uncover hidden requirements

Explicit
• Packages are

stacked
outside a door.

Implicit
• No one is home.
• This family orders a

bunch of stuff
online.

• Is this family on
vacation?

COMP2511: Architectural Characteristics 11

Types of Characteristics

v Process Characteristics: Deployability, Maintainability

v Structural Characteristics: Modularity, Coupling

v Operational Characteristics: Scalability, Availability

v Cross-cutting Characteristics: Accessibility, Security

COMP2511: Architectural Characteristics 12

Process Characteristics

v Represent the intersection between
architecture and the software
development process

v Reflect how the system is built,
tested, deployed, and evolved

v Guide decisions related to
engineering practices, automation,
and team workflows

COMP2511: Architectural Characteristics 13

v Concerned with the internal structure
and composition of the system

v Influence how components are
coupled, interact, and evolve
independently

v Impact design qualities like
modularity, cohesion, and
adaptability

Structural Characteristics

COMP2511: Architectural Characteristics 14

v Represent how architectural
decisions shape and support system
behavior at runtime

v Define what the operations team can
monitor, control, or adapt while the
system is running

v Directly influence system reliability,
performance, and fault tolerance

Operational Characteristics

COMP2511: Architectural Characteristics 15

v Span multiple parts of the system and
affect other characteristics

v Often enforced through design,
tooling, and governance

Cross-Cutting Characteristics

COMP2511: Architectural Characteristics 16

Composite Characteristics

v Formed from multiple simpler traits

v These high-level characteristics reflect complex system qualities that require multiple
dimensions to evaluate.

v Examples:

o Reliability = Availability + Consistency + Data Integrity

o Resilience = Robustness + Fault Tolerance + Recoverability

v Must break down into measurable parts

COMP2511: Architectural Characteristics 17

Sources of Characteristics

v Problem Domain (Feature-Driven): Driven by product goals, system features, and
expected usage patterns.
o A real-time multiplayer game must be highly responsive and scalable due to concurrent users

→ Responsiveness, Scalability
o An e-commerce site must support flash sales and high traffic → Elasticity, Performance,

Availability

v Environmental Awareness (Organizational Constraints): Driven by company’s culture,
budget, and capabilities
o A startup must deliver features fast → favors Deployability, Agility
o A globally distributed team → needs Testability, Modularity for asynchronous collaboration
o Legacy-heavy organizations → may prioritize Integrability with existing systems

COMP2511: Architectural Characteristics 18

Sources of Characteristics

v Holistic Domain Knowledge (Industry and Compliance Expectations): Driven by
regulatory standards, industry best practices, and user trust factors.
o A banking app must comply with regulations → Security, Auditability, Availability

o A healthcare platform must protect patient data → Confidentiality, Data Integrity, Compliance

o Government services need to meet accessibility and privacy laws → Accessibility, Security,
Maintainability

v Why It Matters:
o Ignoring a source can lead to critical failures later

o Architects must triangulate across all three to identify the most important characteristics

COMP2511: Architectural Characteristics 19

Translating Business Goals into Architecture

v A core responsibility of the architect is to translate high-level business goals into concrete
architectural characteristics and decisions.

Examples:
v Business: “The system must always work.”
o → High Availability, Fault Tolerance, Robustness

v Business: “Customers shouldn’t wait.”
o → Responsiveness, Performance, Latency Budgeting

v Business: “We need to move fast and innovate.”
o → Deployability, Modularity, Testability

v Business: “We need to meet compliance and regulation.”
o → Security, Auditability, Traceability, Accessibility

COMP2511: Architectural Characteristics 20

Trade-offs Between Architectural Characteristics (1)

v Architectural characteristics frequently compete or conflict

v Enhancing one trait can reduce or compromise another

Examples:
o Security vs. Performance [More security controls (e.g., encryption, validation) add processing overhead]
o Scalability vs. Simplicity [Scalable systems often introduce distributed complexity (e.g., microservices,

load balancers)]
o Availability vs. Maintainability [High availability may require complex failover and redundancy,

complicating upgrades and maintenance]

Key Insight:
o Trade-offs are not flaws, but conscious architectural decisions
o There are no universally right answers—"It depends."

COMP2511: Architectural Characteristics 21

Trade-offs Between Architectural Characteristics (2)

More Examples:
v Deployability vs. Robustness: Rapid deployments can reduce test cycles and stability

v Responsiveness vs. Data Consistency: Fast user interactions might rely on eventually consistent models

v Flexibility vs. Performance: Designing for plugin support or configuration often introduces performance
bottlenecks

Best Practices:
v Engage stakeholders early to understand what matters most

v Prioritise characteristics based on system goals, user needs, and domain constraints

v Trade-offs reflect organizational priorities and constraints

v Use Architectural Decision Records (ADRs) to document trade-offs and rationale

COMP2511: Architectural Characteristics 22

Summary

v Architecture is about making conscious trade-offs
v Every decision comes with upsides and downsides
v Capture both the decision and the reason behind it
v Embrace change—architecture evolves with the system

v Architecture isn't about right answers—it's about right reasoning

COMP2511: Architectural Characteristics 23

Architectural
Decision Records
(ADRs)

COMP2511, CSE, UNSW

These lecture slides are from the books:

o “Head First Software Architecture”, by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

o “Fundamentals of Software Architecture”, 2nd Edition, by Mark Richards, Neal Ford

COMP2511: Architectural Decision Records (ADRs) 2

Architectural Decision Records (ADRs)

v "Why is more important than how.”

v Architectural decisions must be justified

v Future team members need to understand the rationale

v Without context, good decisions may seem arbitrary or incorrect

v Architectural Decision Records (ADRs) capture the what, why, and
impact

v An ADR has seven sections: Title, Status, Context, Decision,
Consequences, Governance, and Notes.

v Important aspects of an architectural decision are documented,
including the decision itself.

ADR

COMP2511: Architectural Decision Records (ADRs) 3

ADR Structure Overview

Main Sections:

v Title: Numbered and concise

v Status: Proposed, Accepted, Superseded, or Request for Comments (RFC)

v Context: Forces and constraints

v Decision: What was chosen and why

v Consequences: Trade-offs and impacts

v Compliance: Governance and enforcement

v Notes: Metadata (author, date, approval)

COMP2511: Architectural Decision Records (ADRs) 4

ADR Section - Title

v Purpose: Identify and summarize the decision

v Best Practices:
o Number sequentially (e.g., ADR 001)
o Short, descriptive, and unambiguous

v Example:
o “ADR 17: Asynchronous Messaging Between Order and Payment Services”
o “ADR 21: Transition to PostgreSQL for Inventory Management”
o “ADR 34: Enable OAuth 2.0 for Internal APIs”

COMP2511: Architectural Decision Records (ADRs) 5

ADR Section - Status

v Types:
o Proposed: Pending approval
o Accepted: Approved and active
o Superseded: Replaced by another ADR
o RFC: Open for feedback until a deadline

v Examples:
o ADR 12: Status: Accepted
o ADR 17: Status: Superseded by ADR 21
o ADR 34: Status: RFC, Deadline 30 May 2025

COMP2511: Architectural Decision Records (ADRs) 6

ADR Section - Context

v Purpose: Explain what situation led to this decision

v Include:
o Problem or force requiring a decision
o Alternatives under consideration

v Examples:
o “The Order service must transmit payment info. Options include REST or messaging.”
o “Inventory updates are inconsistent across services; central DB vs. event-based sync

considered.”
o “Increased phishing attempts require re-evaluating access token validation approach.”

COMP2511: Architectural Decision Records (ADRs) 7

ADR Section - Decision

v Purpose: Describe what was chosen

v Best Practices:
o Use clear, assertive language: “We will use...”
o Justify with rationale

v Examples:
o “We will use asynchronous messaging due to latency and decoupling benefits.”
o “We will migrate inventory management to PostgreSQL to ensure consistency and

performance.”
o “We will adopt OAuth 2.0 using IdentityServer for access control.”

COMP2511: Architectural Decision Records (ADRs) 8

ADR Section - Consequences

v Purpose: Describe outcomes and trade-offs

v Include:
o Positive and negative impacts
o Known limitations

v Examples:
o “Improves performance, however adds complexity in error handling.”
o “Enables real-time updates; requires Kafka infrastructure.”
o “Strengthens security, but introduces user reauthentication challenges.”

