Software Design

and Architecture
(OO Desigh & Programming)

Course Introduction
Term 2, 2025

COMP2511, CSE, UNSW

YYYYYY

Our Team

Course Convenor and Lecturer [Week 01 to 05]:

Dr Ashesh Mahidadia (a.mahidadia@unsw.edu.au) _ Aéhesh
Lecturer [Week 07 to 10]: ~
Dr Jesse Laeuchli (j.laeuchli@unsw.edu.au)

Course Admin Team:
Alvin Cherk, Sai Nair, Michael Mospan, Grace Kan, Daniel Khuu

Alvin Sai

Tutors:

25+ passionate tutors!

Course Account Email: ¢s2511@cse.unsw.edu.au
(Unless you specifically require to contact a member of the admin team,
please use the above email for any queries related to the course.)

Software Design and Architecture 2
(00 Design & Programming) UNSW

SSSSSS

Course Context

COMP1511 - | COMP1521 -
Introduction Computer
to Systems
CORE CS Programming Fundamentals
CORE SE COMP1531 COMP2521
- - DESN3000 -
COMP2041 - Software COMP2511 — Data Management
Software Engineering and The Art of Structures and Ethics
Construction Data Modelling Software and
Design Algorithms COMP3141 —
Software Quality
DESN2000 — and Testing
Engineering
Design SENG2011 - SENG3011 -
Reasoning about SENG2021 - Implementation
Programs Requirements Workshop
Workshop and Design
Workshop
COMP3161

Concepts of
Programming
Languages

J

COMP6771
Advanced C++
Programming

COMP3131
Programming
Languages and

Compilers

Software Design and Architecture
(00 Design & Programming)

25

k.

%’“

=<
o
z
m
<

The Story So Far: Course Context

COMP1511: Solving problems with computers, the wonder and joy of programming

COMP1521: Getting right down into the silicon
COMP1531: Solving problems in a team; programming in the large

COMP2521: Solving problems at scale using data structures and algorithms

COMP251177??

Software Design and Architecture
(00 Design & Programming)

COMP2511

** We can write code, but how do we write good code?
s Designing elegant and beautiful software.
¢ Shades of Grey - things aren't clear cut; writing good software is an art.

s Grow from a programmer into a software engineer by following a systematic design and

development strategy.

Software Design and Architecture
(00 Design & Programming)

COMP 2511 Major Themes

** Analyse characteristics of elegantly written software, and learn how to create and

maintain well-designed codebases

s Apply widely used Software Design and Architectural Patterns to create extensible,

flexible, maintainable and reusable software systems

s Apply the principles of Object-Oriented Design to solve problems.

Software Design and Architecture
(00 Design & Programming)

COMP 2511 Major Themes

s Create medium-scale systems from scratch, and work on existing systems as part of the

Software Development Life Cycle.

s For specific software development scenarios, evaluate different design and architectural

paradigms and methodologies based on their origins and suitability.

** Create software solutions using an enterprise programming language within an

integrated development environment (IDE).

Software Design and Architecture
(00 Design & Programming)

Credit teaching material

/

/

/

** No textbook, the lecture slides cover the required topics.

** However, you are strongly encouraged to read additional material and the reference books.

% In the lecture notes, some content and ideas are drawn from:

Head First Design Patterns , by Elisabeth Freeman and Kathy Sierra, The State University of New Jersey
Head First Software Architecture, by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc.
Fundamentals of Software Architecture, 2nd Edition, by Mark Richards, Neal Ford

Refactoring: Improving the design of existing code, by Martin Fowler

Material from many popular websites.

Software Design and Architecture
(00 Design & Programming)

How do we obtain our educational objectives?

/

%* Lectures: 4-hour lectures (9 weeks)

+** Tutorials:
s A 1-hour tutorial session per week, which is scheduled before the lab.
+** Online Tutorials/Labs will be run via MS Teams .

+*» Tutorials are understanding-driven - interactive examples to illustrate concepts
discussed in lectures

+** Solutions and recording to tutorials posted at the end of each week

Software Design and Architecture
(00 Design & Programming)

How do we obtain our educational objectives?

/

% Labs:
** 2 hours each week, straight after tutorial
¢ Like most CSE core courses

** Lab retros posted after due date on course website

** Online Run via MS Teams

Software Design and Architecture 10
(00 Design & Programming)

Assessments

Coursework (15%)

** Your coursework mark is made up of marks associated with the lab exercises.
+* There are seven labs, each worth ten marks.

s We will cap total coursework marks at 60 (which will translate to 15%),
leaving one lab as a buffer.

*» If you attend all seven labs, we will add all seven lab marks and
cap the total coursework marks to 60.

** The specific marking criteria for each lab will be outlined in the respective specifications.

* A general guide for the criteria that your tutor/lab assistant will use to assess you is available
on the class webpage.

** You (students) must get your lab manually marked each week

Software Design and Architecture
(00 Design & Programming)

Assignment | (15%)

** The marking criteria for the assignment will be outlined in the specification which will be

released Tuesday of Week 2.
+** Due Friday 3pm Week 5.

s Completed individually.

Software Design and Architecture
(00 Design & Programming)

Assignment Il (20 %)

** The marking criteria for the project will be outlined in the specification which will be
released Thursday Week 5.

+** Pairs formed within your tutorial.
** Groups formed by end of Week 3.
¢ Due Friday 3pm week 10

+* If you're facing challenges with your partner, measures are in place to assist you.
However, please ensure your tutor is informed as soon as the issue arises.

Software Design and Architecture
(00 Design & Programming)

Final Exam (50%)

% In 25T2 the COMP2511 exam will be held in person in the CSE Labs, and invigilated.

* All students are required to take the final exam in person, even if they have enrolled in online
classes. In 25T2, there will be no online exames.

: In order to pass the course, it is required for the student to achieve a minimum of 40%
(20 out of 50) marks in the final examination.

s Students are eligible for a Supplementary Exam if and only if:

» Students cannot attend the final exam due to illness or misadventure.
Students must formally apply for a special consideration, and it must
be approved by the respective authority.

Software Design and Architecture 15
(00 Design & Programming)

Assumed Knowledge

>

Confident programmers
o Familiar with C and Python/JS programming concepts
» Able to work in a team
o Git
o Working with others
** Understand basic testing principles

% Understand basic software engineering design principles (DRY, KISS)

Software Design and Architecture
(00 Design & Programming)

Assumed Knowledge

** What we don't assume:
o Knowledge of Java

o Understanding of Object-Oriented Programming

** This is not a Java course

Software Design and Architecture
(00 Design & Programming)

Course philosophy

» A step up from first year courses
% Challenging but achievable

** Develop skills in time management, teamwork as well as critical thinking

% Highly rewarding

Software Design and Architecture
(00 Design & Programming)

Support

s Supporting you is our job :)
** Help Sessions
o Lots of them with fantastic tutors
o Feedback on work, help with problems, clarifying ideas

o You are expected to have done your own research and debugging before arriving

Software Design and Architecture
(00 Design & Programming)

Support

s Course Forum
o Ask questions and everyone can see the answers!
o Make private posts for sharing code
o Response time

«* Course Account - cs2511@cse.unsw.edu.au
o Sensitive/personal information

** During the project - your tutor
** Go to help sessions for help on concepts
» Post on the forum if you need more immediate lab feedback

** There are no late extensions on labs unless in extenuating circumstances, email
cs2511@cse.unsw.edu.au

Software Design and Architecture
(00 Design & Programming)

Support - UNSW

¢ Special Consideration -
https://student.unsw.edu.au/special-consideration

/

** Equitable Learning Services -
https://student.unsw.edu.au/els

Software Design and Architecture
(00 Design & Programming)

Mental Health & Wellbeing

L)

>

UNSW Psychology & Wellness - https://student.unsw.edu.au/mhc

L)

UNSW Student Advisors - https://student.unsw.edu.au/advisors

*%

*%

Reach out to us at cs2511@cse.unsw.edu.au

L)

>

Check in with each other

L)

L)

>

Talk to someone

L)

Software Design and Architecture
(00 Design & Programming)

https://student.unsw.edu.au/mhc
https://student.unsw.edu.au/advisors

Technology Stack

+* Java Version —JDK 17
* VSCode
» Gradle 8.8

% Gitlab (+ Cl pipelines)

Feedback

s We love feedback :)
+ Changes made to the course this term based on constructive student feedback

» We always want to continuously improve

o This term, we are incorporating software architecture topics to enhance
the course’s relevance to real-world applications.

L)

>

Feedback form

L)

L)

* Course account

L)

Software Design and Architecture 24
(00 Design & Programming)

Respect

*** Yourselves, each other, course staff

It's time to lift off for 25T2 1111

Software Design and Architecture
(00 Design & Programming)

YYYYYY

OOP In Java

COMP2511, CSE, UNSW

The Java Platform

[Simple]
[Object Oriented } & U /I [Multi-threaded]

[JAVA]
Platform-]

{ Distributed] C% j %%[Independent

Memory
[Seclre] [Management]

Java Byte
Java Code . C dyt
(java) II Java compiler ode
. (.class)
\/—

COMP2511: OOP in Java 2

OOP in Java

** Object Oriented Programming (OOP) v Inheritance in OOP

» Introduction to Classes and Objects v Subclasses and Inheritance

¢ Abstract Classes

** Single Inheritance versus Multiple Inheritance

** Interfaces

s* Method Forwarding (Has-a relationship) v Method Overriding (Polymorphism)
** Method Overloading

** Constructors

COMP2511: OOP in Java 3

Object Oriented Programming (OOP)

In procedural programming languages (like ‘C’), programming tends to be action-oriented,

whereas in Java - programming is object-oriented.

In procedural programming,

e groups of actions that perform some task are formed into functions and functions are grouped to
form programs.

In OOP,
e programmers concentrate on creating their own user-defined types called classes.
» each class contains data as well as the set of methods (procedures) that manipulate the data.

* aninstance of a user-defined type (i.e. a class) is called an object.

OOP encapsulates data (attributes) and methods (behaviours) into objects, the data and methods
of an object are intimately tied together.

Objects have the property of information hiding.

COMP2511: OOP in Java

VVVVVV

Inheritance in Object Oriented Programming (OOP)

< Inheritance is a form of software reusability in which new classes are created from the
existing classes by absorbing their attributes and behaviours.

X/

% Instead of defining completely (separate) new class, the programmer can designate
that the new class is to inherit attributes and behaviours of the existing class (called
superclass). The new class is referred to as subclass.

R/

%* Programmer can add more attributes and behaviours to the subclass, hence,
normally subclasses have more features than their super classes.

COMP2511: OOP in Java

SSSSSS

Inheritance in Object Oriented Programming (OOP)

Inheritance relationships form tree-like hierarchical structures. For example,

Student

UndergraduateStudent PostgraduateStudent
Loan

CarLoan HomelmprovementLoan MortgageLoan
Account

CheckingAccount SavingsAccount LoansAccount

Person

Employee Student

N B, / N\

SalesPerson Engineer Secretary Graduate UnderGrad

SalesrLanager ProjectManager

DistrictManager
Shapes
e \a\
Point Rectangle Circl<
GraphiZalRectangle GraphicalCircle

COMP2511: OOP in Java

SSSSSS

“Is-a” - Inheritance relationship

** In an “is-a” relationship, an object of a subclass may also be treated as an object of the
superclass.

o

» For example, UndergraduateStudent can be treated as Student too.

/7

** You should use inheritance to model “is-a” relationship.

Very Important:

«* Don’t use inheritance unless all or most inherited attributes and methods make sense.

o

% For example, mathematically a circle is-a (an) oval, however you should not inherit a class circle
from a class oval. A class oval can have one method to set width and another to set height.

COMP2511: OOP in Java 7
UNSW

VVVVVV

“Has-a” - Association relationship

» In a “has-a” relationship, a class object has an object of another class to store its state or do its
work, i.e. it “has-a” reference to that other object.

** For example, a Rectangle Is-NOT-a Line.
However, we may use a Line to draw a Rectangle.

** The “has-a” relationship is quite different from an “is-a” relationship.

s “Has-a” relationships are examples of creating new classes by composition of existing classes (as
oppose to extending classes).

Very Important:

% Getting “Is-a” versus “Has-a” relationships correct is both subtle and potentially critical. You
should consider all possible future usages of the classes before finalising the hierarchy.

/7

** Itis possible that obvious solutions may not work for some applications.

COMP2511: OOP in Java 8 =2

VVVVVV

Designing a Class

* Think carefully about the functionality (methods) a class should offer.
* Always try to keep data private (local).

* Consider different ways an object may be created.

* Creating an object may require different actions such as initializations.
* Always initialize data.

* If the object is no longer in use, free up all the associated resources.

* Break up classes with too many responsibilities.

* In OO, classes are often closely related. “Factor out” common attributes and behaviours

and place these in a class. Then use suitable relationships between classes (for example,
“is-a” or “has-a”).

COMP2511: OOP in Java 9

VVVVVV

Introduction to Classes and Objects

** Aclass is a collection of data and methods (procedures) that operate on that data.

** For example,
a circle can be described by the x, y position of its centre and by its radius.

** We can define some useful methods (procedures) for circles,

compute circumference, compute area, check whether pointes are inside the circle,
etc.

+»» By defining the Circle class (as below), we can create a new data type.

COMP2511: OOP in Java

VVVVVV

public class Circle {

protected static final double pi = 3.14159;

The Class Circle pretectsd int X, y;

protected int r;

// Very simple constructor
public Circle(){
this.x = 1;
this.y = 1;
this.r = 1;
}
// Another simple constructor
public Circle(int x, int y, int r){

this.x = x;
this.y = y;
this.r = r;
}
/#*

* Below, methods that return the circumference
* area of the circle
./
public double circumference() {
return 2 * pi * r ;

}
. o public double area () {
For simplicity, the methods for getter and return pi *r *r;

setters are not shown in the code. }

Objects are Instances of a class

In Java, objects are created by instantiating a class.

For example,

Circle c ;
c = new Circle () ;

OR

Circle ¢ = new Circle () ;

Accessing Object Data

We can access data fields of an object.

For example,

Circle ¢ = new Circle () ;

// Initialize our circle to have centre (2, 5)
// and radius 1.
// Assuming, x, y and r are not private

2;
5;

c.x
c.y

c.r =1;

Using Object Methods

To access the methods of an object, we can use the same syntax as accessing the data of
an object:

Circle ¢ = new Circle () ;

double a;
c.r = 2; // assuming r is not private
a = c.area()

//Note that its not : a

area(c)

Subclasses and Inheritance:
First Approach

// The class of graphical circles

public class GraphicalCircle {

We want to implement GraphicalCircle.