COMP2511: Architectural Decision Records (ADRs) 9

ADR Section - Compliance

v Purpose: Define how decision enforcement is measured

v Types:
o Manual review
o Automated tests (e.g., fitness functions)

v Examples:
o Static code analysis rules for package structure compliance
o Integration test that validates token expiration and renewal workflows

COMP2511: Architectural Decision Records (ADRs) 10

ADR Section - Notes

v Purpose: Capture metadata

v Typical Fields:
o Author, approval date, approver
o Last modified, superseded reference

v Examples:
o Author: A. Johnson, Approved by: Arch Review Board, 15 May 2025
o Author: M. Singh, Modified on: 10 May 2025, Supersedes ADR 12
o Author: L. Chen, RFC Deadline: 30 May 2025

COMP2511: Architectural Decision Records (ADRs) 11

Benefits of Using ADRs

v Serves as a memory log for decisions

v Helps new team members understand context

v Improves consistency and governance

v Supports continuous evolution and learning

COMP2511: Architectural Decision Records (ADRs) 12

Example: ADR

COMP2511: Architectural Decision Records (ADRs) 13

ADR – Auction System Example
Architectural Decision in the following auction system:

v use separate point-to-point queues between the bid capture, bid streamer, and bid tracker
services instead of a single publish-and-subscribe topic (or even REST, for that matter)

v ADR needs to justify the choice to prevent confusion or disagreements among other designers
or developers.

COMP2511: Architectural Decision Records (ADRs) 14

ADR – Auction System Example

COMP2511: Architectural Decision Records (ADRs) 15

ADR – Auction System Example

COMP2511: Architectural Decision Records (ADRs) 16

ADR – Auction System Example

COMP2511: Architectural Decision Records (ADRs) 17

Summary of ADR

v Each section contributes to clarity and traceability

v Together they provide context, rationale, and continuity

v Encourage consistent use across all teams and domains

COMP2511: Architectural Decision Records (ADRs) 18

Behavioural
Modelling

COMP2511, CSE, UNSW

What is Behavioural Modelling

❖ Behavioural modelling captures how the system
behaves in response to events or interactions
over time.

❖ Software Design and Architecture do not tell us
how components behave or interact over time.

❖ Different notations for expressing behaviour:

o Sequence diagrams

o Activity diagrams

o State charts

Class Diagrams

Sequence Diagram

COMP2511 Behavioural Modelling 2

Sequence Diagrams

❖ A sequence diagram is an interaction diagram
showing how objects interact
in a time-sequenced manner.

❖ Clarify interactions among objects and improve
system behaviour understanding.

❖ Show how operations are carried out through
message exchanges.

❖ Emphasize the temporal order of interactions.

COMP2511 Behavioural Modelling 3

More on
sequence
diagrams

https://www.youtube.com/watch?v=pCK6prSq8aw (8 mins)

COMP2511 Behavioural Modelling 4

https://www.youtube.com/watch?v=pCK6prSq8aw

Key Components of a Sequence Diagram

Actor: External user or system

Objects: Entities involved, represented by
rectangles.

Lifelines: Lines (or dashed lines) showing object
existence during interactions.

Messages: Communication between objects.

Activation Boxes: Indicate active processing of
messages.

o User sends a message to ObjectA, activating
ObjectA's processing.

o ObjectA responds, deactivating afterwards.

COMP2511 Behavioural Modelling 5

Types of Messages

Synchronous: Sender waits for a response.

Asynchronous: Sender does not wait for an immediate response.

Synchronous: User waits for Server to
complete processing before proceeding.

Asynchronous: User continues immediately
without waiting for Server's response.

COMP2511 Behavioural Modelling 6

Sequence Diagram Overview

❖ Horizontal axis captures participating objects.

o Objects are placed from left to right.

o Order reflects participation in message sequence.

o Horizontal layout is flexible but typically chronological.

❖ Vertical axis represents time (top to bottom).

o Time flows downward.

o Sequence diagrams focus on order, not duration.

o Vertical spacing is not indicative of actual time intervals.

❖ Messages are shown as horizontal arrows. Messages can be
calls/invocations for some methods in a component, or results
given by that component.

❖ Execution shown using rectangles (activations boxes).

User's credentials are checked against a database,
resulting in either login success or failure.

Example: User Login

COMP2511 Behavioural Modelling 7

Optional Interaction

❖ opt represents optional scenarios.

Illustrates optional logic based on
condition result (success).

COMP2511 Behavioural Modelling 8

Conditional Interaction

❖ alt represents alternate scenarios.

Illustrates branching logic based on
condition results (success or failure).

COMP2511 Behavioural Modelling 9

Looping Interaction

❖ loop represent repeated actions.

The loop continues until payment is successful,
emphasizing iterative process.

COMP2511 Behavioural Modelling 10

Parallel Processes

par represents concurrent processes.

Multiple processes, such as inventory checking and payment,
occur simultaneously.

COMP2511 Behavioural Modelling 11

Example:
Hotel Reservation

COMP2511 Behavioural Modelling 12

Example:
Airline Booking

❖ More information in The sequence diagram – IBM Developer

COMP2511 Behavioural Modelling 13

https://developer.ibm.com/technologies/web-development/articles/the-sequence-diagram/
https://developer.ibm.com/technologies/web-development/articles/the-sequence-diagram/
https://developer.ibm.com/technologies/web-development/articles/the-sequence-diagram/

Examples

Online Shopping – Add to Cart

Library System – Borrow Book

COMP2511 Behavioural Modelling 14

Login Process

Benefits of Sequence Diagrams

❖ Clarifies interaction order and logic.

❖ Identifies inefficiencies and redundancies.

❖ Enhances team communication.

❖ Aids debugging and improves process clarity.

❖ Improves collaboration and understanding.

COMP2511 Behavioural Modelling 15

Common Mistakes

❖ Overcomplicating diagrams.

❖ Undefined roles and interactions.

❖ Incorrect message ordering.

COMP2511 Behavioural Modelling 16

Suggested Design Process in Software Engineering

Iterate Iterate between these activities

For each user story 1) Develop its sequence diagram 2) Design its user interface

Data Define ER diagram (can result in 1 or multiple databases)

Boundaries
Define architecture and draw diagram showing components and
external entities

Focus Keep number of user stories small

COMP2511 Behavioural Modelling 17

Good Software
Design Practices

• Keep design documents “live” and shared
between team members

• Use design as a way to decompose work

• Discuss design changes as a team

Things to do

• Too much focus on notation

• Quantity over quality

• Creating something for other manager (tick
boxes) and forgetting design is for team

Things to avoid

COMP2511 Behavioural Modelling 18

Web resources

Sequence diagrams

• Sequence Diagram Tutorial - Complete Guide with Examples (creately.com)

• Sequence Diagram Tutorial (visual-paradigm.com)

• UML Sequence Diagram Tutorial | Lucidchart

Software design principles

• Software Design Principles | Top 5 Principles of Software Development
(educba.com)

COMP2511 Behavioural Modelling 19

https://creately.com/blog/diagrams/sequence-diagram-tutorial/
https://creately.com/blog/diagrams/sequence-diagram-tutorial/
https://creately.com/blog/diagrams/sequence-diagram-tutorial/
https://creately.com/blog/diagrams/sequence-diagram-tutorial/
https://online.visual-paradigm.com/diagrams/tutorials/sequence-diagram-tutorial/
https://online.visual-paradigm.com/diagrams/tutorials/sequence-diagram-tutorial/
https://online.visual-paradigm.com/diagrams/tutorials/sequence-diagram-tutorial/
https://online.visual-paradigm.com/diagrams/tutorials/sequence-diagram-tutorial/
https://www.lucidchart.com/pages/uml-sequence-diagram
https://www.lucidchart.com/pages/uml-sequence-diagram
https://www.educba.com/software-design-principles/
https://www.educba.com/software-design-principles/
https://www.educba.com/software-design-principles/

Logical
Components and
Modelling Using
C4
COMP2511, CSE, UNSW

These lecture slides are from the book “Head First Software Architecture”,

by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

COMP2511: Logical Components and
Modelling Using C4 2

What Are Logical Components?

v Functional building blocks of the system

v Represent major features or responsibilities

v Typically map to folders or modules in the
codebase

COMP2511: Logical Components and
Modelling Using C4 3

Logical vs Physical Architecture
v Logical Architecture: Describes what the

system does (functional perspective)

vPhysical Architecture: Describes how the
system is built and deployed (technical
perspective)

vExample:

o Logical: Bidding, Registration, Payment

o Physical: APIs, databases, gateways, services

COMP2511: Logical Components and
Modelling Using C4 4

Creating a Logical Architecture

Follow a 4-step process:

v Identify core components
v Assign requirements
v Analyse roles & responsibilities
v Align with architectural characteristics

Ø Revisit this cycle whenever system changes are introduced

COMP2511: Logical Components and
Modelling Using C4 5

Align with Architectural Characteristics

v Break down or merge components based on:

o Scalability

o Availability

o Performance

v Example: Move bid logging to separate Bid Tracker to improve speed and availability

COMP2511: Logical Components and
Modelling Using C4 6

Component Coupling

v Afferent (incoming): How many depend on this component

v Efferent (outgoing): How many this component depends on

v Total Coupling = Afferent + Efferent

Goal: Keep coupling low for flexibility and maintainability

COMP2511: Logical Components and
Modelling Using C4 7

The Law of Demeter

v Also known as the Principle of Least Knowledge

v Each component should only interact with its immediate neighbors

v Avoid tight coupling caused by too much knowledge about the system

COMP2511: Logical Components and
Modelling Using C4 8

Coupling Trade-offs

v Tightly Coupled System: Easier to trace workflow, harder to change

v Loosely Coupled System: More maintainable, but harder to understand in one place

Remember: Everything is a trade-off

COMP2511: Logical Components and
Modelling Using C4 9

Logical Components: Summary

v Logical components are your system’s functional map

v Use descriptive names based on responsibilities

v Avoid entity trap and generic components

v Reduce coupling using the Law of Demeter

v Regularly reevaluate components as requirements evolve

COMP2511: Logical Components and
Modelling Using C4 10

Introduction to C4
Architectural
Modelling

Fethi Rabhi (June 2025)

Challenges in Architecture modelling

• Addressing functional requirements
• Balancing non-functional requirements
• Finding a balance between “understandability” (by humans) and “correctness” (the

code) is a complex undertaking, especially in cross-functional teams, where you’re
explaining to a mixed group of technical and non-technical people

Its all about tradeoffs

• There isn’t one but multiple software architectures
• High level architectures: closer to requirements
• Low level architectures: closer to implementations

Iterative process

• Simple/informal => Ambiguity in meaning
• Formal (e,g. UML) => Learning curve / understandability

Lack of standardization
in modelling
architectures

COMP2511: Logical Components and
Modelling Using C4 12

What is C4 ?

v Gives names to different design
concepts

v Focuses on intuitive visual
representations of these concepts

v Defines a set of hierarchical diagrams
arranged by levels

v Lightweight methodology for visual
and verbal communication

v Allows more efficient conversations
v Notation independent

v Tooling independent

COMP2511: Logical Components and
Modelling Using C4 13

C4 Levels

System context level
Showing overall system + users + external systems.
Useful for Business stakeholders, execs and non-tech
users

Containers level
Showing major application/components like web apps,
APIs, DBs
Useful for developers, tech leads and architects.

Components level
Showing modules/services/classes within a container
(e.g. routes, services, repositories)
Mainly for developers.

Code level

COMP2511: Logical Components and
Modelling Using C4 14

v A context diagram is the most general description of what your system does
v Shows who will use it, and what other systems it will interact with.
v Will help you describe the scope of your project and help you pinpoint who the user

is and what problem you’re going to solve

Level 1

COMP2511: Logical Components and
Modelling Using C4 15

Example

From Example | C4 model

User

External system

COMP2511: Logical Components and
Modelling Using C4

Your system

16

https://c4model.com/diagrams/example

v Container diagram takes the first step into describing the software system and
shows the APIs, applications, databases, and microservices that the system will
use.

v Each of these applications or services is represented with a container and the
interactions between them are shown at a high level.

Level 2

COMP2511: Logical Components and
Modelling Using C4 17

Example

Your system
decomposed into
several
containers

New relations
created

Level 1 relations
preserved

COMP2511: Logical Components and
Modelling Using C4 18

v One step deeper than the container diagram, the component diagram details
groups of code within a single container.

v These components represent abstractions of your codebase.
v Comparable to a UML component diagram but follows a less-strict set of “rules” in

order to create the software architecture diagram.

Level 3

COMP2511: Logical Components and
Modelling Using C4 19

Example Level 2 containers

COMP2511: Logical Components and
Modelling Using C4 20

Level 3 components

v Has lots of detail to show how the code of a single component is actually
implemented.

v Can use a UML class diagram or entity relationship diagram that describes the
component.

Level 4

COMP2511: Logical Components and
Modelling Using C4 21

Example

COMP2511: Logical Components and
Modelling Using C4 22

Recommended Modelling tool

Simple one
https://excalidraw.com/

COMP2511: Logical Components and
Modelling Using C4 23

https://excalidraw.com/

1. Enter C4

COMP2511: Logical Components and
Modelling Using C4 24

2. Add to Excalidraw

You can create
your own
shapes

You can drag
shapes into the
canvas

COMP2511: Logical Components and
Modelling Using C4 25

You can use
these shapes

COMP2511: Logical Components and
Modelling Using C4 26

Good modelling
practices

v Add a title to your diagram
v Avoid acronyms for business terms
v Consistent naming of components

COMP2511: Logical Components and
Modelling Using C4 27

Good modelling practices (cont.)

v Lines
• Clearly labelled

• Undirectional (follows words in boxes)

v Legend
• Use it for additional shapes/colours you introduce

• Also additional icons that describe components (AWS-style)

• Use it to enhance only (if remove them, diagram still makes sense)

v A good diagram should be self-explanatory

v More details in Simon Brown’s video at:
https://www.youtube.com/watch?v=x2-rSnhpw0g&t=785s

Trading
System

Exchange

Submits orders to

Trading
System

Exchange

Receives orders from

COMP2511: Logical Components and
Modelling Using C4 28

https://www.youtube.com/watch?v=x2-rSnhpw0g&t=785s
https://www.youtube.com/watch?v=x2-rSnhpw0g&t=785s
https://www.youtube.com/watch?v=x2-rSnhpw0g&t=785s
https://www.youtube.com/watch?v=x2-rSnhpw0g&t=785s

C4 Model
Checklist

Review checklist | C4 model

COMP2511: Logical Components and
Modelling Using C4 29

https://c4model.com/diagrams/checklist

C4 Model: https://c4model.com/abstractions

Tutorial video: https://www.youtube.com/watch?v=x2-rSnhpw0g&t=785s&ab_channel=AgileontheBeach

Articles
• Should you use the C4 model for system architecture design? https://icepanel.medium.com/c4-model-for-system-

architecture-design-225e00ebbd9
• C4 model for system architecture design https://icepanel.medium.com/c4-model-for-system-architecture-design-

225e00ebbd9

Other tools
• Flowchart maker https://app.diagrams.net/
• Open source tool https://plantuml.com/
• Lucid Charts https://www.lucidchart.com/blog/c4-model
• Gliffy https://www.gliffy.com/blog/c4-model

COMP2511: Logical Components and
Modelling Using C4 30

Resources

https://c4model.com/abstractions
https://www.youtube.com/watch?v=x2-rSnhpw0g&t=785s&ab_channel=AgileontheBeach
https://www.youtube.com/watch?v=x2-rSnhpw0g&t=785s&ab_channel=AgileontheBeach
https://www.youtube.com/watch?v=x2-rSnhpw0g&t=785s&ab_channel=AgileontheBeach
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://app.diagrams.net/
https://plantuml.com/
https://www.lucidchart.com/blog/c4-model
https://www.lucidchart.com/blog/c4-model
https://www.lucidchart.com/blog/c4-model
https://www.gliffy.com/blog/c4-model
https://www.gliffy.com/blog/c4-model
https://www.gliffy.com/blog/c4-model

END

COMP2511: Logical Components and
Modelling Using C4 31

Architectural
Styles

COMP2511, CSE, UNSW

2

These lecture slides are from the book “Head First Software Architecture”,

by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

COMP2511: Architectural Styles

Introduction to Architectural Styles

v Architectural Styles:

o Predefined patterns and philosophies guiding how software systems
are structured and deployed.

v Importance of Understanding Styles:

o Facilitates better design decisions.

o Aligns software architecture with project needs.

v Example:

o Residential housing styles influenced by geography, climate, personal
preference. Similarly, software architecture varies by project
requirements.

3COMP2511: Architectural Styles

Categorizing Architectural Styles
Two main categories for architectural styles:

1. Partitioning
o Technical vs. Domain-based.

2. Deployment
o Monolithic vs. Distributed.

v Why Categorize?
o Helps systematically analyse and select appropriate

architecture.

4COMP2511: Architectural Styles

Partitioning by Technical Concerns

Technical Partitioning:
o Code organized by functional roles or technical layers.