This can be achieved in at least 3 different ways.

First Approach:

>

L)

% In this approach we are creating the

new separate class for GraphicalCircle and
re-writing the code already available in the class
Circle.

» For example, we re-write the methods area and
circumference.

the worst possible solution.
Note again, its the worst possible solution!

COMP2511: OOP in Java

* Hence, this approach is NOT elegant, in fact its }

int x, y;
int r;
Color outline, £fill;

public double circumference() {
return 2 * 3.14159 * -

}

public double area () {
return 3.14159 * r * r ;

}

public void draw(Graphics g) {
g.setColor (outline) ;
g.drawOval (x-r, y-r, 2*r, 2*r);
g.setColor (£ill) ;
g.£1110val (x~-x, y-r, 2*r, 2*r);

Subclasses and Inheritance:
Second Approach e o

Circle c;
// The new graphics variables go here
Color outline, fill;

¢ We want to implement GraphicalCircle so // Very simple constructor
. . public GraphicalCircle2() {
that it can make use of the code in the class ¢ = new Circle();
Circle. this.outline = Color.black;

this.fill = Color.white;
}

% This approach uses “has-a” relationship.

// Another simple constructor

public GraphicalCircle2(int x, int y, int r,
3) Color o, Color f) {
% That means, a GraphicalCircle has a P T T e

(mathematical) Circle. this.outline = o;
this.fill = f;
}
% It uses methods from the class Circle (area
. . // draw method , using object ‘c’
and circumference) to define some of the sublic void draw(Graphics g) {

new methods. g.setColor(outline);
g.drawlval{c x =ic.r, 6.¥Y = .02 .. 2% 6.r);

. . . g.setColor(fill);
* This technique is also known as method g-TILIOVARIC. -~ &.F; 6.¥ - Bt T % Eur. 2 C.¥);

forwarding.

*e

COMP2511: OOP in Java 16

Subclasses and Inheritance:

import java.awt.Color;

Third Approach — Extending a inport Java.avt Graphics;

Class public class GraphicalCircle extends Circle {

** We can say that GraphicalCircle is-a Circle.

% Hence, we can define GraphicalCircle as an
extension, or subclass of Circle.

%+ The subclass GraphicalCircle inherits all the
variables and methods of its superclass Circle.

Color outline, fill;
public GraphicalCircle(){
super();
this.outline = Color.black;
this.fill = Color.white;
}
// Another simple constructor
public GraphicalCircle(int x, int vy,
int r, Color o, Color f){
super(x, y, r);
this.outline = o; this.fill = f;
}

public void draw(Graphics g) {
g.setColor(outline);
g.drawOval(x-r, y-r, 2*r, 2*r);
g.setColor(fill);
g.fillOval(x-r, y-r, 2*r, 2*r);

COMP2511: OOP in Java

Subclasses and Inheritance: Example

We can assign an instance of GraphicCircle to a Circle variable. For example,

GraphicCircle gc = new GraphicCircle() ;
double area = gc.area():;

Circle c¢ = gc;
// we cannot call draw method for “c¢”.

Important:

** Considering the variable “c” is of type Circle,

X/

%* we can only access attributes and methods available in the class Circle.

o

% we cannot call draw method for “c”.

LB |
COMP2511: OOP in Java 18

VVVVVV

Super classes, Objects, and the Class Hierarchy

/

%* Every class has a superclass.
+» If we don’t define the superclass, by default, the superclass is the class Object.

Object Class :
% Its the only class that does not have a superclass.
** The methods defined by Object can be called by any Java object (instance).

% Often we need to override the following methods:
* toString()
o read the API at https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html#toString()

* equals ()

o read the API at
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html#fequals(java.lang.Object)

* hasCode()

COMP2511: OOP in Java

VVVVVV

Abstract Classes

Using abstract classes,

*» we can declare classes that define only part of an implementation,

¢ leaving extended classes to provide specific implementation of some or all the
methods.

The benefit of an abstract class

\/

%* is that methods may be declared such that the programmer knows the interface
definition of an object,

** however, methods can be implemented differently in different subclasses of the
abstract class.

COMP2511: OOP in Java

VVVVVV

Abstract Classes

Some rules about abstract classes:

% An abstract class is a class that is declared abstract.
% If a class includes abstract methods, then the class itself must be declared abstract.
** An abstract class cannot be instantiated.

** A subclass of an abstract class can be instantiated if it overrides each of the abstract
methods of its superclass and provides an implementation for all of them.

%+ If a subclass of an abstract class does not implement all the abstract methods it
inherits, that subclass is itself abstract.

COMP2511: OOP in Java

VVVVVV

public class Circle extends Shape {

protected static final double pi = 3.14159;

Abstract Class: Example protected int x, y;

protected int r;

// Very simple constructor
p public Circle(){
this.x = 1;
this.y = 1;
this.r = 1;

Shape)

e T // Another simple constructor
) ublic Circle(int x, int y, int r
Circle Rectangle g o ,((; i "

this.y = y;
this.r = r;

}

) /**
* Below, methods that return the circumference

public abstract class Shape { :/area of the circle
public abstract double area();) public double circumference() {
public abstract double circumference(); return 2 * pi * r ;

}
}) public double area () {
return pi *r *r ;

public class Rectangle extends Shape {

Abstract Class: Example

protected double width, height;

public Rectangle() {

width = 1.0;
height = 1.0;
Shape }
- ’///' \\\\\~ public Rectangle(double w, double h) {
Circle Rectangle this.width = w:
this.height = h;
}

public double area(){
return width*height;

public abstract class Shape { }

public abstract double area();
public abstract double circumference(); public double circumference() {

return 2*(width + height);

}

Abstract Class: Example

Some points to note:

/7

%+ As Shape is an abstract class, we cannot
instantiate it.

R/

%* Instantiations of Circle and Rectangle can be
assigned to variables of Shape.
No cast is necessary

L/

%* In other words, subclasses of Shape can be
assigned to elements of an array of Shape.
No cast is necessary.

* We can invoke area() and circumference()

Shape

Circle Rectangle

We can now write code like this:

// create an array to hold shapes
Shape[] shapes = new Shape[4];

shapes[0] = new Circle(4, 6, 2);
shapes[1l] = new Rectangle(1.0, 3.0);
shapes[2] = new Rectangle(4.0, 2.0);
shapes[3] = new GraphicalCircle(1l, 1, 6,

Color.green, Color.yellow);

double total area = 0;

for(int i = 0; i < shapes.length; i++) {
// compute the area of the shapes

—>» total area += shapes[i].area(); |

methods for Shape objects.

} -

COMP2511: OOP in Java 24

Single Inheritance versus Multiple Inheritance

* InJava, a new class can extend exactly one superclass - a
model known as single inheritance.

/ W\.
* Some object-oriented languages employ multiple X Y
inheritance, where a new class can have two or more super \ /
classes. 7

* In multiple inheritance, problems arise when a superclass’s Diamond inheritance
behaviour is inherited in two/multiple ways. problem

 Single inheritance precludes some useful and correct
designs.

* InJava, interface in the class hierarchy can be used to add
multiple inheritance, more discussions on this later.

COMP2511: OOP in Java

VVVVVV

Interfaces in Java

Interfaces are like abstract classes, but with few important differences.

All the methods defined within an interface are implicitly abstract. (We don’t need to
use abstract keyword, however, to improve clarity one can use abstract keyword).

Variables declared in an interface must be static and final, that means,
they must be constants.

Just like a class extends its superclass, it also can optionally implements an interface.

In order to implement an interface, a class must first declare the interface in an
implements clause, and then it must provide an implementation for all of the abstract

methods of the interface.
A class can “implements” more than one interfaces.

More discussions on “interfaces” later in the course.

COMP2511: OOP in Java

VVVVVV

Interfaces in Java: Example

S a% Drawable
Cirtle Rectangle

DrawableCircle DrawableRectangle

public interface Drawable ({
public void setColor (Color c);
public void setPosition(double x, double y);
public void draw(Graphics g);

}

public class DrawableRectangle
extends Rectangle
implements Drawable {

private Color c;
private double x, y;

// Here are implementations of the

// mehtods in Drawable

// we also inherit all public methods
// of Rectangle

public void setColor (Color c) { this.c = c;}
public void setPosition(double x, double y) {
this.x = x; this.y = y;}
public void draw(Graphics g) {
g.drawRect (x,y,w,h,c); }

Using Interfaces: Example

** When a class implements an

interface, instance of that class can
also be assigned to variables of the

Shape[] shapes = new Shape[3];
Drawable|[] drawables = new Drawable[3];

DrawableCircle dc = new DrawableCircle(l.1);
DrawableSquare ds = new DrawableSquare(2.5);
DrawableRectangle dr =
4.5);

// The shapes can be assigned to both arrays

shapes[0] = dc; drawables[0] = dc;
shapes[l] = ds; drawables[l] = ds;
shapes[2] = dq; drawables[2] = dr;
// We can invoke abstract method

interface type.

// in Drawable and Shapes

double total area = 0;
for(int i=0; i< shapes.length; i++) ({

total_area += shapes[i].area();

N

drawables[i] .setPosition(i*10.0, i*10.0);
// assume that graphic area ‘g’ is

// defined somewhere

drawables[i] .draw(g) ;

N\

new DrawableRectangle (2.

COMP2511: OOP in Java

Implementing Multiple Interfaces

A class can implements more than one interfaces. For example,

Shapes Drawable Scalable Movable

Clrcle Rectangle /
DrawabIeC|rcle DrawableRectangIe

DrawableSwlabIeRectangIe

public class DrawableScalableRectangle
extends DrawableRectangle
implements Movable, Scalable ({

// methods go here

}

Extending Interfaces

** Interfaces can have sub-interfaces, just like classes can have subclasses.

** A sub-interface inherits all the abstract methods and constants of its super-interface,

and may define new abstract methods and constants.

¢ Interfaces can extend more than one interface at a time. For example,

public interface Transformable
extends Scalable,Rotable,Reflectable {}

public interface DrawingObject
extends Drawable, Transformable({}

public class Shape implements DrawingObject {
}

COMP2511: OOP in Java

-
T2k \v
=

30

«
=<
o
z
m
<

Method Forwarding A A

Suppose class C extends class A, and also implements interface X.

As all the methods defined in interface X are abstract, class C needs to implement all
these methods.

However, there are three implementations of X (in P,Q,R).

In class C, we may want to use one of these implementations, that means, we may
want to use some or all methods implemented in P, Q or R.

Say, we want to use methods implemented in P. We can do this by creating an object
of type class P in class C, and through this object access all the methods implemented
in P.

Note that, in class C, we do need to provide required stubs for all the methods in the
interface X. In the body of the methods we may simply call methods of class P via the
object of class P.

This approach is also known as method forwarding.

COMP2511: OOP in Java

SSSSSS

Methods Overriding (Polymorphism)

** When a class defines a method using the same name, return type,
and by the number, type, and position of its arguments as a method in its superclass,
the method in the class overrides the method in the superclass.

¢ If a method is invoked for an object of the class, it’s the new definition of the method
that is called, and not the superclass’s old definition.

Polymorphism

* An object’s ability to decide what method to apply to itself, depending on where
it is in the inheritance hierarchy, is usually called polymorphism.

COMP2511: OOP in Java

VVVVVV

Methods Overriding:

In the example below,

NG

% if pisaninstance of class B,
p.f() refers to () in class B.

NG

» However, if p is an instance of class A,
p.f() refers to f() in class A.

The example also shows how to refer to the overridden method using super keyword.

Example

class A {
int i =1;
int £() { return i:;)

}

class B extends A {
int i;
int £{) 1

i = super.i + 1;

return super.f() + 1i;

Il shadows i from A
Il overrides f() from A
Il retrives i from A

Il invokes f() from A

COMP2511: OOP in Java

VVVVVV

Methods Overriding: Example

Suppose class C is a subclass of class B, and class B is a subclass of class A.
Class A and class C both define method £ ().

From class C, we can refer to the overridden method by,

super. f ()

This is because class B inherits method £ () from class A.

However,

+» if all the three classes define £ (), then
calling super. £ () in class C invokes class B’s definition of the method.

K/

¢ Note that super.super. £ () is NOT legal Java syntax.

COMP2511: OOP in Java

** Importantly, in this case, there is no way to invoke A. £ () from within class C.

VVVVVV

Method Overloading

Defining methods with the same name and different argument or return types is called

method overloading.

In Java,

** a method is distinguished by its method signature - its name, return type, and by the

number, type, and position of its arguments

For example,

double add(int, int)
double add(int, double)

double add(int, int,
double add(int, double,

(

(
double add(float,

(

(

COMP2511: OOP in Java

VVVVVV

Data Hiding and Encapsulation

We can hide the data within the class and make it available only through the methods.

This can help in maintaining the consistency of the data for an object, that means the state
of an object.

Visibility Modifiers
Java provides five access modifiers (for variables/methods/classes),

** public - visible to the world
** private - visible to the class only
* protected - visible to the package and all subclasses

** No modifier (default) - visible to the package

COMP2511: OOP in Java

SSSSSS

Constructors

0

0

Good practice to define the required constructors for all classes.

If a constructor is not defined in a class,
o no-argument constructor is implicitly inserted.
o this no-argument constructor invokes the superclass’s no-argument constructor.

o if the parent class (superclass) doesn’t have a visible constructor with no-argument,
it results in a compilation error.

If the first statement in a constructor is not a call to super() or this(),
a call to super () is implicitly inserted.

If a constructor is defined with one or more arguments,
no-argument constructor is not inserted in that class.

A class can have multiple constructors, with different signatures.

The word “this” can be used to call another constructor in the same class.

COMP2511: OOP in Java 37

VVVVVV

Diamond Inheritance Problem: A Possible Solution

Using multiple inheritance (in C++):

/\
\/

we achieve the following:
e |n class Z, we can use methods and
variables defined in X, Wand Y.

e Objects of classes Z and Y can be assigned to variables of type Y.

e and more ...

Using single inheritance in Java:
W
fass W) .
class
interface IY {} g 2
class X extends W { }

class Y extends W implements 1Y { }
class Z extends X implements 1Y { }

we achieve the following:

¢ In class Z, we can use methods and variables defined in X and W.
In class Z, if we want to use methods implemented in class Y, we
can use method forwarding technique. That means, in class Z, we
can create an object of type class Y, and via this object we can
access (in class Z) all the methods defined in class Y.

e Objects of classes Z and Y can be assigned to variables of type IY
(instead of Y).

e and more

COMP2511: OOP in Java

Some References to Java Tutorials

¢ https://docs.oracle.com/javase/tutorial/

¢ https://www.w3schools.com/java/default.asp

¢ https://www.tutorialspoint.com/java/index.htm

COMP2511: OOP in Java

https://docs.oracle.com/javase/tutorial/
https://www.w3schools.com/java/default.asp
https://www.tutorialspoint.com/java/index.htm

Domain Modelling

COMP2511, CSE, UNSW

Domain Models

* Domain Models are used to visually represent important domain concepts and
relationships between them.