Characteristics:
o Clear separation of responsibilities.
o Easier specialization of teams.

Example: A standard web application:
o Presentation Layer (UI);
o Business Logic Layer (Services)
o Data Persistence Layer (Database)

5

Ø Real-world Analogy:
Roles in a fancy restaurant (host, server, chef, busser)
clearly divided by technical concerns (greeting,
cooking, cleaning).

COMP2511: Architectural Styles

Partitioning by Domain Concerns

Domain Partitioning:
o Code organized around business domains or problem areas.

Characteristics:
o Alignment with business goals.
o Easier maintenance of related features.
o Strong domain modeling.

Example: An e-commerce platform:
o Customer Domain (user accounts, user interface)
o Inventory Domain (product catalog, stock management)
o Payment Domain (billing, transactions)

6

Ø Real-world Analogy:
Food court restaurants, each specialised in
distinct cuisines (pizza, salads, burgers).

Inventory

Customer

Payment

COMP2511: Architectural Styles

Comparing Technical vs. Domain Partitioning

Example Scenario: A banking application:

o Technical: Separate teams for frontend, backend, DB administration.

o Domain: Separate teams for loans, investments, account management.

7

Technical Partitioning Domain Partitioning

Layered by technical roles Organized by business areas

Easier for specialised teams Aligned closely with business needs

Risk of over-generalisation Risk of duplicating common functionalities

COMP2511: Architectural Styles

Deployment Models Overview

1. Monolithic Architecture
o Single deployable unit.

2. Distributed Architecture
o Multiple deployable units

communicating over networks.

Choice affects scalability, complexity, and cost.

8COMP2511: Architectural Styles

Monolithic Architecture – Overview and Pros

Monolithic:
o Entire application deployed as one single executable

or package.

Pros:
o Easier initial development.
o Simplified debugging.
o Lower initial deployment cost.

Examples:
o A single .jar (Java) or .exe (.NET) containing all app

logic and resources.
o Smartphone as a single device doing many functions

(calling, browsing, tracking).

9COMP2511: Architectural Styles

Monolithic Architecture - Limitations

Cons:
o Difficult to scale independently.

o Single bug can disrupt entire system.

o Inflexible when adapting to changing demands.

Example:
o Scaling a monolithic online store application

o Scaling means duplicating the entire application,
increasing resource consumption significantly.

10COMP2511: Architectural Styles

Distributed Architecture - Overview

Distributed:
o Application components deployed separately, each as

individual processes/services.

Pros:
o Independent scalability of components.
o Encourages modular design.
o Fault isolation—failures affect only single units.

Example:
o Microservices architecture for Netflix or Amazon,

allowing independent scaling of services like user
management, video streaming, and recommendation
systems.

11COMP2511: Architectural Styles

Distributed Architecture - Challenges

Cons:
o High complexity due to network dependence.
o Increased maintenance and debugging complexity.
o Higher infrastructure and operational costs.

Example:
o Managing distributed transactions across

services—complex coordination required,
increased risk of partial failures.

Real-world Analogy:
o Earlier days—separate devices for GPS, web

browsing, and phone calls each required separate
maintenance and integration.

12COMP2511: Architectural Styles

Introduction to Fallacies of Distributed Computing

v Originated at Sun Microsystems in 1994

v Common false assumptions about networks

v Crucial for architects of distributed systems

v 11 total fallacies (8 classical + 3 additional)

13COMP2511: Architectural Styles

Fallacy #1 - The Network Is Reliable

v Reality: Networks can and do fail

v Impact: Services might be healthy but unreachable

v Mitigation:
o Use timeouts
o Retry policies

v Example: Service A sends request to Service B → no response due to intermittent
network issue

14COMP2511: Architectural Styles

Fallacy #2 - Latency Is Zero

v Reality: Remote calls take milliseconds, not microseconds

v Impact: Chained service calls can add significant delay

v Mitigation:

o Monitor 95th-99th percentile latency

o Minimise unnecessary calls

v Example: 10 chained calls with 100ms each = 1s delay

15COMP2511: Architectural Styles

Fallacy #3 - Bandwidth Is Infinite

v Reality: Bandwidth is limited, especially under load

v Impact: Excessive inter-service communication slows the system

v Mitigation:

o minimizing the passing of large, complex data structures

v Example: Returning 500KB when only 200B needed → 1Gbps load for 2k req/s

16COMP2511: Architectural Styles

Fallacy #4 - The Network Is Secure

v Reality: More endpoints = higher attack surface

v Impact: Inter-service communication can be vulnerable

v Mitigation:
o Zero-trust architecture
o Secure each endpoint

v Example: Internal services hacked due to open port

17COMP2511: Architectural Styles

Fallacy #5 - Topology Never Changes

v Reality: Network topology evolves frequently

v Impact: Latency assumptions break

v Mitigation:
o Coordinate with network teams
o Use adaptive timeout policies

v Example: Sunday network upgrade → production timeouts Monday

18COMP2511: Architectural Styles

Fallacy #6 - There Is Only One Administrator

v Reality: Multiple admins across departments

v Impact: Miscommunication and missed changes

v Mitigation:
o Maintain a clear contact directory
o Standardize change coordination

v Example: Change in one subnet unknowingly affects dependent service

19COMP2511: Architectural Styles

Fallacy #7 - Transport Cost Is Zero

v Reality: Infrastructure and routing costs add up

v Impact: Distributed systems are more expensive

v Mitigation:
o Assess total cost of ownership (TCO)
o Consider hybrid designs

v Example: Simple REST call needs new proxies, firewalls, gateway

20COMP2511: Architectural Styles

Fallacy #8 - The Network Is Homogeneous

v Reality: Different vendors, firmware, configurations

v Impact: Compatibility and packet loss

v Mitigation:
o Test network assumptions regularly
o Avoid hard dependencies on vendor features

v Example: Packet loss between Cisco and Juniper segments

21COMP2511: Architectural Styles

Fallacy #9 - Versioning Is Easy

v Reality: Supporting multiple versions is hard

v Impact: Contract proliferation, test complexity

v Mitigation:
o Limit concurrent versions
o Use deprecation plans

v Example: Team supports 7 versions of same API endpoint

22COMP2511: Architectural Styles

Fallacy #10 - Compensating Updates Always Work

v Reality: Rollbacks can fail too

v Impact: Data inconsistency

v Mitigation:
o Design for idempotency
o Include recovery mechanisms

v Example: Order placed, and rollback fails → duplicated state

23COMP2511: Architectural Styles

Fallacy #11 - Observability Is Optional

v Reality: Without observability, debugging is impossible

v Impact: Silent failures across services

v Mitigation:
o Centralized logging
o Distributed tracing

Ø E.g., OpenTelemetry: open-source framework for collecting, processing, and exporting telemetry
data (traces, metrics, and logs) from cloud-native applications and infrastructure.

v Example: Request times out without any log trail

24COMP2511: Architectural Styles

Fallacy - Summary and Implications

v Fallacies reveal key weaknesses in distributed systems

v Addressing them improves resilience and clarity

v Must be communicated to development and operations teams

v Good architecture anticipates and mitigates these assumptions

25COMP2511: Architectural Styles

Comparing Monolithic vs. Distributed

Monolithic Distributed

Simpler development & debugging Complex system integration

Lower initial costs Higher upfront infrastructure cost

Scaling is all-or-nothing Individual services scalable

Single failure disrupts whole system Fault tolerance through isolation

26COMP2511: Architectural Styles

Discussion - Regulatory and Compliance Needs

Consider special needs like:
o Regulatory compliance (e.g., financial industry).
o Security requirements.

Monolithic:
o Easier control and monitoring in regulated environments.

Distributed:
o Can complicate compliance but increases modularity and maintainability.

Example:
o Banking systems might use monolithic for core banking due to tight regulatory controls,

however distributed services for customer engagement modules.

27COMP2511: Architectural Styles

Key Takeaways

v Numerous architectural styles exist; each with unique characteristics and trade-offs.

v Partitioning styles: Technical vs. Domain.

v Deployment models: Monolithic vs. Distributed.

v Choice of style influenced by:
o Project goals.
o Scalability requirements.
o Complexity management.
o Cost implications.

28COMP2511: Architectural Styles

Layered
Architecture

COMP2511, CSE, UNSW

Introduction to Layered Architecture
v Layered Architecture separates technical

responsibilities into distinct layers.

v Simplifies the design by dividing the system into
manageable, logical parts.

Key benefits:

o Easy to understand and implement.

o Promotes reuse and separation of concerns.

2COMP2511: Layered Architecture

Case Study: Naan & Pop Restaurant
v Startup restaurant serving Indian-inspired flatbread

sandwiches.
v Needs a simple website for online ordering quickly.

Requirements:

o Time to market: Quick launch.

o Separation of responsibilities: Clear division for UI specialists
and database administrators.

o Extensible: Allow future enhancements easily.

3COMP2511: Layered Architecture

Why Choose Layered Architecture?

v Matches Naan & Pop’s needs: simplicity, fast
delivery, separation of technical roles.

v Aligns closely with familiar design patterns like
MVC.

Trade-offs involved:

o Simplicity vs. extensibility.

o Speed vs. maintainability.

4COMP2511: Layered Architecture

Mapping MVC to Layered Architecture

v MVC concepts translate naturally into
architectural layers.

v Additional layers may be introduced based on
real-world constraints (e.g., integration).

5COMP2511: Layered Architecture

Layered Architecture – Philosophy

v Technically partitioned and usually monolithic.

v Domain logic spans multiple layers:
o Presentation (UI components).
o Workflow (business logic components).
o Persistence (database schemas and operations).

Implication:
o Domain changes affect multiple layers.

6COMP2511: Layered Architecture

Drivers for Layered Architecture

Why choose layered architecture?

v Specialization: Separates UI, business logic, and database, allowing team specialisation.

v Physical separation: Matches real-world technology separation (frontend/backend/database).

v Ease of reuse: Technical reuse across multiple projects.

v Familiarity: Mirrors MVC, easy for developers to grasp.

7COMP2511: Layered Architecture

Physical Architectures in Layered Systems

Common physical architectures:

v Two-tier (Client/Server):
o Client UI directly accesses the database.

v Three-tier (Web):
o Browser (presentation),
o App server (business logic)
o Database server (persistence)

v Embedded/Mobile:
o All layers bundled into one deployable unit.

8COMP2511: Layered Architecture

Physical Architecture – Pros and Cons

9COMP2511: Layered Architecture

Adding Layers – Integration Layer Example

v Additional layers can be introduced for specialised tasks
(e.g., Integration layer for delivery partners).

v Clearly isolates integration code from core business logic.

Example:

o Integration with Uber Eats API resides entirely within an Integration Layer.

10COMP2511: Layered Architecture

Caveats – Domain Changes Impact Multiple Layers

v Layered architecture easily supports changes in technical capabilities.

v However, changes in the domain (e.g., adding pizzas to menu) will affect multiple layers:
o Presentation layer (new UI)
o Workflow layer (processing new item)
o Persistence layer (storing item data)

Trade-off:
o Ease of technical changes vs. difficulty of domain-wide changes.

11COMP2511: Layered Architecture

Layered Architecture: Strengths

v Feasibility: Quick, cost-effective solutions.

v Technical partitioning: Easy technical reuse.

v Data-intensive operations: Efficient local data processing.

v Performance: High internal performance without network overhead.

v Fast development: Ideal for MVPs and small systems.

12COMP2511: Layered Architecture

Layered Architecture: Weaknesses

v Deployability: Monolith deployments become cumbersome as systems grow.

v Coupling: High risk of tight coupling (“big ball of mud”).

v Scalability: Difficult to scale individual functionalities independently.

v Elasticity: Poor performance under bursty traffic conditions.

v Testability: Increasingly difficult testing as codebase grows.

13COMP2511: Layered Architecture

Layered Architecture – Rating Chart (Example)

14COMP2511: Layered Architecture

Layered Architecture – Exercises

15COMP2511: Layered Architecture

Suitable Scenarios for Layered Architecture

Ideal Use Cases:

v Small, simple systems requiring quick delivery (e.g., small business websites).

v Data-intensive applications with local database storage

(e.g., desktop CRM apps).

v Applications needing clear specialization boundaries

(e.g., separate UI, backend, DB teams).

16COMP2511: Layered Architecture

Summary of Layered Architecture

Key points:

v Simple, fast to implement.

v Clearly separates technical concerns.

v Ideal for stable domains with minimal changes.

v Challenging to adapt when domain changes significantly.

17COMP2511: Layered Architecture

Modular
Monoliths
Architecture

COMP2511, CSE, UNSW

These lecture slides are from the books:

o “Head First Software Architecture”, by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

o “Fundamentals of Software Architecture”, 2nd Edition, by Mark Richards, Neal Ford

COMP2511: Modular Monoliths Architecture

Introduction to Modular Monoliths

v Definition: A monolithic architecture organized by domain, not technical layers.
v Goal: Align code and teams around business capabilities.
v Key Trait: Deployed as a single unit, with domain-based modular structure

COMP2511: Modular Monoliths Architecture

Layered vs. Modular Monolith

v Layered: Organized by technical concerns (UI,
services, DB).

v Modular: Organized by domain (Order, Payment,
Inventory).

v Problem with Layered: Changes often touch
many teams.

v Benefit of Modular: Changes are isolated within
a domain.

COMP2511: Modular Monoliths Architecture

What Is a Module?

v Independent unit within a domain.

v Contains all business logic for its domain.

v Examples:

o OrderPlacement module handles order lifecycle

o Recipe module contains ingredients and cooking

steps

o Inventory module tracks stock levels and alerts

o UserManagement module handles user accounts

and roles

COMP2511: Modular Monoliths Architecture

Why Choose a Modular Monolith?

v Business alignment: Modules map to subdomains

v Team ownership: Cross-functional teams per domain

v Faster changes: Changes isolated to one module

v High performance: No inter-service network latency

v Easier testing: Scoped test suites per module

COMP2511: Modular Monoliths Architecture

Code Organization in a Modular Monolith

v Single deployment

v Separate namespaces/packages for each module

v Each module has:
o Public API
o Private internals

v Example (namespace):
o com.naanpop.order
o com.naanpop.inventory
o com.naanpop.reports

COMP2511: Modular Monoliths Architecture

Managing Inter-Module Communication
v Don't: Direct calls between modules (tight coupling)

v Do: Use public APIs

v Risk: Big ball of mud from uncontrolled access

v Solution: Interface-based interaction only

COMP2511: Modular Monoliths Architecture

Keeping Modules Modular

v IDE features (e.g. auto-import) can break boundaries

v Separate folders/repositories

v Use build tools (e.g., Gradle subprojects)

v Use language features:

o Java: JPMS

o .NET: internal keyword

COMP2511: Modular Monoliths Architecture

Modularizing the Database

v One DB per monolith, but partitioned by schema

v Rule: Each module accesses only its own tables

v No foreign keys between modules

v Use ID references and API calls

COMP2511: Modular Monoliths Architecture

Avoiding Coupling in Data Access

v Risk: JOINs across module tables reintroduce coupling

v Solution:

o Store IDs, not foreign keys

o Retrieve info via module API

v Example:

o Order module stores RecipeItemID

o Calls Recipe API when needed

COMP2511: Modular Monoliths Architecture

Extending Modularity to Teams

v Align teams with subdomains (modular ownership)

v Foster domain expertise and autonomy

v Minimize coordination overhead

v Example: Inventory team owns inventory module and tests

COMP2511: Modular Monoliths Architecture

Example – Expense Tracking App

v Requirements:
o Users add expenses
o Auditors review reports
o Audit trail for traceability

v Modules:
o ExpenseEntry
o AuditReview
o UserManagement

COMP2511: Modular Monoliths Architecture

Example – Educational LMS

v Requirements:
o Instructors upload courses
o Students enroll and complete assessments
o Admins manage roles and reports

v Modules:
o CourseContent
o Enrollment
o AssessmentEngine
o UserAdministration

COMP2511: Modular Monoliths Architecture

Benefits of Modular Monoliths

v Domain Partitioning: Better team alignment

v Performance: No inter-service latency

v Maintainability: Domain-local changes

v Testability: Scoped, isolated testing

v Deployability: Single unit, easier CI/CD

COMP2511: Modular Monoliths Architecture

Limitations of Modular Monoliths

v Reuse: Harder to share utilities

v One set of characteristics: No per-module customization

v Fragile modularity: Easy to break boundaries

v Operational limits: Harder to scale or isolate faults

COMP2511: Modular Monoliths Architecture

Governance and Discipline

v Modular monoliths require:

o Discipline in access control

o Codebase enforcement (tools, practices)

o Database discipline (modular schemas)

v Governance tools help but don’t eliminate the need for vigilance

COMP2511: Modular Monoliths Architecture

When to Use Modular Monoliths

v Teams aligned to business domains

v Applications that must remain performant

v Systems needing easy testability and deployment

COMP2511: Modular Monoliths Architecture

Transition Path – Layered to Modular

v Start with layered → modularize by domain over time

v Introduce governance and APIs gradually

v Split database logically first, physically later

COMP2511: Modular Monoliths Architecture

Modular Monolith Advantages

v Better domain alignment than layered monoliths

v Single deployment with domain modularity

v Enables domain-oriented teams

v Maintains runtime performance of monoliths

v Fewer operational headaches than microservices

COMP2511: Modular Monoliths Architecture

Common Pitfalls in Modular Monoliths

v Bypassing module APIs (direct access)

v Database JOINs across modules

v Overusing shared libraries (tight coupling)

v Lack of observability into module interactions

COMP2511: Modular Monoliths Architecture

Techniques for Success

v Define strong module boundaries

v Maintain minimal public API surface

v Invest in automated testing and monitoring

v Review architecture regularly for erosion

COMP2511: Modular Monoliths Architecture

Modular Monolith Star Ratings

COMP2511: Modular Monoliths Architecture

Exercise

Which of the following
systems might be well suited
for the modular monolith
architectural style, and why?