* Domain Models help clarify and communicate important domain specific concepts and
are used during the requirements gathering and designing phase.

* Domain modeling is the activity of expressing related domain concepts into a domain
model.

* Domain models are also often referred to as conceptual models or domain object models.

* We will be use Unified Modeling Language (UML) class diagrams to represent domain
models.

* There are many different modelling frameworks, like: UML, Entity-Relationship, Mind
maps, Context maps, Concept diagrams. etc.

COMP2511: Domain Modelling 2

VVVVVV

Requirements Analysis vs Domain modelling

* Requirements analysis determines external behaviour
“What are the features of the system-to-be and who requires these features (actors)”

* Domain modelling determines (internal behavior) —
“how elements of system-to-be interact to produce the external behaviour”

* Requirements analysis and domain modelling are mutually dependent - domain
modelling supports clarification of requirements, whereas requirements help building up
the model.

COMP2511: Domain Modelling

VVVVVV

What is a domain?

 Domain — A sphere of knowledge particular to the problem being solved

 Domain expert — A person expert in the domain

* For example, in the domain of cake decorating, cake decorators are the domain experts

COMP2511: Domain Modelling

SSSSSS

Problem

A motivating example:

* Tourists have schedules that involve at least one and possibly several cities

Hotels have a variety of rooms of different grades: standard and premium

Tours are booked at either a standard or premium rate, indicating the grade of hotel
room

In each city of their tour, a tourist is booked into a hotel room of the chosen grade

Each room booking made by a tourist has an arrival date and a departure date

Hotels are identified by a name (e.g. Melbourne Hyatt) and rooms by a number

Tourists may book, cancel or update schedules in their tour

COMP2511: Domain Modelling

SSSSSS

Ubiquitous language

Things in our design must represent real things in the domain expert’s mental model.

For example, if the domain expert calls something an "order" then in our domain model
(and ultimately our implementation) we should have something called an Order.

Similarly, our domain model should not contain an OrderHelper, OrderManager, etc.

Technical details do not form part of the domain model as they are not part of the
design.

COMP2511: Domain Modelling

SSSSSS

Noun/verb analysis

* Finding the ubiquitous language of the domain by finding the nouns and verbs in the
requirements

* The nouns are possible entities in the domain model and the verbs possible behaviours

Problem

* The nouns and verbs:

* Tourists have schedules that involve at least one and possibly several cities

Hotels have a variety of rooms of different grades: standard and premium

Tours are booked at either a standard or premium rate, indicating the grade of
hotel room

In each city of their tour, a tourist is booked into a hotel room of the chosen grade

Each room booking made by a tourist has an arrival date and a departure date

Hotels are identified by a name (e.g. Melbourne Hyatt) and rooms by a number

Tourists may book, cancel or update schedules in their tour

COMP2511: Domain Modelling

SSSSSS

UML Class diagrams: Perspectives

Conceptual Specification Implementation

* Above diagram is from: https://www.visual-paradigm.com/qguide/uml-unified-modeling-language/uml-class-diagram-tutorial/

UML Class diagrams: Relationships

l l Association
I >l Inheritance
I """"""""" ’l Readlization
I""""""""">I Dependency
g [Asoroor
I‘ [Composition

* Above diagram is from: https://www.visual-paradigm.com/qguide/uml-unified-modeling-language/uml-class-diagram-tutorial/

UML Class diagrams

B —— >

* The loosest form of relationship. A class in some way depends on another.

Association

* A class "uses" another class in some way. When undirected, it is not yet clear in what
direction dependency occurs.

Directed >
Association

* Refines association by indicating which class has knowledge of the other

UML Class diagrams

Aggregation S

A class contains another class (e.g. a course contains students). Note that the diamond it
at the end with the containing class.

Composition P

* Like aggregation, but the contained class is integral to the containing class. The contained
class cannot exist outside of the container (e.g. the leg of a chair)

COMP2511: Domain Modelling

SSSSSS

UML Diagram Types

UML Diagram Type

!

Structural Diagrams

l

Gomposite Structure

Diagram
Package Profile
Diagram Diagram

Object Diagram

Deployment
Diagrams

Class
Diagram

Gomponent
Diagram

Behavioral Diagrams

State Machine
Diagram

Use Case
Diagram

Timing Diagram

COMP2511: Domain Modelling

GCommunication

Diagram

Sequence
Diagram

Interaction

Overview Diagram

Examples

Examples

class (class diagram)

Account

-name: String
-balance: float

+getBalance(): float
+getName() : String
+withDraw(float)
+deposit(float)

COMP2511: Domain Modelling

object instances (object
diagram)

al:Account

name = “John Smith”
balance = 40000

a2:Account

name = “Joe Bloggs”
balance = 50000

Representing classes in UML

Account

-name: String
-accountNo: int
-balance:float

+getBalance(): float
+setBalance(): float

This means
“inheritance”

SavingsAccount

-saverInterest: float

+calcInterest(): float

COMP2511: Domain Modelling

SSSSSS

Representing classes in UML

class Rectangle extends Shape adding
attributes height , width

class Rectangle overrides method
getArea() to provide its own
implementation

Shape

-name: String

+getName(): String
+setName(String)
+getArea(): float

T

Rectangle

™~

-height: float
-width: float

+getArea(): float
+getWidth(): int
+getHeight(): int

COMP2511: Domain Modelling

SSSSSS

Representing Association in UML

Class 1 Association Class 2

Dog 1 belongs 1 | Owner
>

Professor | 1 teaches 0.*| Course
>

COMP2511: Domain Modelling

Representing Association in UML

* Associations can model a “has-a” relationship where one class
“contains” another class

* Associations can further be refined as:

Aggregation relationship (hollow diamond symbol ¢): The contained item is an
element of a collection but it can also exist on its own, e.g., a lecturer in a
university or a student at a university

contains (
[Lab Jo L Computers J

Composition relationship (filled diamond symbol ¢ in UML
diagrams): The contained item is an integral part of the containing
item, such as a leg in a desk, or engine in a car

has
L Order }0 [Line Items J

COMP2511: Domain Modelling 19

Representing Association in UML

Car ,1\ consists of 1 | Engine s
>

Book T 1.* | Pages

Vehicle Truck .

COMP2511: Domain Modelling

Aggregation - “has-a” relationship
where the part can exist without
container

Composition — “is-composed-of”
relationship where part cannot live
without container

Inheritance — “is-a-kind-of”
relationship

20

Class Diagram Example: Order System

Muttiplicity oereaation
I ggreg

Class
I Role

o -

Attribute — — » o
[

Association Operation

Abstract Class —

Generalization =— — -

* Above diagram is from: https://www.visual-paradigm.com/qguide/uml-unified-modeling-language/uml-class-diagram-tutorial/

Class Diagram Example: GUI

Dependency

= Abstract Class

Aggregation Class
<+ — = Generalization

Aftribute : | ‘

A -

Association = = = »

A
|

Control class |
Operation Composition

* Above diagram is from: https://www.visual-paradigm.com/qguide/uml-unified-modeling-language/uml-class-diagram-tutorial/

Attributes vs. Classes

\/

% The most common confusion — should it be an attribute or a class?

o when creating a domain model, often we need to decide whether to represent
something as an attribute or a conceptual class.

\/

** If a concept is not representable by a number or a string,
most likely it is a class.

% For example:
o alab mark can be represented by a number, so we should represent it as an attribute

o astudent cannot be represented by a number or a string, so we should represent it
as a class

COMP2511: Domain Modelling 23

VVVVVV

= Flight

+ originAirport: String
+ destinationAirport: String

= Sale

+ storeName: String
+ amount : double

Attributes vs. Classes

Better

=

Better

==y

= Flight

+ originAirport: Airport
+ destinationAirport: Airport

- Airport

+ name: String
+ phoneNumber: String

= Sale

+ store: Store
+ amount: double

- Store

+ name: String
+ phoneNumber: String

COMP2511: Domain Modelling

What is wrong with the following?

+ Title:

+ Code:
+UOC

+ Term: String
+ Lecturers [] :
+ Sessions [] :
+ Students [):

Object:Course

Tile = "Inro to computing"”
Code = "COMP1511"
UOC =6

Term = 19T1

Object:Course

Object:Course

Tile = "Inro to computing"
Code = "COMP1511"
UOC =6

Tile = "Inro to computing"
Code = "COMP1511"
UoC=6

Term = 19T2 Term = 19T3
Lecturers [] Lecturers [] Lecturers []
Sessions [] Sessions [] Sessions []
Students [] Students [] Students []
Object:Course Object:Course

Tile = "Data Structures and Algoritms" Tile = "Data Structures and Algoritms"

Code = "COMP2521" Code = "COMP2521"

UOC =6 UOC =6

Term = 19T1 Term = 19T2

Lecturers [] Lecturers []

Sessions [] Sessions []

Students [] Students []

A Possible solution

- Course Object:Course
+ Tide: Tile = "Inro to computing”
3 Code = "COMP1511"
+ Code: UOC =6
+UoC Prereq]
+PreReq (] : CourseOfferings []
+ CourseOfferings: []
%’ Object:CourseOffering Object:CourseOffering Object:CourseOffering
1to
Term = 19T1 Term = 19T2 Term =19T3
Lecturers [] Lecturers [] Lecturers []
Sessions [] Sessions [] Sessions []
= CourseOffering Students [] Students [] Students []
+ Term:
Object:Course
+ Sessions [] :
Tile = "Data Structures and Algorithms"
+ Lecturers [] : Code = "COMP2521"
UOC =6
+ Students []: PreReq []
CourseOfferings []
Object:CourseOffering Object:CourseOffering Object:CourseOffering
Term = 19T1 Term = 19T2 Term = 19T3
Lecturers [] Lecturers [] Lecturers []
Sessions [] Sessions [] Sessions []
Students [] Students) Students []

References

** A very detailed description of UML

o https://www.uml-diagrams.org/

** Books that go into detail on Domain Driven Design
o Domain-Driven Design: Tackling Complexity in the Heart of Software by Eric Evans.

o Domain Modeling Made Functional: Tackle Software Complexity with Domain-Driven

Design and F# by Scott Wlaschin.

COMP2511: Domain Modelling 27

Design By
Contract

COMP2511, CSE, UNSW

Defensive Programming Vs Design by Contract

Defensive programming:

Tries to address unforeseen circumstances, in order to ensure the continuing functionality of the software
element. For example, it makes the software behave in a predictable manner despite unexpected inputs
or user actions.

» often used where high availability, safety or security is needed.

* results in redundant checks (both client and supplier may perform checks),
more complex software for maintenance.

« difficult to locate errors, considering there is no clear demarcation of responsibilities.

* may safeguard against errors that will never be encountered, thus incurring run-time and
maintenance costs.

Design by Contract:

At the design time, responsibilities are clearly assigned to different software elements, clearly
documented and enforced during the development using unit testing and/or language support.

* clear demarcation of responsibilities helps prevent redundant checks,
resulting in simpler code and easier maintenance.

* crashes if the required conditions are not satisfied! May not be suitable for high availability
applications.

COMP2511: Design By Contract

Design by Contract (DbC)

+* Bertrand Meyer coined the term for his design of the Eiffel programming language (in 1986).
Design by Contract (DbC) has its roots in work on formal specification, formal verification and
Hoare logic.

+* In business, when two parties (supplier and client) interact with each other, often they write and
sign contracts to clarify the obligations and expectations. For example,

] Obligations

Client (Must ensure precondition) (May benefit from post-condition)

Be at the Santa Barbara airport at Reach Chicago.

least 5 minutes before scheduled

departure time. Bring only

acceptable baggage. Pay ticket price.

Supplier (Must ensure post-condition) (May assume pre-condition)

Bring customer to Chicago. No need to carry passenger who is late, has
unacceptable baggage, or has not paid ticket
price.

The example is from https://www.eiffel.com/values/design-by-contract/introduction/

COMP2511: Design By Contract

Design by Contract (DbC)

Every software element should define a specification (or a contract) that governs its interaction
with the rest of the software components.

A contract should address the following three questions:

*» Pre-condition - what does the contract expect?

If the precondition is true, it can avoid handling cases outside of the precondition.
For example, expected argument value (mark>=0) and (marks<=100).

¢ Post-condition - what does the contract guarantee?

Return value(s) is guaranteed, provided the precondition is true.
For example: correct return value representing a grade.

+* |Invariant - what does the contract maintain?

Some values must satisfy constraints, before and after the execution (say of the method).
For example: a value of mark remains between zero and 100.

COMP2511: Design By Contract

VVVVVV

Design by Contract (DbC)

A contract (precondition, post-condition and invariant) should be,

** declarative and must not include implementation details.

7

%+ as far as possible: precise, formal and verifiable.

Benefits of Design by Contract (DbC)

Do not need to do error checking for conditions that not satisfy the preconditions!
Prevents redundant validation tasks.
Given the preconditions are satisfied, clients can expect the specified post-conditions.

Responsibilities are clearly assigned, this helps in locating errors and resulting in easier
code maintenance.

Helps in cleaner and faster development.

COMP2511: Design By Contract 6
esign By Contrac UNSW

VVVVVV

Design by Contract (DbC) : Implementation Issues

*** Some programming languages (like Eiffel) offer native support for DbC.
¢ Java does not have native support for DbC, there are various libraries to support DbC.

** In the absence of a native language support, unit testing is used to test the contracts
(preconditions, post-conditions and invariants).

¢ Often preconditions, post-conditions and invariants are included in the documentation.
** As indicated earlier, contracts should be,
* declarative and must not include implementation details.

 as far as possible: precise, formal and verifiable.

COMP2511: Design By Contract 7

VVVVVV

Design by Contract : Example using Eiffel

class DICTIONARY [ELEMENT]
feature
put (x: ELEMENT; key: STRING) is
-- Insert x so that it will be retrievable
-- through key.

Precondition \req"“e
count <= capacity

not key.empty

ensure

Postcondition e has (x)
item (key) = x

count = old count + 1

end

invariant \\\\\! ... Interface specifications of other features ...

invariant
0 <= count

count <= capacity

end

COMP2511: Design By Contract

Design by Contract: Examples in Java

Jxx VAL

@param value to calculate square root * @invarient age >= 0
@returns sqrt - square root of the value i |

@pre value >= 0

@post value = sqrt * sqrt public class Student {
*/

public double squareRoot (double value);

/*t

@param amount to be deposited into the account
@pre amount > 0

@post balance = old balance + amount

"

public void deposit(double amount);

Pre-Conditions

** A pre-condition is a condition or predicate that must always be true just prior to the execution of
some section of code

+ If a precondition is violated, the effect of the section of code becomes undefined and thus may
or may not carry out its intended work.