COMP2511: Modular Monoliths Architecture

Microservice
Architecture

COMP2511, CSE, UNSW

2

These lecture slides are from the book “Head First Software Architecture”,

by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

COMP2511: Microservice Architecture

Introduction to Microservices

v Microservices are single-purpose, independently deployed units.

v Ideal for environments requiring frequent changes and scalability.

Examples:

o Netflix's streaming services

o Amazon's product catalogue.

3COMP2511: Microservice Architecture

Defining Microservices

v Performs one specific function exceptionally well.

Examples:
o Dedicated microservice like "Monitor Heart Rate."
o "Authenticate User" service, "Generate Invoice" service.
o "User Profile Management" service.
o "Shopping Cart" service.
o "Notification and Alert" service.
o "Recommendation Engine" service (e.g., Netflix

recommendations).

4COMP2511: Microservice Architecture

Exercise: Define Microservices

Identify single-purpose microservices below:

q Add a movie to your personal “to watch” list

q Pay for an order using your credit card

q Generate sales-forecasting and financial-performance reports

q Submit and process a loan application to get that new car you’ve
always wanted

q Determining the shipping cost for an online order

5COMP2511: Microservice Architecture

Key Characteristics of Microservices

v Own their own data (Physical bounded contexts).

v Direct data access restricted to owning microservice.

Examples:
o Order service maintains its own order history database.
o Inventory service owns and manages product availability

data.
o Payment service manages transaction records

independently.
o User Authentication service securely stores user

credentials separately.

6COMP2511: Microservice Architecture

Determining Granularity

v Granularity: The scope of a microservice’s
responsibility.

v Avoid too fine-grained ("Grains of Sand" antipattern).

Examples:

o Single microservice handling payment transactions.

o A microservice dedicated to shipping and tracking orders.

o Product review and rating as a distinct service separate
from product information.

o User notification service isolated from user profile
management

7COMP2511: Microservice Architecture

Granularity Disintegrators
(Reasons to Make Services Smaller)

8

Cohesion: Functions within a service should be closely related.

o Payment processing separate from user authentication.

Fault Tolerance: Separating unstable functions for better reliability.

o Isolating an unstable email notification service.

Access Control: Easier management of sensitive data.

o Isolating financial data access.

Code Volatility: Isolating frequently changing parts.

o User interface components separated from stable backend logic.

Scalability: Independent scaling for high-demand components.

o High-traffic "search" feature isolated for scaling.

COMP2511: Microservice Architecture

Granularity Integrators
(Reasons to Make Services Larger)

v Database Transactions: Easier to manage single
commit/rollback operations.
o Order creation and inventory deduction in one service.

v Data Dependencies: Maintain tightly coupled data together.
o User profiles and preferences managed together.

v Workflow Efficiency: Reduce excessive inter-service
communication.
o Checkout service combining cart, pricing, and payment

functionalities.

9COMP2511: Microservice Architecture

It’s about a right balance!

10COMP2511: Microservice Architecture

Sharing Functionality

v Shared Services: Standalone microservices accessed remotely.
o Authentication service used by multiple microservices.

o Shared alert functionality in MonitorMe medical alerts

11COMP2511: Microservice Architecture

Sharing Functionality

v Shared Libraries: Embedded at compile-time, deployed with each service.
o Logging and error handling libraries.

12COMP2511: Microservice Architecture

Shared Services vs. Shared Libraries

v Services: Agile, suitable for diverse environments, slower, less fault-tolerant.
o Central user authentication service.

v Libraries: Faster, scalable, robust, but challenging dependency management.
o JSON parsing libraries used across multiple microservices.

13COMP2511: Microservice Architecture

Exercise

Should the alert functionality in MonitorMe be a shared library or a shared service?
Ø Justify your decision.

14COMP2511: Microservice Architecture

Workflow Management: Orchestration

v Central orchestration manages workflow, akin to
a symphony conductor.
o Pros: Centralized management, clear state/error

handling.
o Cons: Bottlenecks, high coupling, performance

concerns.

v Example:
o Centralised order processing orchestrating payment,

inventory, and shipment services.

15COMP2511: Microservice Architecture

Workflow Management: Choreography

v Peer-to-peer service communication, like coordinated dance.
o Pros: Scalable, loosely coupled, high responsiveness.
o Cons: Complex error and state management.

v Example:
o Event-driven updates between cart, inventory, and shipping services in an e-

commerce site.

16COMP2511: Microservice Architecture

Exercise

17COMP2511: Microservice Architecture

Advantages of Microservices

v Maintainability, Testability, Deployability, Evolvability.

v Exceptional scalability and fault tolerance.

v Examples:

o Continuous deployment at Spotify

o Scalable services at Netflix

18COMP2511: Microservice Architecture

Limitations of Microservices

v Complexity, especially in workflow management.
v Performance issues due to inter-service communications.

v Example:
o Increased latency in highly interactive systems like gaming or

real-time analytics platforms.

19COMP2511: Microservice Architecture

Balancing Microservices Architecture

v Decision criteria:
o Business agility
o Complexity handling
o Team structure

v Optimal balance between granular control and practical maintainability.

v Example:
o Amazon's product catalog services balancing granularity and maintainability.

20COMP2511: Microservice Architecture

Case Study - StayHealthy MonitorMe

v Successful real-world implementation of microservices.
v Insights: Balance granularity, effectively manage shared resources.
v Continuous focus on agility and operational stability.

v Example:
o Reliable and scalable health monitoring system for critical patient data.

21COMP2511: Microservice Architecture

Microservices Star Ratings

22COMP2511: Microservice Architecture

Exercise

Which of the following
systems might be well
suited for the microservices
architectural style, and
why?

COMP2511: Microservice Architecture 23

Summary

v Microservices offer high flexibility but involve significant complexity.
v Requires crucial granularity and communication decisions.
v Evaluate and manage trade-offs carefully.

v Example:
o Transitioning from monoliths to microservices at Uber.

24COMP2511: Microservice Architecture

Event Driven
Architecture

COMP2511, CSE, UNSW

2

These lecture slides are from the book “Head First Software Architecture”,

by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

COMP2511: Event Driven Architecture

Introduction to Even-Driven Architecture

v Event-Driven Architecture (EDA) structures systems to respond to
events, which are significant changes in system state.

v Unlike request-driven systems, EDA components don't directly
call each other.

v Example:

o An e-commerce system where placing an order triggers inventory
updates, payment processing, and shipping—all asynchronously.

3COMP2511: Event Driven Architecture

What is an Event

v An event represents something that has already occurred and carries data about it.

v Events are immutable and often used as triggers.

v Example:
o "User Registered" event might include the user ID, name, and email.

4COMP2511: Event Driven Architecture

Even vs. Messages

v Events broadcast that something happened, with no expectation of response.

v Messages are more targeted, often demanding action.

v Example:
o Event: "Item Added to Cart" (anyone can listen).
o Message: "Process Payment" sent directly to payment service.

5COMP2511: Event Driven Architecture

Initiating and Derived Events

v Initiating events are triggered by users or external
systems.

v Derived events are consequences of those events and
triggered by services

v Example:
o Initiating: "Order Placed"
o Derived: "Payment Authorized", "Inventory Deducted",

"Shipping Scheduled"

6COMP2511: Event Driven Architecture

Why Publish Events Others May Not Care About?

v Broadcasting all events allows new services to listen without modifying existing systems.

v Example:
o Initially, only billing listens to "Order Placed".
o Later, analytics can subscribe to the same event to track order trends.