% Security problems can arise due to incorrect pre-conditions.
% Often, preconditions are included in the documentation of the affected section of code.

% Preconditions are sometimes tested using guards or assertions within the code itself, and some
languages have specific syntactic constructions for testing .

** In Design by Contract, a software element can assume that preconditions are satisfied,
resulting in removal of redundant error checking code.

%* See the next slide for the examples.

- P
COMP2511: Design By Contract 10 =

VVVVVV

Pre-Conditions: Examples

/**

* @pre (mark >=0) and (mark<=100)

* @param mark

' 4
public void printGradeDbC(double mark) {

if(mark < 50) {
System.out.println("Fail");

else {

System.out.println("Pass");
}

} Incorrect behaviour if mark

is outside the expected range

/#*
* Get Student at i'th position
* @pre i < number_of_students
* @param i - student's position
* @return student at i'th position
15
public Student getStudentDbC(int i) {

return students.get(i);

/#*
* @pre (mark >=0) and (mark<=100)
* @param mark
%
public void printGradeDefensive(double mark) {

if((mark < @) || (mark > 100)){
System.out.println("Error");
}

if(mark < 50) {
System.out.println("Fail");

else {
System.out.println("Pass");
}

} Throws runtime exception

if (i >= number_of _students)

Design by Contract

No additional error checking for pre-conditions

Defensive Programming:
Additional error checking for pre-conditions

Pre-Conditions in Inheritance

*» Animplementation or redefinition (method overriding) of an inherited method
must comply with the inherited contract for the method.

+* Preconditions may be weakened (relaxed) in a subclass, but it must comply with the inherited

contract.

+» An implementation or redefinition may lessen the obligation of the client, but not increase it.

% For example, e

* @param theta

o 4

* @pre (theta >=0) and (theta <= 90)
- angle to calculate trajectory
* @return trajectory at angle theta

public double calculateTrajectory(double theta) {

valid

Weaker Pre-condition

/**
* @pre (theta >=0) and (theta <= 180)
* @param theta - angle to calculate trajectory
* @return trajectory at angle theta
7
public double calculateTrajectory(double theta) {

X - not valid
Stronger Pre-condition

/**
* @pre (theta >=0) and (theta <=45)
* @param theta - angle to calculate trajectory
* @return trajectory at angle theta
i/
public double calculateTrajectory(double theta) {

Post-Conditions

some section of code

completion of the routine's execution!ll.

% A post-condition is a condition or predicate that must always be true just after the execution of

% The post-condition for any routine is a declaration of the properties which are guaranteed upon

% Often, preconditions are included in the documentation of the affected section of code.

% Post-conditions are sometimes tested using guards or assertions within the code itself, and some

languages have specific syntactic constructions for testing .

+* In Design by Contract, the properties declared by the post-condition(s) are assured, provided the

software element is called in a state in which its pre-condition(s) were true.

[1] Meyer, Bertrand, Object-Oriented Software Construction, second edition, Prentice Hall, 1997.

/ - -

@param value to calculate square root
@returns sqrt - square root of the value
@pre value >= 0

@post value = sqrt * sqrt

i 4

public double squareRoot (double value);

COMP2511: Design By Contract

13

Post-Conditions in Inheritance

An implementation or redefinition (method overriding) of an inherited method
must comply with the inherited contract for the method.

Post-conditions may be strengthened (more restricted) in a subclass, but it must comply with the
inherited contract.

An implementation or redefinition (overridden method) may increase the benefits it provides to
the client, but not decrease it.

For example,

¢ the original contract requires returning a set.

\/

+* the redefinition (overridden method) returns sorted set, offering more benefit to a client.

COMP2511: Design By Contract 14

VVVVVV

Class Invariant

K/
0.0

The class invariant constrains the state (i.e. values of certain variables) stored in the object.

R/
0.0

Class invariants are established during construction and constantly maintained between calls to
public methods. Methods of the class must make sure that the class invariants are satisfied /
preserved.

% Within a method: code within a method may break invariants as long as the invariants are
restored before a public method ends.

¢ Class invariants help programmers to rely on a valid state, avoiding risk of inaccurate / invalid
data. Also helps in locating errors during testing.

Class invariants in Inheritance

K/

%+ Class invariants are inherited, that means,
"the invariants of all the parents of a class apply to the class itself.

H'

» A subclass can access implementation data of the parents, however, must always satisfy the
invariants of all the parents — preventing invalid states!

COMP2511: Design By Contract

END

Exceptions In Java

COMP2511, CSE, UNSW

Exceptions in Java

An exception is an event, which occurs during the execution of a program, that disrupts the
normal flow of the program's instructions.

When error occurs, an exception object is created and given to the runtime system, this is called
throwing an exception.

The runtime system searches the call stack for a method that contains a block of code that can
handle the exception.

The exception handler chosen is said to catch the exception.

I Method where error occurred < L _{ Method where error occurred Looking for
Method call appropriate
: handler
Method without an exception Forwards exception —| Method without an exception «
o P 4 Looking for
Method call appropriate
Method with an exception Catches some _| Method with an exception handler
handler =1 other exception handler
Method call
main — I main
The call stack. Searching the call stack for

the exception handler.

COMP2511: Design By Contract

Exceptions in Java

The Three Kinds of Exceptions

\/

% Checked exception (IOException, SQLException, etc.)
% Error (VirtualMachineError, OutOfMemoryError, etc.)
*** Runtime exception (ArraylndexOutOfBoundsExceptions, ArithmeticException, etc.)

Checked vs. Unchecked Exceptions

** An exception’s type determines whether it’s checked or unchecked.

+* All classes that are subclasses of RuntimeException (typically caused by defects in your
program’s code) or Error (typically ‘system’ issues) are unchecked exceptions.

+* All classes that inherit from class Exception but not directly or indirectly from class
RuntimeException are considered to be checked exceptions.

COMP2511: Design By Contract

VVVVVV

Exceptions in Java

** Good introduction on Exceptions at
https://docs.oracle.com/javase/tutorial/essential/exceptions/index.html

** Unchecked Exceptions — The Controversy
https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

COMP2511: Design By Contract 4

https://docs.oracle.com/javase/tutorial/essential/exceptions/index.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

Hierarchy of Java Exceptions

Checked Exceptions

Unchecked Exceptions

From the book “Java How to Program, Early Objects”, 11th Edition, by Paul J. Deitel; Harvey Deitel

Example

public void writeList() {
PrintWriter out = null;

—try {
System.out.println("Entering" + " try statement");

_— out = new PrintWriter(new FileWriter("OutFile.txt"));
try for (int i = 0; i < SIZE; i++) {

out.println("Value at: " + i + " = " + list.get(i));
}

——} catch (IndexOutOfBoundsException e) {
System.err.println("Caught IndexOutOfBoundsException: " + e.getMessage());

catch == } catch (IOException e) {
System.err.println("Caught IOException: " + e.getMessage());

—T7 finally {
if (out !'= null) {
System.out.println("Closing PrintWriter");

; out.close();
finally —< FAe

System.out.printin("PrintWriter not open");

User Defined Exceptions in Java

» We can also create user defined exceptions.
»* All exceptions must be a child of Throwable.

» A checked exception need to extend the Exception class,

but not directly or indirectly from class RuntimeException.

% An unchecked exception (like a runtime exception) need to extend the

RuntimeException class.

COMP2511: Design By Contract

VVVVVV

User Defined / Custom Checked Exception

* Normally we define a checked exception, by extending the Exception class.

class MyException extends Exception {

public MyException(String message){

super(message);

User Defined / Custom Exceptions: A Simple Example

try {
out = new PrintWriter(new FileWriter("myData.txt"));
for(int i=0; i<SIZE; i++){
int idx = 1 + 5;

if(idx >= SIZE){
throw new MyException("idx is out of index range!" 3
}

out.println(list.get(idx));

}
catch(IOException e){

System.out.println(" In writeln");
}

catch(MyException e){
ystem.out.println(e.getMessage());
}

catch(Exception e){
System.out.println(" In writeln, Exception");

~R AmAraa = vt 8.

Exceptions in Inheritance

¢ If a subclass method overrides a superclass method,
a subclass’s throws clause can contain a subset of
a superclass’s throws clause.

It must not throw more exceptions!

¢ Exceptions are part of an APl documentation and contract.

Demo: Exceptions in Java

Assertions in Java

An assertion is a statement in the Java that enables you to test your assumptions about your
program. Assertions are useful for checking:

* Preconditions, Post-conditions, and Class Invariants (DbC!)
* Internal Invariants and Control-Flow Invariants

You should not use assertions:
» for argument checking in public methods.
* to do any work that your application requires for correct operation.

Evaluating assertions should not result in side effects.

The following document shows how to use assertions in Java :
https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

Important: for backward compatibility, by default, Java disables assertion validation feature.
It needs to be explicitly enabled using the following command line argument:
* -—enableassertions command line argument, or

* -—ea command line argument

COMP2511: Design By Contract

VVVVVV

Assert : Example

/**
* Sets the refresh interval (which must correspond to a legal frame rate).
*
* @param interval refresh interval in milliseconds.
o 4
private void setRefreshInterval(int interval) {
// Confirm adherence to precondition in nonpublic method
assert interval > 0 &% interval <= 1000/MAX_REFRESH_RATE : intervali

//ruﬁ* // Set the refresh interval

/

Exceptions: Summary Points

Consider your exception-handling and error-recovery strategy in the design process.
Sometimes you can prevent an exception by validating data first.

If an exception can be handled meaningfully in a method, the method should catch the
exception rather than declare it.

If a subclass method overrides a superclass method, a subclass’s throws clause can contain a
subset of a superclass’s throws clause. It must not throw more exceptions!

Programmers should handle checked exceptions.

If unchecked exceptions are expected, you must handle them gracefully.

Only the first matching catch is executed, so select your catching class(es) carefully.
Exceptions are part of an APl documentation and contract.

Assertions can be used to check preconditions, post-conditions and invariants.

COMP2511: Design By Contract

VVVVVV

Generics and
Collections in Java

COMP2511, CSE, UNSW

Generics in Java

Generics enable types (classes and interfaces) to be parameters when defining:
* classes,

* interfaces and
* methods.

Benefits

** Removes casting and offers stronger type checks at compile time.

+» Allows implementations of generic algorithms, that work on collections of different types, can
be customized, and are type safe.

*» Adds stability to your code by making more of your bugs detectable at compile time.

List list = new ArraylList(); List<String> 1istG = new ArraylList<String>();

list.add("hello"); listG.add("hello");

String s = (String) list.get(0); String sg = listG.get(@); // no cast
Without Generics With Generics

COMP2511: Design By Contract 2
ey UNSW

Generic Types

/7

** A generic type is a generic class or interface that is parameterized over types.

/7

** A generic class is defined with the following format:
class name< T1, T2, ..., Tn> {/* ... */ }

% The most commonly used type parameter names are:

*

* E - Element (used extensively by the Java Collections Framework)

o

» K - Key public_class qu { A
private Object object;

o

e

* N - Number
public void set(Object object) { this.object = object; }

o T - Type public Object get() { return object; }
% V-Value }
s S,UV etc. - 2nd, 3rd, 4th types yrT
* Generic version of the Box class.
% For examp|e’ :/@param <T> the type of the value being boxed
Box<Integer> integerBox = new Box<Integer>(); public class Box<T> {
OR // T stands for "Type"
private T t;
Box<Integer> integerBox = new Box<>();
public void set(T t) { this.t = t; }
public T get() { return t; }
}

COMP2511: Design By Contract

Multiple Type Parameters

* A generic class can have multiple type
parameters.

}

/7

** For example, the generic OrderedPair class,
which implements the generic Pair interface

public interface Pair<K, V> {

public K getKey();
public V getValue();

public class OrderedPair<K, V> implements Pair<K, V> {
st

S

private K key;
private V value;

public OrderedPair(K key, V value) {
this.key = key;
this.value = value;

}

public K getKey() { return key; }
public V getValue() { return value; }

% Usage examples,

Pair<String, Integer> p1 = new OrderedPair<String, Integer>("Even", 8);
Pair<String, String> p2 = new OrderedPair<String, String>("hello", "world");

OrderedPair<String, Integer> p1 = new OrderedPair<>("Even", 8);
OrderedPair<String, String> p2 = new OrderedPair<>("hello", "world");

OrderedPair<String, Box<Integer>> p = new OrderedPair<>("primes", new Box<Integer>(...));

COMP2511: Design By Contract

Generic Methods

Generic methods are methods that introduce their own type parameters.

‘public class Util {
public static <K, V> boolean compare(Pair<K, V> pl, Pair<K, V> p2) {
return pl.getKey().equals(p2.getKey()) &&
pl.getValue().equals(p2.getValue());

}

1}
|
The complete syntax for invoking this method would be:
Pair<Integer, String> p1 = new Pair<>(1, "apple");

Pair<Integer, String> p2 = new Pair<>(2, "pear");
boolean same = Util.<Integer, String>compare(p1, p2);

The type has been explicitly provided, as shown above.

Generally, this can be left out and the compiler will infer the type that is needed:

Pair<Integer, String> p1 = new Pair<>(1, "apple");
Pair<Integer, String> p2 = new Pair<>(2, "pear");
boolean same = Util.compare(p1, p2);

COMP2511: Design By Contract

SSSSSS

Bounded Type Parameters

** There may be times when you want to restrict the types that can be used as type
arguments in a parameterized type.

** For example, a method that operates on numbers might only want to accept instances
of Number or its subclasses. /

public <U extends Number> void inspect(U Lf){
System.out.println("U: " + u.getClass().getName());
}

public class NaturalNumber<T extends Integer> {

o«
COMP2511: Design By Contract

VVVVVV

Multiple Bounds

%* A type parameter can have multiple bounds:

< TextendsB1 & B2 & B3 >
» A type variable with multiple bounds is a subtype of all the types listed in the bound.

»* Note that B1, B2, B3, etc. in the above refer to interfaces or a class. There can be at

most one class (single inheritance), and the rest (or all) will be interfaces.

%* If one of the bounds is a class, it must be specified first.