7COMP2511: Event Driven Architecture

Asynchronous vs. Synchronous Communication

v In synchronous calls, the sender waits for a response.
v In asynchronous communication, it continues immediately after sending.

v Example:
o Synchronous: REST API call to get shipping quote
o Asynchronous: Order service emits "Order Placed" and moves on

8COMP2511: Event Driven Architecture

Asynchronous Synchronous

Benefits of Asynchronous Communication

v Loose coupling allows services to operate and scale independently,
increasing speed and fault tolerance.

Example:
o With async processing, an online store confirms an order in 600ms;

with sync processing, it takes 1800ms.

9COMP2511: Event Driven Architecture

Trade-Offs of Async Communication

v Asynchronous systems complicate debugging and tracing since there’s no immediate
response.

v Example:
o When inventory update fails, the order service might not know.
o You need to monitor event failures separately.

10COMP2511: Event Driven Architecture

Database Topologies in EDA

v How services access and manage data affects modularity and scaling.

v Examples:

o Monolithic DB: All services write to one database (fast, tightly coupled).

o Domain-Partitioned: Related services share DB (moderately coupled).

o DB-per-Service: Each microservice owns its DB (fully decoupled, but complex joins
require events).

11COMP2511: Event Driven Architecture

EDA vs. Microservices

v Microservices focus on small, self-contained services communicating via HTTP or RPC.
v EDA emphasizes event-based coordination.

v Example:
o Microservice model uses REST to trigger payment.
o EDA emits "Order Placed", and payment service listens and reacts.

12COMP2511: Event Driven Architecture

Event-Driven Microservices

v This hybrid model combines independent
services with event communication, boosting
flexibility.

v Example:
o Inventory, Shipping, and Billing each own

their DB and listen to "Order Placed" to act
asynchronously.

13COMP2511: Event Driven Architecture

EDA Challenges

v EDA introduces challenges with observability and testing due to distributed
asynchronous operations.

v Examples:

o Event debugging is complex—errors are not immediate.

o Testing sequences requires simulating full event flows.

14COMP2511: Event Driven Architecture

EDA Advantages

v EDA shines in environments requiring responsiveness, scalability, and autonomy.

v Examples:

o Maintainability: Add new features without changing existing services.

o Performance: Events processed in parallel.

o Scalability: Individual components scale independently.

15COMP2511: Event Driven Architecture

Key Concepts

v EDA emphasizes responsiveness and extensibility but requires thoughtful design to
manage complexity.

v Key Points:

o Events = Immutable notifications of state change

o Asynchronous = Fire-and-forget

o Combined with microservices for modern architectures

16COMP2511: Event Driven Architecture

Event-driven Architecture Star Ratings

COMP2511: Event Driven Architecture 17

Exercise

Which of the following
systems might be well
suited for the event-driven
architectural style, and
why?

COMP2511: Event Driven Architecture 18

Serverless
Architecture

COMP2511, CSE, UNSW

Introduction to Serverless Architecture

v Serverless computing allows developers to build and run applications without managing infrastructure.

v Developers focus on deploying individual functions without managing servers.

v Cloud provider dynamically manages server allocation.

v Function is executed in response to events.

v Also known as Function-as-a-Service (FaaS).

v Example Platforms:

o AWS Lambda: Most popular serverless platform, integrated with the entire AWS ecosystem

o Azure Functions: Serverless platform for Microsoft Azure users

o Google Cloud Functions: Lightweight solution for Google Cloud services

o IBM Cloud Functions: Based on Apache OpenWhisk

COMP2511: Serverless Architecture 2

How Serverless Works

v User sends request (e.g., API call)

v API Gateway receives and triggers a Lambda/Function

v Function processes data and interacts with services (DB, storage, web services)
v Result returned to user

v Example:
1. An S3 bucket (cloud storage) uploads an image
2. The event triggers a Lambda function to resize the image
3. The function stores resized image in another S3 location (cloud storage)

COMP2511: Serverless Architecture 3

Example: AWS Lambda

COMP2511: Serverless Architecture 4

Authentication Service

Static Storage Service

Database Service

RESTful API
Lambda Function

Diagram from https://aws.amazon.com/lambda/web-apps/

Key Characteristics

v Auto-scaling: Instantly handles thousands of concurrent executions

v Faster time-to-market: Developers focus on business logic, not infrastructure

v High availability: Functions are distributed across multiple availability zones

v Event-driven: Executes on triggers like HTTP requests, file uploads, or database changes.

v Micro-billing: You pay only for execution time, usage-based cost.

v Short-lived functions: Ideal for tasks that complete quickly.

COMP2511: Serverless Architecture 5

Serverless Use Cases

v Form submission triggers a Lambda to store data in DynamoDB.

v Google Cloud Functions reacts to Firebase database changes and sends real-time notifications to

users.

v Lambda automatically resizes images uploaded to S3 for use in different display formats.

v An e-commerce website uses Azure Functions to handle inventory updates on-demand.

v AWS Lambda processes incoming JSON health data from IoT devices, generates alerts if required,

and stores data in Amazon DynamoDB for further analysis.

COMP2511: Serverless Architecture 6

Serverless Design Principles

v Stateless: Don’t rely on local memory; use shared storage (e.g., S3, DynamoDB)

v Event-driven: Design workflows around events, not request-response chains

v Minimal and composable functions: Keep single-responsibility per function

v Use queues/pubs/subs: Decouple flows using queues or Publish-subscribe messaging services

COMP2511: Serverless Architecture 7

Limitations and Challenges

Cold starts:
v Latency when functions are idle for a while (especially for JVM/.NET)
v Mitigation: Use warm-up plugins or provisioned concurrency

Vendor lock-in:
vTied to provider’s ecosystem (e.g., AWS SDKs, IAM policies)

Observability:
vHarder to trace request flows across functions
vSolution: Use distributed tracing (e.g., AWS X-Ray, OpenTelemetry)

Resource limits:
vTimeout (after a few mins on AWS Lambda)
vMemory and ephemeral storage constraints

COMP2511: Serverless Architecture 8

Comparison: Serverless vs. Microservices

Feature Microservices (Containers) Serverless (Functions)

Deployment Unit Container Function

Management DevOps / CI/CD pipeline Fully managed by provider

Cost Model Fixed per compute unit Per request, per execution time

Scaling Container autoscaling Scales with invocations

Startup Time Low latency (warm) Cold starts may delay execution

Monitoring Full stack observability Requires custom integration

COMP2511: Serverless Architecture 9

Summary

v Serverless abstracts server management and reduces operational burden

v Works best for stateless, event-driven, and high-concurrency use cases

v Challenges include observability, cold starts, and vendor-specific tooling

v Ideal as a lightweight, cost-effective architecture for modern cloud-native apps

COMP2511: Serverless Architecture 10

Course Review
Exam Structure

COMP2511, CSE, UNSW

Course Review

Course Review

This course provided a comprehensive overview of software design and architecture.
The key areas we covered include:

v Object-Oriented Programming (OOP): The fundamental concepts of classes, objects, inheritance, and
polymorphism.

v Object-Oriented (OO) Design Principles: Key guidelines like SOLID and favouring composition over inheritance to
create robust and maintainable code.

v Code Smells and Refactoring: Identifying weaknesses in design that violate principles and restructuring the code
to improve its quality without changing its external behaviour.

v Software Design Patterns: Reusable solutions to commonly occurring problems, categorized as Creational,
Structural, and Behavioural.

v Software Architecture: The high-level structure of software systems, including different architectural styles,
modelling techniques, and the trade-offs involved in key decisions.

COMP2511: Course Review 3

Object Oriented Programming in Java

v Abstraction

v Encapsulation

v Inheritance

v Polymorphism

v Objects, Classes, Interfaces

v Method Overriding & Forwarding

v Generics & Exceptions

v Domain Modelling

COMP2511: Course Review 4

Object Oriented Design : Principles

v Encapsulate what varies

v Favour composition over inheritance

v Program to an interface, not an implementation

v Principle of least knowledge (Law of Demeter)

v Liskov’s Substitution Principle

v Classes should be (OCP) open for extension and closed for modification

v Avoid multiple/diverse responsibilities for a class

v Strive for loosely coupled designs between objects that interact

COMP2511: Course Review 5

Code Smells and Refactoring

v Smells: design aspects that violate fundamental design principles and impact software quality

v Design Smells vs Code Smells

v Code smells are usually not bugs; they are not technically incorrect and do not prevent the program from
functioning.

v They indicate weaknesses in design that may slow down development or increase the risk of bugs or failures
in the future.

v Regardless of the granularity, smells in general indicate violation of software design principles, and
eventually lead to code that is rigid, fragile and require “refactoring”

v Code refactoring is the process of restructuring existing computer code without changing its external
behaviour.