COMP2511: Design By Contract

VVVVVV

Generic Methods and Bounded Type Parameters

public static <T> int countGreaterThan(T[] anArray, T elem) {
int count = 0;
for (T e : anArray)
if (e_> elem) // compiler erro X =jinvalid
++count;
return count;

¥

public interface Comparable<T> {
public int compareTo(T o0);
}

public static <T extends Comparable<T>> int countGreaterThan(T[] anArray, T elem
int count = 0;
for (T e : anArray)
if (e.compareTo(elem) > 0) Valid
++count;
return count;

Generics, Inheritance, and Subtypes

»* Consider the following method:

public void boxTest(Box<Number>n) { /* ... */ }

Number
** What type of argument does it accept? “I
ger
+** Are you allowed to pass in
Box<Integer> or Box<Double> ?
¢ The answer is "no", because Box<Integer> and | |
Box<Double> are not subtypes of Box<Numbers>. | BoxcNumber> | Boxdinteger>
** This is a common misunderstanding when it comes to
programming with generics.
R
COMP2511: Design By Contract 9 =F

SSSSSS

Generic Classes and Subtyping

. _ _ _ Collection<String>
%* You can subtype a generic class or interface by extending or $
implementing it. List<String>
** The relationship between the type parameters of one class or interface t
and the type parameters of another are determined by the extends and ArrayList<String>
implements clauses.
¢ ArrayList<E> implements List<E>, and List<E> extends Collection<E>.
% So ArrayList<String> is a subtype of List<String>,
which is a subtype of Collection<String>.
** So long as you do not vary the type argument,
the subtyping relationship is preserved between the types.
interface PayloadList<E,P> extends List<E> { =
void setPayload(int index, P val); I $ Lot
| List<String>
} | i |
PayloadList<String,String> PayloadListeString, String> | PayloadList<Siring, Integer> | PayloadList<String, Exception>
PayloadList<String, Integer>

PayloadList<String,Exception>

COMP2511: Design By Contract

Wildcards: Upper bounded

¢ In generic code, the question mark (?), called the wildcard, represents an unknown
type.

% The wildcard can be used in a variety of situations: as the type of a parameter, field, or
local variable; sometimes as a return type.

¢ The upper bounded wildcard, < ? extends Foo >, where Foo is any type, matches
Foo and any subtype of Foo .

% You can specify an upper bound for a wildcard, or you can specify a lower bound, but
you cannot specify both.

public static void process(List<? extends Foo> list) {
for (Foo elem : list) {
Il ses
} public static double sumOfList(List<? extends Number> list) {
} double s = 0.0;

for (Number n : list)
s += n.doubleValue();

return s;

COMP2511: Design By Contract 11

Wildcards: Unbounded

» The unbounded wildcard type is specified using the wildcard character (?),
for example, List< ? >. This is called a list of unknown type.

public static void printList(List<Object> list) {

for (Object elem : list) 3) :)
Sva b out D Tt el W It prints only a list of Object instances;

System.out.println(); it cannot print List<Integer>, List<String>,

} List<Double>, and so on
J

public static void printList(List<?> list) {
for (Object elem: list)
System.out.print(elem + " "); To write a generic printList
System.out.println(); method, use List<?>

) |

COMP2511: Design By Contract

Wildcards: Lower Bounded

»* An upper bounded wildcard restricts the unknown type to be a specific type or a
subtype of that type and is represented using the extends keyword.

** Alower bounded wildcard is expressed using the wildcard character ('?'), following by
the super keyword, followed by its lower bound: < ? super A >.

% To write the method that works on lists of Integer and the super types of Integer, such
as Integer, Number, and Object, you would specify List<? Super Integer>.

¢ The term List<Integer> is more restrictive than List<? super Integer>.

public static void addNumbers(List<? super Integer> list) {
for (int i = 1; i <= 10; i++) {
list.add(i);
}

COMP2511: Design By Contract 13
Sy UNSW

VVVVVV

Wildcards and Subtyping

*» Although Integer is a subtype of Number,
List<Integer> is not a subtype of List<Number> and,

these two types are not related.

+* The common parent of
List<Number> and List<Integer> is

List<?>. %

A hierarchy of several generic List class declarations.

Collections in Java

A collections framework is a unified architecture for representing and manipulating

collections. A collection is simply an object that groups multiple elements into a single unit.

All collections frameworks contain the following:

** Interfaces: allows collections to be manipulated independently of the details of their
representation.

** Implementations: concrete implementations of the collection interfaces.

% Algorithms: the methods that perform useful computations, such as searching and
sorting, on objects that implement collection interfaces.

* The algorithms are said to be polymorphic: that is, the same method can be used
on many different implementations of the appropriate collection interface.

COMP2511: Design By Contract

VVVVVV

Core Collection Interfaces:

*» The core collection interfaces encapsulate different types of collections

¢ The interfaces allow collections to be manipulated independently of the details of their
representation.

I e

The core collection interfaces.

The Collection Interface

** A Collection represents a group of objects known as its elements.

** The Collection interface is used to pass around collections of objects where maximum
generality is desired.

\/

%* For example, by convention all general-purpose collection implementations have a
constructor that takes a Collection argument.

** The Collection interface contains methods that perform basic operations, such as
* int size(),
* boolean isEmpty(),
* boolean contains(Object element),
* boolean add(E element),
* boolean remove(Object element),
* lIterator<E> iterator(),
¢ many more ...

More at : https://docs.oracle.com/javase/tutorial/collections/interfaces/collection.html

COMP2511: Design By Contract 17
o UNSW

SSSSSS

https://docs.oracle.com/javase/tutorial/collections/interfaces/collection.html

Collection Implementations

/

** The general purpose implementations are summarized in the following table:

Interface Hash Table Resizable Array Balanced Tree Linked List Hash Table + Linked List

Set HashSet TreeSet LinkedHashSet
List ArrayList LinkedList

Deque ArrayDeque LinkedList
Map HashMap TreeMap LinkedHashMap

1‘
Implemented Classes in the Java Collection,
Read their APlIs.

% Overview of the Collections Framework at the following page:
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html

COMP2511: Design By Contract 18

YYYYYY

https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html

Wrappers for the Collection classes

“ https://docs.oracle.com/javase/tutorial/collections/implementations/wrapper.html

COMP2511: Design By Contract 19

https://docs.oracle.com/javase/tutorial/collections/implementations/wrapper.html

Demo: Collections Framework

End

Junit Testing In
Java

COMP2511, CSE, UNSW

Software Testing

+* Different types of testing:
o Object Oriented Design document describes responsibilities of classes and methods (APIs) = Unit Testing
o System Design Document = Integration Testing
o Requirements Analysis Document = System Testing
o Client Expectation = Acceptance Testing

** Unit Testing is also useful for refactoring tasks.

+** In this course, we will focus on Unit testing.

COMP2511: Junit Testing 2

VVVVVV

JUnit

¢ JUnit is a popular unit testing (open source) framework for testing Java programs.

** Most popular IDEs facilitate easy integration of Junit.

+* Basic Junit Terminology:

@)

@)

Test Case — Java class containing test methods

Test Method — a method that executes the test code, annotated with @Test, in a Test
Case

Asserts - asserts or assert statements check an expected result versus the actual result

Test Suites — collection of several Test Cases

COMP2511: Junit Testing 3

VVVVVV

14 /%%

Q 15 * Tests for Pineapple on Piazza
a 16 * @author Nick Patrikeos
'.. 37 */
a 149 public class PiazzaTest {
19
3 20 @Test
(12 21 public void testExampleUsage() {
v? 22 // Create a forum and make some posts!
23 = " "y .
E 24 assertEquals("COMP2511", forum.getName());
-5 25
o 26 Thread funThread = forum.publish("The Real Question - Pineapple on Piazza", "Who likes pineapple on piazza?");
wl 27
t 28 funThread.setTags(new String[] { "pizza", "coding", "social", "hobbies" });
()] 29 | assertTrue(
:‘; 30 Arrays.equals(new StrinI[l { "coding", "hobbies", "pizza", "social" }, funThread.getTags().toArray()));
31
2 32 funThread.publishPost("Yuck!");
‘l’ 33 funThread.publishPost("Yes, pineapple on pizza is the absolute best");
e 34 funThread.publishPost ("I think you misspelled pizza btw");
g- 35 funThread.publishPost("I'1ll just fix that lol");
36
[+ 37 assertEquals(5, funThread.getPosts().size());
38 }
ﬁ 39
dd 40 @Test
'E 41 public void testSearchByTag() {
: 42 PiazzaForum forum = new PiazzaForum("COMP2511");
— 43
44 Thread labThread = forum.publish('Lab 1", "How do I do the piazza exercise?");
45 Thread assignmentThread = forum.publish("Assignment", "Are we back in blackout?");
46 labThread.setTags(new String[] { "Java" });
47 assignmentThread.setTags(new String[] { "Java" });
48
49 List<Thread> searchResults = forum.searchByTag("Java");
50 assertEquals(“Lab 01", searchResults.get(®).getTitle());

51 assertEquals(“Assignment", searchResults.get(1l).getTitle());

15 public class ArchaicFsTest {

: 16 @Test

(o] 17 public void testCdInvalidDirectory() {

'; 18 ArchaicFileSystem fs = new ArchaicFileSystem();
19

% 20 // Try to change directory to an invalid one

9 21 assertThrows (UNSWNoSuchFileException.class, () ->» {
22 fs.cd("/usr/bin/cool-stuff");

|ﬁ 23 };
24 }

LN 25

2 26 @Test

n 27 public void testCdValidDirectory() {

E 28 ArchaicFileSystem fs = new ArchaicFileSystem();
29

(] 30 assertDoesNotThrow(() -> {

x 31 fs.mkdir("/usr/bin/cool-stuff", true, false);

m 32 fs.cd("/usr/bin/cool-stuff");
33)2 H

L — 34)

| == 35

: 36 @Test

— 37 public void testCdAroundPaths() {
38 ArchaicFileSystem fs = new ArchaicFileSystem();
39
40 assertDoesNotThrow(() =-> {
41 fs.mkdir("/usr/bin/cool-stuff”, true, false);
42 fs.cd("/usr/bin/cool-stuff");
43 assertEquals("/usr/bin/cool-stuff", fs.cwd());
a4 fs.cd(™..");
45 assertEquals("/usr/bin", fs.cwd());
46 fs.cd("../bin/..");
a7 assertEquals(“/usr", fs.cwd());
48 });
49 }
50
51 @Test
52 public void testCreateFile() {
53 ArchaicFileSystem fs = new ArchaicFileSystem();
54
55 assertDoesNotThrow(() -> {
56 fs.writeToFile("test.txt", "My Content", EnumSet.of(FileWriteOptions.CREATE, FileWriteOptions.TRUNCATE));
57 assertEquals("My Content", fs.readFromFile("test,txt"));
58 fs.writeToFile("test.txt", “New Content", EnumSet.of(FileWriteOptions.TRUNCATE));
59 assertEquals(“New Content", fs.readFromFile("test.txt"));
60 3N

Junit: Dynamic and parameterized tests

For information on Dynamic and parameterized tests,

o see the tutorial at https://www.vogella.com/tutorials/JUnit/article.html

¢ For more information on JUnit, read the user guide at:

o https://junit.org/junit5/docs/current/user-guide/

COMP2511: Junit Testing 6

https://www.vogella.com/tutorials/JUnit/article.html
https://junit.org/junit5/docs/current/user-guide/

End

Software Design
Principles

COMP2511, CSE, UNSW

What Goes Wrong in Software Design?

*» Initial design is clean and elegant, often well-structured.
** Over time, design degrades due to evolving requirements and rushed changes.

** Known as "software rot", this process makes code hard to maintain and evolve.

Symptoms:
o Rigidity: Small changes cause widespread impact.
o Fragility: One change breaks unrelated parts.
o Immobility: Useful components can’t be reused easily.

o Viscosity: Environment or process encourages hacks over clean design.

COMO02511: Software Design Principles 2

Rigidity and Fragility

Rigidity: System resists change due to interdependencies.

Example: A login module change forces updates in unrelated reporting or database
modules.

Impact: Managers hesitate to allow even minor fixes.

Fragility: Changes result in unexpected breakages.
Example: Fixing an email validator crashes the profile picture upload feature.
Impact: Developer trust and morale drop; testing becomes difficult.

Observation: The above are due to poor dependency management, not just evolving
requirements.

COMO02511: Software Design Principles 3

Immobility and Viscosity

Immobility: Modules can't be reused due to tight coupling.

Example: A "UserNotification" class depends on web framework internals, so we
cannot reuse in CLI app.

Design viscosity: Easier to do the wrong thing (hack) than the right thing.

Environmental viscosity: Long compile/test cycles encourage shortcuts.

Example: Hack a feature with global variables instead of refactoring due to 20-
minute build time.

Observation: Most symptoms of rot are caused by bad dependency structures.

COMO2511: Software Design Principles

What Are Software Design Principles?

¢ They provide guidelines to develop systems that are maintainable, flexible, reusable,
and robust.

s Adhering to these principles helps to mitigate common software engineering issues
such as design rot (degradation) and ensures software remains scalable and adaptable
over time.

** Changing requirements don’t have to ruin design.

** Good design anticipates change, however, bad design breaks under it.

COMO2511: Software Design Principles

Importance of Software Design Principles

» Maintainability: Software should be easy to update and enhance without extensive

refactoring (re-engineering).
» Flexibility: Systems should adapt smoothly to changing requirements.

+ Reusability: Components and modules should be designed to be easily reusable across

various parts of the application or even in different projects.

» Robustness: The software should handle errors gracefully and maintain functionality

under different circumstances.

COMO2511: Software Design Principles 6

SOLID Principles (1)

An acronym that represents five crucial principles for object-oriented design:

Single Responsibility Principle (SRP):
o A class should have only one reason to change, focusing on a single functionality.

Open/Closed Principle (OCP):
o Software entities should be open for extension but closed for modification.

Liskov Substitution Principle (LSP):

o Objects of a superclass should be replaceable with objects of subclasses without affecting the
correctness of the program.

COMO02511: Software Design Principles 7

SOLID Principles (2)

Interface Segregation Principle (ISP):

o Clients should not be forced to depend on interfaces they do not use; favor many specific
interfaces over a single general-purpose one.

Dependency Inversion Principle (DIP):

o Depend on abstractions, not concrete implementations. Higher-level modules should not
depend on lower-level modules but rather on abstractions.

COMO2511: Software Design Principles 8

Why Follow These Principles?

L)

* Preventing Software Rot: Avoid the deterioration of the software design
over time.

L)

L)

L)

» Ease of Maintenance: Reduce the cost and effort involved in updating and
managing code.

L)

* Enhanced Productivity: Developers spend less time debugging and
refactoring, more on innovation and delivering value.

L)

L)

L)

* Improved Collaboration: Clear, principle-driven design aids team
communication and collaboration.

COMO02511: Software Design Principles 9

Real-world Example

Consider an online payment system:

Without design principles:

** Payment methods (Credit Card, PayPal, Crypto, etc.) tightly coupled in the
codebase, making additions or modifications challenging and error-prone.

Applying SOLID principles:
¢ Each payment method is encapsulated within its class (SRP).

s Adding new payment methods requires implementing a payment interface
without altering existing code (OCP, DIP).

s Users of payment classes aren't exposed to methods irrelevant to them (ISP).

COMO02511: Software Design Principles

Good Design

“Change in software is constant, good design embraces it!”

» Following structured design principles ultimately results in higher-quality,
longer-lasting software.

COMO02511: Software Design Principles 11

Software Cohesion and Coupling

** Cohesion: The degree to which elements of a module/class belong together.
** Coupling: The degree of interdependence between software modules.

** High cohesion and low coupling are hallmarks of good software design.
S — =) — = S ——— —_—

COMO02511: Software Design Principles 12

SSSSSS

What is Cohesion?

** Cohesion: The degree to which elements of a module/class belong together.
** High Cohesion: Elements of the module work towards a single purpose.
** Low Cohesion: Elements are unrelated or loosely related.

s Aim for high cohesion for maintainability and readability.

COMO02511: Software Design Principles 13

Examples of Cohesion

High Cohesion

Low Cohesion

Class: InvoiceProcessor

o Methods: calculateTotal(), applyDiscount(), generatelnvoice()

o All methods related to processing an invoice.

Benefits: Easier to understand and maintain, Reusable

Class: UtilityClass
o Methods: readFile(), sendEmail(), sortArray()

o Functions unrelated to one another.

Problems: Hard to maintain, Difficult to test, Not reusable as a unit

COMO2511: Software Design Principles

What is Coupling?

** Coupling: The degree of interdependence between software modules.
**» Tight Coupling: Modules heavily dependent on each other.
*** Loose Coupling: Modules operate independently with minimal dependencies.

*» Aim for loose coupling to enable flexibility and reuse.

COMO02511: Software Design Principles 15

Types of Coupling

Some of the important types of coupling are:

*» Data Coupling: Modules share data through parameters.

¢ Control Coupling: One module controls the flow of another (e.g., flags).
» External Coupling: Modules depend on externally imposed data formats.
** Common Coupling: Shared global variables.

* Content Coupling: One module modifies data of another.

COMO02511: Software Design Principles 16

Examples of Coupling

Modules: Userlnterface, BusinessLogic, DataAccess

Low Coupling | © Each layer interacts through interfaces.

Benefits: Easy to change or replace components, Improved testability

Class A calls methods of Class B directly and modifies its state.

High Coupling Problems: Difficult to reuse or refactor, Ripple effects from changes

COMO02511: Software Design Principles 17

Design Tips for High Cohesion

** Use the Single Responsibility Principle (SRP), as far as possible.
** Group related functionalities.
** Avoid “God classes”.

+* Refactor when a class or method grows too large.

COMO02511: Software Design Principles 18

Design Tips for Low Coupling

+* Minimize shared data
* Use interfaces and abstractions
** Apply Dependency Injection

» Use event-driven or observer patterns, for loosely dynamically coupled systems

COMO02511: Software Design Principles 19

When to Use Design Principles?

»* Design principles help to remove design smells: needless complexity.
»* However, they should not be used when there are no design smells.
% It is a mistake to blindly accept a principle just because it is one.

** Avoid over-adherence, it can create a new design smell: needless complexity.

COMO02511: Software Design Principles 20

Design Principle:

Principle of Least Knowledge (Law of Demeter)

** The Principle of Least Knowledge (also called the Law of Demeter) suggest that a

module (or object) should only talk to its immediate "friends", and not to strangers.

** In simpler terms: “Only call methods on objects you directly know.”

** Formal Rule

A method M of an object O may only invoke methods that belong to:
1) O itself
2) M's parameters
3) Any objects created/instantiated within M
4) O’s direct fields (its own instance variables)

COMO02511: Software Design Principles 21

Design Principle:

Principle of Least Knowledge (Law of Demeter)

** Minimises coupling: Prevents objects from becoming overly dependent on

others' internal structure.

** Enhances maintainability: Changes in one class are less likely to ripple

through the system.

** Improves encapsulation: Objects hide their data better and expose

minimal necessary interfaces.

COMO2511: Software Design Principles

Code Example — Violating LoD (Tightly Coupled)

class Engine {

public void start() { System.out.println("Engine started"); }
}

class Car {
private Engine engine = new Engine();
public Engine getEngine() { return engine; }

class Driver {
public void startCar(Car car) {

car.getEngine().start(); < Violates LoD, Q
s ' ' accessing a “stranger” (engine)

}

COMO02511: Software Design Principles 23

VVVVVV

Code Example — Respecting LoD (Loosely Coupled)

class Engine {
public void start() { System.out.printin("Engine started"); }

}

class Car {
private Engine engine = new Engine();

public void start() { engine.start(); } < Car mediates access @
}
class Driver {

public void startCar(Car car) {

car.start(); < Talks only to its direct friend @

}

}
COMO2511: Software Design Principles 24 g;;,

VVVVVV

Definition of LSP (Liskov Substitution Principle)

"Objects of a superclass should be replaceable with

objects of a subclass without breaking the application.”
- Barbara Liskov, 1987

+** This ensures a subclass behaves in ways that do not surprise or violate the expectations
set by the parent class.

** Formally:

“Let S be a subtype of T. Then, objects of type T may be replaced with
objects of type S without altering any of the desirable properties of the program.”

COMO02511: Software Design Principles 25

Real-World Analogy: LSP

¢ Superclass: Bird
Subclass: Penguin

¢ Birds can fly, therefore fly() is in the base (super) class Bird.

** Penguins are birds, but they cannot fly.

** Problem: Substituting Penguin for Bird breaks the program!

COMO02511: Software Design Principles 26

Examples: LSP

class Bird { Violating LSP

void fly() {
System.out.println("Flying...");

class Ostrich extends Bird {
@Override
void fly() {
throw new UnsupportedOperationException("0Ostrich can'

interface Bird { Fixing the Violation
void eat();

}

interface FlyingBird extends Bird {
void fly();
}

class Sparrow implements FlyingBird {
public void fly() { System.out.println("Sparrow flies"); }
public void eat() { System.out.println("Sparrow eats"); }

}

class Ostrich implements Bird {

public void eat() { System.out.println("Ostrich eats"); }
}

COMO02511: Software Design Principles 27

Example: LSP (Shape Hierarchy)

class Rectangle {
int width, height;
void setWidth(int w) { width = w; }
void setHeight(int h) { height = h; }
int area() { return width *x height; }

O

class Square extends Rectangle {
void setWidth(int w) {

width = w;
height = w;
}
void setHeight(int h) {
width = h;
height = h;
}

After refactoring

We cannot substitute Square for Rectangle,
may break logic expecting width != height.

COMO02511: Software Design Principles

p

interface Shape {
int areal();

©

class Rectangle implements Shape { ... }
class Square implements Shape { ... }

Why LSP Matters

»* Encourages correct hierarchy modelling

» Enables safe polymorphism

** Reduces unexpected behaviour at runtime
¢ Facilitates reusability and maintainability

» Think of LSP as a contract: subclasses must honour the guarantees of their parents.

COMO02511: Software Design Principles 29

Introduction to Covariance and Contravariance

+** Covariance and Contravariance describe how types behave in inheritance when

method overriding.
** Covariance: Return type can be more specific (subtype)

*» Contravariance: Parameter types can be more general (supertype)

COMO02511: Software Design Principles 30 UNSW

SSSSSS

Covariant Return Types

s Allows the return type in an overridden

method to be a subtype of the original.

** Enables more specific results while

remaining compatible.

class Animal {}

class Dog extends Animal {}
— -~

class AnimalShelter {
Animal adopt() { return new Animal(); }

——

class DogShelter extends AnimalShelter {
@Override

Dog adopt() { return new Dog(); }

COMO02511: Software Design Principles Sl

SSSSSS

Contravariance in Parameters

*» Contravariant parameters accept supertypes of the original type.

+** This is not allowed in typical method overriding (Java, C++).

class Parent {
void process(Number n) { ... }

}

class Child extends Parent {

}

COMO02511: Software Design Principles

void process(Integer i) { ... } <:|

Not Overriding,
But results in Overloading!
Now there are two methods,

one each for Number and Integer types.

SSSSSS

Rules Summary for Method Overriding

Aspect Rule in OOP Overriding

Method Name Must match

Parameters Must be identical

Return Type Covariant allowed
Exceptions Can be narrower

Access Modifier Can be more open y

COMO2511: Software Design Principles 28

End

Refactoring

COMP2511, CSE, UNSW

Introduction to Refactoring

¢ Refactoring is the process of restructuring existing code
without changing its external behavior.

s Aim is to:
o improve internal structure/design, readability, and
maintainability
o help detect bugs.
o increase development speed.

o help conform to design principles and eliminate design/code
smells.

COMP2511: Refactoring

SSSSSS

When to Refactor

s Before adding new features if current structure is not suitable.
** While fixing bugs.

¢ During code reviews.

COMP2511: Refactoring 3

Code Smells

** Code smells are indicators of potential design issues.

** They hint at poor design but do not guarantee defects.

*»» Refactoring addresses code smells.

Common Code Smells:

Duplicated Code Shotgun Surgery
Long Method Feature Envy
Large Class Lazy Classes
Long Parameter List Data Classes
Divergent Change

COMP2511: Refactoring 4

Refactoring Cycle

s Step 1: Identify code smell.

s Step 2: Write tests to confirm current behaviour.
¢ Step 3: Apply small refactoring step.

** Step 4: Re-run tests.

% Step 5: Repeat.

COMP2511: Refactoring 5

Refactoring Technique: Extract Method

¢ ldentify logical chunks of code and
extract into separate methods.

** Benefits: improves readability,
reduces duplication.

Before

void printOwing() {
printBanner();

// calculate outstanding

double outstanding = 0;

for (Order o : orders) {
outstanding += o.getAmount();

}

After

void printOwing() {
printBanner();

double outstanding = calculateQOutstanding();

printDetails(outstanding);MZ///
}

2

printDetails(outstanding);

'factoring

double calculateQutstanding() {
double result = 0;
for (Order o : orders) {
result += o.getAmount();

}

return result;

}

VVVVVV

Refactoring Technique: Move Method

** Move methods to the class whose data they use most.

class Customer {
double getDiscount(Product product) {
return product.getBasePrice() x 0.1;

e

}
} O\

Y

Move getDiscount to Prodtict class.

class Product {
double getDiscount() {
return this.getBasePrice() * 0.1;

}

COMP2511: Refactoring

VVVVVV

Refactoring Technique: Replace Temp with Query

** Move expressions into methods instead of temporary variables.

if (basePrice > 1000)
return basePrice x 0.95;

double basePrice = quantity x itemPrice;

if

(basePrice() > 1000)
return basePrice() * 0.95;

double basePrice() {

}

return quantity *x itemPrice;

COMP2511: Refactoring

SSSSSS

Refactoring Technique: Replace Conditional with
Polymorphism

** Switch or if-else chains based on type codes are hard to maintain and violate OOP
principles.
o Adding a new type requires changes to every switch statement.
o Increases rigidity and breaks Open/Closed Principle.

Solution:

o Replace switch statements with inheritance.

o Define a superclass with an abstract method and implement this method in subclasses, each
representing a case of the switch.

COMP2511: Refactoring 9

Refactoring Technique: Replace Conditional with
Polymorphism

s Use polymorphism instead of conditionals.

(abstract class Movie {

abstract double getCharge(int daysRented);

"4 .
class Movie {

}

\

int getPriceCode();

class Rental {

double getCharge() {
switch(movie.getPriceCode()) {
case REGULAR: return daysRented x 2;

case CHILDRENS: return daysRented * 1.5;

}
}

N

}
_
) & : : N
class RegularMovie extends Movie {
double getCharge(int daysRented) {
) return daysRented * 2;
™~ }
M
VN y
(class ChildrensMovie extends Movie { A
double getCharge(int daysRented) {
return daysRented * 1.5;
}
/ J J
COMP2511: Refactoring 10

VVVVVV

Refactoring Using Composition

¢ Favor composition over inheritance.

Instead of extending Logger class,

use composition (has-a relation) and method forwarding.

class Application {
private Logger logger = new Logger();
void logInfo(String msg) { —
logger. log(msg);
}

COMP2511: Refactoring

SSSSSS

Desigh Smell: Refused Bequest

Refused Bequest: subclass inherits inappropriate behavior.

((abstract class Transport {
private String model;

return model;

[public String getModel() { J

}

Push Down getModel()

\} J/

class Car extends Transport {
// uses getModel()

}

(class Camel extends Transport {

@Override
public String getModel() {
throw new UnsupportedOperationException("Camels don't have models");

}

}

Problem: Refused Bequest — Camel shouldn't inherit getModel().

Y

COMP2511: Refactoring

abstract class Transport {
// Common transport functionality
}
(class Car extends Transport {)
private String model;
public String getModel() {
return model;
}
\} J
(class Camel extends Transport {
// No getModel()
|}
R
12

Smell: Long Parameter List

¢ To avoid long parameter lists, encapsulate related parameters into a data class and pass
an instance of that class instead.

void createUser(String name, int age, String email, String phone)

/class UserInfo {
String name;
int age;

String email;
String phone;

\ Y,

void createUser(UserInfo user)

COMP2511: Refactoring 13

SSSSSS

Smell: Large Method/Class

» Large Method: method with many lines doing multiple things.

» Refactor: use Extract Method to create new method(s)

» Large Class: Class with 20+ methods and many fields.

»* Refactor: use Extract Class to separate concerns.

COMP2511: Refactoring 14

Smell: Similar Code Fragments

Case 1: Same code in multiple methods of the same class
o Use Extract Method and invoke it from each place.

Case 2: Same code in two subclasses of the same level

o Use Extract Method in both subclasses, Use Pull Up Field or Pull Up Method to unify code in the
superclass.

o Ifinside constructors: use Pull Up Constructor Bodly.
o For similar but not identical code: use Template Method.
o If algorithms differ, use Strategy Pattern.

Case 3: Duplicate code in unrelated classes

o Use Extract Superclass to unify shared logic.

COMP2511: Refactoring 15

Smell: Feature Envy

** A method is more interested in another class’s data than its own.

Symptoms
o The method invokes several methods on another object to calculate a value.
o Causes unnecessary coupling and breaks encapsulation.

Solution: Move the method to the class that owns the data (Move Method).

o If only part of the method accesses external data: use Extract Method followed by Move
Method.

o If multiple external classes are involved: identify which one holds the majority of used data
and move the method there.