COMP2511: Course Review 6

Behavioural Design Patterns

Behavioural patterns identify common communication patterns among objects to increase flexibility
in how they interact.

v Strategy: Enables selecting an algorithm from a family of algorithms at runtime by encapsulating each one
and making them interchangeable.

v Observer: Allows multiple observer objects to register and be notified of state changes in a subject object
they are observing.

COMP2511: Course Review 7

Structural Design Patterns

Structural patterns ease the design by identifying a simple way to realise relationships among
entities.

v Composite: Defines a tree structure of objects where every object (both individual leaves and composite
branches) has the same interface.

v Decorator: Allows for adding additional functionality to an object dynamically at runtime, avoiding a
combinatorial explosion of subclasses.

COMP2511: Course Review 8

Creational Design Patterns

Creational patterns deal with object creation mechanisms, creating objects in a manner suitable to
the situation.

v Factory Method: Allows a class to defer instantiation to subclasses.

v Abstract Factory: Provides an interface for creating families of related or dependent objects without
specifying their concrete classes.

v Singleton: Ensures that a class has only one instance and provides a global point of access to it.

COMP2511: Course Review 9

Software Architecture

The fundamental structure of a software system, influencing its ability to adapt, scale, and perform.

Four Dimensions:
o Architectural Characteristics: Qualities the system must support (e.g., scalability).
o Architectural Decisions: Long-term structural choices that act as constraints.
o Logical Components: Functional building blocks representing business features.
o Architectural Style: Overall structural pattern (e.g., layered, microservices)

Architecture vs. Design:
o Architecture is strategic (hard to change), while design is tactical (easier to change).

COMP2511: Course Review 10

Architectural Characteristics & Decisions

v Characteristics: Define qualities like scalability, availability, security, and maintainability. Can be
explicit (stated in requirements) or implicit (expected by users, like security).

v Trade-offs: A core part of architecture; enhancing one characteristic can compromise another
(e.g., more security can reduce performance).

v Architectural Decision Records (ADRs): Documents that capture the "why" behind a decision.
They record the context, decision, and consequences to help future team members.

COMP2511: Course Review 11

Behavioural & Structural Modelling

v Behavioural Modelling: Captures how a system behaves over time in response to events.
o Sequence Diagrams: Show object interactions in a time-sequenced manner.

Ø Use fragments like alt (alternatives), par (parallel), and loop (repetition).

v Structural Modelling:
o C4 Model: Provides a hierarchical way to visualize software architecture at different levels of detail.

Ø Context Level: For non-technical stakeholders.
Ø Container Level: For developers/architects, showing applications/databases.
Ø Component & Code Levels: For developers, showing internal modules and code structure.

COMP2511: Course Review 12

Architectural Styles: Monolithic

v Partitioning: Styles can be partitioned by technical concerns or business domains.

v Deployment: Styles can be monolithic (single deployable unit) or distributed (multiple
deployable units).

v Layered Architecture: A monolith partitioned by technical layers (e.g., Presentation, Workflow,
Persistence). Its weakness is that single-domain changes impact multiple layers.

v Modular Monolith: A monolith partitioned by business domain (e.g., Orders, Inventory). Enforces
low coupling by requiring modules to communicate via public APIs, not direct database access.

COMP2511: Course Review 13

Architectural Styles: Distributed

v Microservices: An architecture of single-purpose, independently deployed services. Each service
owns its own data (bounded context) and can be scaled independently.

– Managed via Orchestration (a central controller) or Choreography (decentralized, peer-to-peer events).

v Event-Driven Architecture (EDA): A highly decoupled style that responds to events
asynchronously. Excellent for responsiveness and extensibility.

v Serverless Architecture: A model focused on Elasticity for handling unpredictable, bursty
workloads, where you only pay for compute time used.

COMP2511: Course Review 14

Exam Structure

Final Exam : Structure

Four Sections:

v Section 1: Multiple Choice Questions (20 marks)

v Section 2: Short Answer Questions (20 marks)

v Section 3: Design and Programming Questions (30 marks)

v Section 4: Software Architecture Questions (30 marks)

COMP2511: Course Review 16

Final Exam Information

v The Sample Final Exam will be available in the exam environment during the

 tutorial/lab period in Week 10. Please make sure to attend the Week 10 tutorial/lab.

v See “Exam Information”, available in the left pane under “Course Work” on the course webpage.

COMP2511: Course Review 17

Evaluation

v myExperience feedback is available via myUNSW.

v Tell us what you like/dislike about the course, we do take your input seriously.

v Thanks ...

COMP2511: Course Review 18

And Finally ... …

Good Luck with the Exams,

and with your future computing studies

COMP2511: Course Review 19

	00_CourseIntroduction
	01_OOP_in_Java
	02_DomainModelling
	03_DesignByContract
	04_Exceptions
	05_Generics_Collections
	06_JUnit_Testing
	07_SoftwareDesignPrinciples
	08_Refactoring
	09_IntroDesign_StrategyPattern
	Slide 1: Introduction to Software Patterns and Strategy Pattern
	Slide 2: What Are Design Patterns?
	Slide 3: Why Use Design Patterns?
	Slide 4: Mastering Design Patterns – An Art & Craft
	Slide 5: Origins and History of Design Patterns
	Slide 6: Key Elements of a Design Pattern:
	Slide 7: When NOT to Use Patterns
	Slide 8: Design Patterns vs. Algorithms
	Slide 9: Design Patterns and Software Principles
	Slide 10: Problem Statement
	Slide 11: Implementation with If-Else
	Slide 12: Implementation with If-Else
	Slide 13: Alternative: Inheritance-Based Design
	Slide 14: Strategy Pattern: Motivation
	Slide 15: Strategy Pattern
	Slide 16: Alternative: Using Strategy Pattern (1)
	Slide 17: Alternative: Using Strategy Pattern (2)
	Slide 18: Using the Strategy-Based Car
	Slide 19: Strategy Pattern to the Rescue
	Slide 20: Video Rental Example: Using Inheritance
	Slide 21: Video Rental Example: Using Strategy Pattern
	Slide 22: Benefits of Strategy Pattern

	10_CompositePattern
	11_CreationalPatterns
	12_ObserverPattern
	13_DecoratorPattern
	Slide 1: Decorator Pattern
	Slide 2: Decorator Pattern: Intent
	Slide 3: Decorator Pattern: Structure
	Slide 4: Decorator Pattern: Structure
	Slide 5: Decorator Pattern: Example
	Slide 6: Decorator Pattern: Example
	Slide 7: Decorator Pattern: Example
	Slide 8: Decorator Pattern: Example
	Slide 9: Decorator Pattern: Code
	Slide 10: Decorator Pattern: Java I/O Example
	Slide 11: Decorator Pattern: Java I/O Example
	Slide 12: Decorator Pattern: Code
	Slide 13: Decorator Pattern:
	Slide 14

	14_Functional_Paradigm
	15_SingletonPattern_AsynchronousDesign
	01_SoftwareArchitecture
	02_Architectural_Characteristics
	03_ADRs
	04_BehaviouralModelling
	Slide 1: Behavioural Modelling
	Slide 2: What is Behavioural Modelling
	Slide 3: Sequence Diagrams
	Slide 4: More on sequence diagrams
	Slide 5: Key Components of a Sequence Diagram
	Slide 6: Types of Messages
	Slide 7: Sequence Diagram Overview
	Slide 8: Optional Interaction
	Slide 9: Conditional Interaction
	Slide 10: Looping Interaction
	Slide 11: Parallel Processes
	Slide 12: Example: Hotel Reservation
	Slide 13: Example: Airline Booking
	Slide 14: Examples
	Slide 15: Benefits of Sequence Diagrams
	Slide 16: Common Mistakes
	Slide 17: Suggested Design Process in Software Engineering
	Slide 18: Good Software Design Practices
	Slide 19: Web resources

	05_Components__and_C4_Modelling
	06_Architectural_Styles
	07_Layered_Achitecture
	08_ModularMonoliths_Architecture
	09_Microservice_Architecture
	10_EventDriven_Architecture
	11_Serverless_Architecture
	12_CourseReview_ExamStructure