COMP2511: Refactoring 16

Smell: Divergent Change

s A class is changed in many unrelated ways for different
reasons.

¢ Violates Single Responsibility Principle.

» Increases risk of regression bugs due to unrelated
modifications

Solution:

o ldentify the reasons for change and separate them into
cohesive classes.

o Use Extract Class to encapsulate each responsibility.

COMP2511: Refactoring

N_

/7; Before
class DocumentManager {

void print(Document doc) { ... }
void save(Document doc) { ... }

void exportToPDF(Document doc) { ...

}

}

N

7/ After
class PrintService {

void print(Document doc) { ... }

class PersistenceService {

void save(Document doc) { ... }

class ExportService {
void exportToPDF(Document doc) { ...

J N\~

17

L

%gﬁ‘

=<
o
z
m
<

Smell: Shotgun Surgery

** A small change requires updating many different classes.

** Makes code brittle and hard to maintain.

Solution:

o Consolidate related changes into a single class.

o Use Move Method, Move Field, or Inline Class to localize the change.

// Before: logic for logging exists in multiple classes
class Order {
void logCreation() { Logger.log("Order created"); }
}
class Invoice {
void logGeneration() { Logger.log("Invoice generated"); }

}

// After: Centralized logging

class LogService {
[::::::::> static void logOrderCreation() { Logger.log("Order created"); }

static void logInvoiceGeneration() { Logger.log("Invoice generated"); }

}

COMP2511: Refactoring

18

T2k \v

=<
o
z

Divergent Change and Shotgun Surgery

*» Divergent Change = One class changes for many unrelated reasons.
*» Shotgun Surgery = One change spreads across many classes.

+* Both can be addressed with refactoring to improve modularity and reduce fragility.

COMP2511: Refactoring 19

Useful Links

https://refactoring.guru/refactoring/smells

https://www.refactoring.com/catalog/

https://refactoring.guru/refactoring/smells
https://www.refactoring.com/catalog/

Demo

The Video Rental System

End

Introduction to
Software Patterns
anag

Strategy Pattern

COMP2511, CSE, UNSW

YYYYYY

What Are Design Patterns?

** Proven solutions to common software design problems.
** Reusable templates that help structure software.

** Provide shared vocabulary for developers.

COMP2511: Introduction to Patterns and Strategy Pattern

Why Use Design Patterns?

% Serve as a template or a guide for addressing important software design issues.

» Is not a complete implementation, but rather a flexible guideline for addressing recurring design
challenges.

» Captures design expertise, making it easier to share and reuse across projects.
» Offers a common vocabulary that enhances communication among developers.
** Improve code readability and reusability

» Promote best practices and industry standards

+» Facilitate maintainability and scalability

COMP2511: Introduction to Patterns and Strategy Pattern

Mastering Design Patterns — An Art & Craft

s Develop a strong working knowledge of various patterns.
** Understand clearly the problems they can effectively solve.

+* Recognize accurately when a specific problem can benefit from applying a pattern.

COMP2511: Introduction to Patterns and Strategy Pattern 4

Origins and History of Design Patterns

¢ The concept stems from architecture, originally introduced by Christopher Alexander and

colleagues, who identified around 250 design patterns for building construction.
*»» Adapted to software by the "Gang of Four" (GoF): Gamma, Helm, Johnson, Vlissides

¢ GoF Book (1994): Design Patterns: Elements of Reusable Object-Oriented Software

COMP2511: Introduction to Patterns and Strategy Pattern

Key Elements of a Design Pattern:

** Name: Identifier for pattern

** Problem: Context and issue

>

** Solution: General design

** Consequences: Results and trade-offs

COMP2511: Introduction to Patterns and Strategy Pattern 6

When NOT to Use Patterns

** When patterns add unnecessary complexity
** When simpler solutions suffice

** Avoid "pattern abuse" or "overengineering"

COMP2511: Introduction to Patterns and Strategy Pattern 7

Design Patterns vs. Algorithms

% Algorithms solve computational problems
*» Design Patterns solve design/architectural problems

s Example:
o Algorithm: QuickSort

o Pattern: Strategy to switch sorting algorithms

COMP2511: Introduction to Patterns and Strategy Pattern

Design Patterns and Software Principles

** Closely tied to SOLID principles:
o Single Responsibility

Open/Closed

Liskov Substitution

Interface Segregation

Dependency Inversion

O O O O

s Patterns tries to address SOLID principles

COMP2511: Introduction to Patterns and Strategy Pattern 9

Problem Statement

Design Problem:
For simulation, represent a car with varying types of engines and brakes.

s A Car class should support, along with other behaviours:
o 4 types of engines (e.g., Petrol, Diesel, Electric, Hybrid)
o 5 types of brakes (e.g., Disc, Drum, Regenerative, ABS, Air Brakes)

** Requirements may change (add or modify engine/brake types)

COMP2511: Introduction to Patterns and Strategy Pattern 10

Implementation with pubtic class Car {

private S5tring engineType;

If E |Se private String brakeType;

public void startEngine() {

if (engineType.equals("petrol")) {
// Petrol engine logic

} else if (engineType.equals("diesel")) {
// Diesel engine logic

} else if (engineType.equals("electric")) {
// Electric engine logic

} else if (engineType.equals("hybrid")) {
// Hybrid engine logic

public void applyBrakes() {
if (brakeType.equals("disc")) {
// Disc brake logic
} else if (brakeType.equals("drum")) {
// Drum brake logic
} else if (brakeType.equals("regenerative")) {
// Regenerative braking logic

I
// «..and so on
}
}
Iﬂl
COMP2511: Introduction to Patterns and Strategy Pattern 11

UNSW

SYDNEY

Implementation with
If-Else

Problems with hardcoding logic, it is a bad practice:

» Violates the Open-Closed Principle: Class must be modified for every new
brake or engine type.

«* Adding new behaviour leads to code duplication and potential bugs.
«* Not scalable: Explosion of if-else or switch blocks.

% Code is hard to read and maintain.

COMP2511: Introduction to Patterns and Strategy Pattern

public class Car {
private S5tring engineType;
private String brakeType;

public void startEngine() {
if (engineType.equals("petrol")) {
// Petrol engine logic
} else if (engineType.equals("diesel")} {
// Diesel engine logic
} else if (engineType.equals("electric")) {
// Electric engine logic
} else if (engineType.equals("hybrid")) {
// Hybrid engine logic
b
}

public void applyBrakes() {

if (brakeType.equals("disc")) {
// Disc brake logic

} else if (brakeType.equals("drum"))} {
// Drum brake logic

} else if (brakeType.equals("regenerative")) {
// Regenerative braking logic

)

J/ ...and so on

} Bad

design!

ﬂ
e -
\ i |

-
Z@l
=

»
=<
o
z
m
=<

Alternative: Inheritance-Based Design

Car (commaon methods for Car in this class)

ElectricDiscCar

ElectricDrumCar

ElectricABSCar

ElectricAirCar

ElectricRegerativeCar

PetrolDiscCar DieselDiscCar HybridDiscCar

4 engine types x 5 brake types = 20 sub classes

Inheritance
Explosion!

Consider subclassing for
each combination.

With M engines types and N brakes
types, we need M x N subclasses

Adding a new engine type requires
N new classes, for each brake type.

Inheritance Explosion Problem!
Not scalable

Tightly couples engine and brake
behaviour

Hard to test and reuse logic

COMP2511: Introduction to Patterns and Strategy Pattern 13 N

vvvvvv

Strategy Pattern: Motivation

*»» Hardcoding algorithm logic in a class makes it inflexible.
** Example: A Car class with multiple engine and brake behaviours.

** Problems:

o What if we need to represent all possible unique combinations of brakes and engines?

o What if we need to change engine/brake behaviour at runtime?

COMP2511: Introduction to Patterns and Strategy Pattern 14

Strategy Pattern

** Define a family of algorithms (e.g. family of engine algorithms).
¢ Encapsulate each algorithm in a separate strategy class
(e.g. a class for petrol engine, a class for electric engine, etc.).
** Make algorithms interchangeable in the context object (e.g. in a car object).
¢ Vary behaviour without changing the context class.

wclassn
Context

sinterface»
+private Strategylnterface strategy . Strategylnterface
——dJr = -

+do_something()

+do_something()

U T

uclass» aclassn uclass»
ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC
+do_something() +do_something() +do_something()

COMP2511: Introduction to Patterns and Strategy Pattern 15

Alternative: Using Strategy

4

L)

J

4

Pattern (1)

+private BrakeStrategy engine ’

A
+private EngineStrategy brake

+startEngine()
+applyBrakes()

A Car class contains an object of type
BrakeStrategy.

BrakeStrategy is an interface that defines a

vinterface»

BrakeStrategy

+apply()

DiscBrake

DrumBrake

ABSBrake

+apply()

+apply()

+apply()

Concrete classe

method such as apply() to encapsulate brake
behaviour.

Various concrete classes like DiscBrake, ABSBrake,

etc. implement the BrakeStrategy interface to
represent different braking strategies.

The Car class delegates its braking strategy to the

associated BrakeStrategy object/instance. \

publ

ic class Car {

private EngineStrategy engine;

-__>|priuate BrakeStrategy brake;|

public Car(EngineStrategy engine, BrakeStrategy brake) {

this.engine = engine;

| this.brake = brake; |

}

public void startEngine() { engine.start(); }

public void applyBrakes() { brake.apply(); }

COMP2511: Introduction to Patterns and Strategy Pattern

VVVVVV

Alternative: Using Strategy Pattern (2)

L)

J

Similarly, a Car class contains an object of type
EngineStrategy.

EngineStrategy is an interface that defines a
method such as start() to encapsulate engine
behaviour.

Various concrete classes like ElectricEngine,
PetrolEngine, etc. implement the EngineStrategy

interface to represent different engine strategies.

The Car class delegates its engine strategy to the

associated EngineStrategy object/instance. \

Car

+private BrakeStrategy engine

+private EngineStrategy brake
S

+startEngine()

+applyBrakes()

vinterface»

EngineStrategy

+start()

. ElectricEngine

PetrolEngine

HybridEngine

oncrete classe

public class Car {

~—| private EngineStrategy engine; |

private BrakeStrategy brake;

}

| public void startEngine() { engine.start(); }

public void applyBrakesT(]

{ brake.apply(]; F

public Car(EngineStrategy engine, BrakeStrategy brake) {
|this.engine = engineﬂ
this.brake = brake;

COMP2511: Introduction to Patterns and Strategy Pattern

vvvvvv

Using the Strategy-Based Car

EngineStrategy engine = new ElectricEngine(};
BrakeStrategy brake = new RegenerativeBrake();
Car car = new Car(engine, brake);
car.startEngine();

car.applyBrakes();

Strategy Pattern to the Rescue

Use composition to encapsulate engine and brake behaviour:

** Encapsulate variations
** Add more classes for new engine and brake types
s Use method overriding to change behaviour of the existing engine/brake

*»» Adheres to Open-Closed Principle (e.g. no need to change Car class for the above)

COMP2511: Introduction to Patterns and Strategy Pattern 19

Video Rental Example: Using Inheritance

¢ The Movie is defined as an interface.

** Each concrete movie class (RegularMovie, ChildrenMovie,
NewReleaseMovie) handles both the movie class and its
pricing logic, resulting in tight coupling.

Movie
** However, a movie’s classification or its pricing can change +getCharge()
during its lifetime. /‘r"\
. . . L. . . . RegularMovie ChildernsMovie NewReleaseMovie
** Modifying a movie’s class or pricing behaviour at runtime is
not straightforward in this design. +getCharge() +getCharge() +getCharge()
¢ This approach is not ideal; we can refactor and improve it

using the Strategy Pattern, which allows dynamic selection of
pricing behaviour.

COMP2511: Introduction to Patterns and Strategy Pattern 20

Video Rental Example: Using Strategy Pattern

\/
0’0

A Movie class contains a reference to a Price strategy
object.

Price is an interface that defines methods such as
getCharge(days) to encapsulate pricing behaviour.

Various concrete classes like ChildrenPrice, RegularPrice,
and NewReleasePrice implement the Price interface to
represent different pricing strategies.

The Movie class delegates its pricing logic to the associated
Price strategy instance.

To change the pricing behaviour of a movie, simply assign a
different Price strategy object, making the design flexible
and maintainable.

Movie

+ String title

+ Price price_policy

+getCharge(days: int)

v

«interface»

Price

getCharge(days: int)

T

uclass»

RegularMovie

wclass»
ChildernsMovie

uclass»

NewReleaseMovie

+getCharge(days: int)

+getCharge(days: int)

+getCharge(days: int)

COMP2511: Introduction to Patterns and Strategy Pattern

Benefits of Strategy Pattern

** Promotes Composition over Inheritance: Allows behaviours to be combined and reused without

deep inheritance hierarchies.

» Supports Runtime Behaviour Change: Strategies can be swapped dynamically at runtime to
adapt to changing context (e.g., a hybrid car switching between electric and petrol engines).

** Encourages Separation of Concerns: Keeps the Car class focused on orchestration while
delegating specific behaviours to strategy classes.

*** Enables Open-Closed Principle: New strategies can be added without changing existing code,
reducing the risk of introducing bugs.

» Encourages modular design.

** Scalable and reusable components

COMP2511: Introduction to Patterns and Strategy Pattern 22

Composite
Pattern

COMP2511, CSE, UNSW

Composite Pattern

These lecture notes use material from the reference book “Head First Design Patterns”.

Composite Pattern: Motivation and Intent

* In OO programming, a composite is an object designed as a composition of one-or-more similar
objects (exhibiting similar functionality).

* Aim is to be able to manipulate a single instance of the object just as we would manipulate a
group of them. For example,

e operation to resize a group of Shapes should be same as resizing a single Shape.
* calculating size of a file should be same as a directory.

* No discrimination between a Single (leaf) Vs a Composite (group) object.

 |If we discriminate between a single object and a group of object,
code will become more complex and therefore, more error prone.

COMP2511: Composite Pattern 3
P UNSW

VVVVVV

Composite Pattern: More Examples

Calculate the total price of an individual part or a complete subcomponent (consisting of many
parts) without having to treat part and subcomponent differently.

subcomponent @

Processor

A text document can be organized as part-whole hierarchy consisting of
» characters, pictures, lines, pages, etc. (parts) and
* lines, pages, document, etc. (wholes).

* Display a line, page or the entire document (consisting of many pages) uniformly using the same
operation/method.

- P
COMP2511: Composite Pattern 4 =

VVVVVV

Composite Pattern: Possible Solution

<<Interface>>

Component . compositel
f—p - pr———p
Client ’ Client ’ Component I
+ operationi()
+ operation2() , \
Y / I
22 = leafl composite2 leaf2
Leaf Composite :Component Component Component
+ operation1() + operation1() U = S
+ operation2() + operation2()
+ add(Component c)
+ remove(Component c)
tChild(int index): Com t
HOMCARCRRL A Sompone, leaf3 leafa leafs
:Component :Component :Component

* Define a unified Component interface for both
Leaf (single / part) objects and Composite (Group / whole) objects.

* A Composite stores a collection of children components (either Leaf and/or Composite
objects).

* Clients can ignore the differences between compositions of objects and individual objects, this
greatly simplifies clients of complex hierarchies and makes them easier to implement, change,

test, and reuse.

COMP2511: Composite Pattern

Composite Pattern: Possible Solution

* Tree structures are normally used to represent part-whole hierarchies. A multiway tree structure
stores a collection of say Components at each node (children below), to store Leaf objects

and Composite (subtree) objects.

 ALeaf object performs operations directly on the object.

* AComposite object performs operations on its children, and if required, collects return values

and derives the required answers.

Code Segment from the Composite class

@0verride
public double calculateCost() {
double answer = this.getCost();
for(Component ¢ : children) {
answer += c.calculateCost();

}

return answer;

ArrayList<Component> children = new ArrayList<Component>();

ead the example

For more, I :
ed for this week

code provid

COMP2511: Composite Pattern

Implementation Issue: Uniformity vs Type Safety

Two possible approaches to implement child-related operations
(methods like add, remove, getChild, etc.):

<<Interface>>
Component

+ operationi()
+ operation2()

g v v on

Leaf

+ operation1()
+ operation2()

Composite

+ operation1()

+ operation2()

+ add(Component c)

+ remove(Component c)

+ getChild(int index): Component

operations in the Composite class.

-

Design for Type Safety: only define child-related

/

See the next slide for more details.

-

<<interface>>
Component

=P, operation1()

+ operation2()

i+ add(Component ¢)

1+ remove(Component ¢)

1+ getChild(int index): Component

VN

Client

~

Leaf Composite

+ operationi()

+ operation2()

+ add(Component c)

+ remove(Component ¢)

+ operation1()

+ operation2()

+ add(Component c)

+ remove(Component ¢)

+ getChild(int index): Component

+ getChild(int index): Component

Design for Uniformity: include all child-related
vperations in the Component interface. /

COMP2511: Composite Pattern

Implementation Issue: Uniformity vs Type Safety

Design for Uniformity

include all child-related operations in the Component interface, this means the Leaf class
needs to implement these methods with “do nothing” or “throw exception”.

a client can treat both Leaf and Composite objects uniformly.
we loose type safety because Leaf and Composite types are not cleanly separated.

useful for dynamic structures where children types change dynamically (from Leaf to
Composite and vice versa), and a client needs to perform child-related operations regularly.
For example, a document editor application.

Design for Type Safety

only define child-related operations in the Composite class

the type system enforces type constraints, so a client cannot perform child-related
operations on a Leaf object.

a client needs to treat Leaf and Composite objects differently.

useful for static structures where a client doesn’t need to perform child-related operations
on “unknown” objects of type Component.

COMP2511: Composite Pattern

VVVVVV

Composite Pattern: Demo Example resdthe e

Client —_

<<Interface>>
Component

1+ nameString()

I+ calculateCost()

i+ add(Component c)

l+ remove(Component ¢)

I+ getChild(int index): Component

VL

+ nameString()
+ calculateCost()

Leaf

+ add(Component ¢)
+ remove(Component ¢)
+ getChild(int index): Component

Composite

+ nameString()

+ calculateCost()

+ add(Component ¢)

+ remove(Component ¢)

+ getChild(int index): Component

the lectures, an

le co
d also provided fo

de discussed/deve\oped in

r this week

Component mainboard
Component processor
Component memory

mainboard.add(memory) ;

chasis.add(mainboard);

chasis.add(disk);

Client e ———

c;g:ﬁ;m System.out.println("[0]
: System.out.println("[0]
l \\\\\\\\\ak System.out.println(“[1]
System.out.println("[1]
mainboard disk
:Component :Component

System.out.println("[2]

R

processor

:Component :Component

memory

System.out.println("[2]

Il+
II*

II*
Il+

Dl+
II+

new Composite(“Mainboard”, 100);
new Leaf("Processor”, 450);

new Leaf("Memory", 80);
mainboard.add(processor);

Component chasis = new Composite(“Chasis”, 75);

Component disk = new Leaf("Disk", 50);

processor.nameString());
processor.calculateCost());

mainboard.nameString());
mainboard.calculateCost());

chasis.nameString());
chasis.calculateCost());

—!""_'J-

This example uses design for Uniformity (see composite.uniformity).
Sample code also includes design for Type Safety (see composite.typesafe).

COMP2511: Composite Pattern

public class MenuTestbrive { Composite Pattern: Demo Example

public static void main(String args[]) {

MenuComponent pancakeHouseMenu =

new Menu("“PANCAKE HOUSE MENU", “Breakfast"); \ ed
MenuComponent dinerMenu = ussed ed/deve op

new Menu("DINER MENU", "Lunch"); \e de disC for th\s wee
MenuComponent cafeMenu = 4 the exa xampi€ \ o prov d 1o

new Menu("CAFE MENU", "Dinner"); Read es
MenuComponent dessertMenu = he \ecture>

new Menu("DESSERT MENU", "Dessert of course!");
MenuComponent coffeeMenu = new Menu("COFFEE MENU", "S

MenuComponent allMenus = new Menu("ALL MENUS", "All m| ALL MENUS, All menus combined

allMenus.add(pancakeHouseMenu);

allMenus.add(dinerMenu); PANCAKE HOUSE MENU, Breakfast
allMenus.add(cafeMenu); | feeeeeeeeieeeeee et

K&B's Pancake Breakfast(v), 2.99

pancakeHouseMenu.add (new MenuItem(-- Pancakes with scrambled eggs, and toast
"K&B's Pancake Breakfast", Regular Pancake Breakfast, 2.99
“Pancakes with scrambled eggs, and toast", -- Pancakes with fried eggs, sausage
true Blueberry Pancakes(v), 3.49
2 gg;). -- Pancakes made with fresh blueberries, and blueberry syrup

Waffles(v), 3.59

pancakeHouseMenu.add(new MenuItem(-- Waffles, with your choice of blueberries or strawberries

"Regular Pancake Breakfast",

“Pancakes with fried eggs, sausage”, DINER MENU, Lunch
faltse, | Jeeccecccccccccccccnn--
2.99)); Vegetarian BLT(v), 2.99
-- (Fakin') Bacon with lettuce & tomato on whole wheat
BLT, 2.99

-- Bacon with lettuce & tomato on whole wheat
Soup of the day, 3.29

-- A bowl of the soup of the day, with a side of potato salad
Hotdog, 3.65

allMenus.print();
]

Demos

** Live Demos ...

** Make sure you properly understand the demo example code

available for this week.

COMP2511: Composite Pattern 11

Summary

* The Composite Pattern provides a structure to hold both individual objects and
composites.

* The Composite Pattern allows clients to treat composites and individual objects
uniformly.

A Component is any object in a Composite structure. Components may be other
composites or leaf nodes.

* There are many design tradeoffs in implementing Composite. You need to balance
transparency/uniformity and type safety with your needs.

COMP2511: Composite Pattern 12

SSSSSS

Creational
Patterns

COMP2511, CSE, UNSW

Creational Patterns

Creational patterns provide various object creation mechanisms, which increase
flexibility and reuse of existing code.

+*»* Factory Method

o provides an interface for creating objects in a superclass,
but allows subclasses to alter the type of objects that will be created.

¢ Abstract Factory

o let users produce families of related objects
without specifying their concrete classes.

** Builder

o let users construct complex objects step by step. The pattern allows users to
produce different types and representations of an object using the same
construction code.

+** Singleton

o Let users ensure that a class has only one instance,
while providing a global access point to this instance.

COMP2511: Creational Patterns

VVVVVV

Factory Method

Factory Method

Factory Method is a creational design pattern that uses factory methods to deal with
the problem of creating objects without having to specify the exact class of the object

that will be created.

\/
0.0

** Problem:
o creating an object directly within the class that requires (uses) the object is inflexible

o it commits the class to a particular object and
o makes it impossible to change the instantiation independently from

(without having to change) the class.

** Possible Solution:
o Define a separate operation (factory method) for creating an object.

o Create an object by calling a factory method.
o This enables writing of subclasses to change the way an object is created

(to redefine which class to instantiate).

COMP2511: Creational Patterns

VVVVVV

Factory Method : Structure

Product p = createProduct()

p.doStuff()
"]
Creator
1
«interface» |
- > Product
+ someQperation() =3
+ createProduct(): Product + doStuff()
ConcreteCreatorA ConcreteCreatorB Concrete 2 Concrete
ProductA ProductB
4)...
+ createProduct(): Product + createProduct(): Product

return new ConcreteProductA()

1. The Product declares the interface, which is common to all objects that can be produced by the
creator and its subclasses.

2. Concrete Products are different implementations of the product interface.
The Creator class declares the factory method that returns new product objects.

4. Concrete Creators override the base factory method so it returns a different type of product.

COMP2511: Creational Patterns

Factory Method : Example

Button okButton = createButton()
okButton.onClick(closeDialog)

okButton.render()

st «interface»
Butt

> utton

+ render() + render()

+ createButton(): Button + onClick()

[| P i

WindowsDialog WebDialog Windows HTML
Button Button

+ createButton(): Button

+ createButton(): Button

return new WindowsButton()

Example in Java (MUST read):

https://refactoring.guru/design-patterns/factory-method/java/example

COMP2511: Creational Patterns

https://refactoring.guru/design-patterns/factory-method/java/example

Factory Method

For more, read the following:

https://refactoring.guru/design-patterns/factory-method

COMP2511: Creational Patterns 7

https://refactoring.guru/design-patterns/factory-method

Abstract Factory Pattern

Abstract Factory Pattern

Intent: Abstract Factory is a creational design pattern that lets you produce families of
related objects without specifying their concrete classes.

Problem:
Imagine that you’re creating a furniture shop simulator. Your code consists of classes that
represent:

*»» A family of related products, say: Chair + Sofa + CoffeeTable.

¢ Several variants of this family.

o

% For example, products Chair + Sofa + CoffeeTable are available in these variants:

Coffee
Chair Sofa Table

Art Deco @ @2 @
Victorian 3}93 @
Modern i& Q O

COMP2511: Creational Patterns

VVVVVV

Abstract Factory Pattern:

Possible Solution:

«interface»
FurnitureFactory
B + createChair(): Chair
Chair + createCoffeeTable(): CoffeeTable
+ hasLegs() + createSofa(): Sofa
+ sitOn() zl\
L P - :
1
T H % VictorianFurnitureFactory ModernFurnitureFactory ﬂ;
VictorianChair ModernChair \ /
l \ + createChair(): Chair + createChair(): Chair '
+ createCoffeeTable(): CoffeeTable + createCoffeeTable(): CoffeeTable ~

+ hasLegs() + haslegs() €= |+ createSofa(): Sofa + createScfa(): Sofa -’Q
+ sitOn() +sitOn()

w \y + createProductB(): ProductB
Concrete Concrete E
ProductAl ProductB1 \V4
¢ ¢ «interface»
AbstractFactory
ProductA ProductB
+ createProductA(): ProductA
4 4 + createProductB(): ProductB
Concrete .| Concrete A
ProductA2 ProductB2 ;
'?\ '?\ ConcreteFactory2
i |
M e all i i v
return new + createProductA(): ProductA
ConcreteProductA2() + createProductB(): ProductB
1. Abstract Products declare interfaces for a set of distinct but related products which make up a product family.
2. Concrete Products are various implementations of abstract products, grouped by variants. Each abstract product
(chair/sofa) must be implemented in all given variants (Victorian/Modern).
3. The Abstract Factory interface declares a set of methods for creating each of the abstract products.
4I
variant of products and creates only those product variants.
5

Abstract Factory Pattern: Structure,

ConcreteFactoryl

+ createProductA(): ProductA

o

Client

- factory: AbstractFactory

+ Client(f: AbstractFactory)
+ someOperation()

interfaces.

ProductA pa = factory.createProductA()

Concrete Factories implement creation methods of the abstract factory. Each concrete factory corresponds to a specific

The Client can work with any concrete factory/product variant, as long as it communicates with their objects via abstract

COMP2511: Creational Patterns

Abstract Factory Pattern: Example

WinFactory

.......................

' + createButton(): Button
| ! + createCheckbox(): Checkbox
w v T

[WinButton] [WinCheckbox] ‘i7

«interface»

Application

- factory: GUIFactory
GUIFactory <—<>| - button: Button
Button Checkbox

+ createButton(): Button
+ createCheckbox(): Checkbox

+ Application(f: GUIFactory)
A + createUl()

! + paint()
[MacButton l ’ MacCheckbox] :

MacFactory

.....................

+ createButton(): Button
+ createCheckbox(): Checkbox

Example in Java (MUST read):
https://refactoring.guru/design-patterns/abstract-factory/java/example

L B |
COMP2511: Creational Patterns

SSSSSS

https://refactoring.guru/design-patterns/abstract-factory/java/example

Abstract Factory Pattern

For more, read the following:

https://refactoring.guru/design-patterns/abstract-factory

COMP2511: Creational Patterns 13

https://refactoring.guru/design-patterns/abstract-factory

End

Observer Pattern

COMP2511, CSE, UNSW

Observer Pattern

These lecture notes use material from the reference book “Head First Design Patterns”.

Observer Pattern

* The Observer Pattern is used to implement distributed event handling systems, in
"event driven" programming.

* In the observer pattern

* an object, called the subject (or observable or publisher) , maintains a list of its
dependents, called observers (or subscribers), and

* notifies the observers automatically of any state changes in the subject, usually by
calling one of their methods.

* Many programming languages support the observer pattern,
Graphical User Interface libraries use the observer pattern extensively.

COMP2511: Observer Pattern 3
UNSW

SSSSSS

Observer Pattern

* The Observer Pattern defines a one-to-many dependency between objects so that
when one object (subject) changes state, all of its dependents (observers) are
notified and updated automatically.

* The aim should be to,

* define a one-to-many dependency between objects without making the objects
tightly coupled.

» automatically notify/update an open-ended number of observers (dependent
objects) when the subject changes state

* be able to dynamically add and remove observers

COMP2511: Observer Pattern 4

SSSSSS

Observer Pattern: Possible Solution

Define Subject and Observer interfaces, such that when a subject changes state, all
registered observers are notified and updated automatically.

The responsibility of,

* a subject is to maintain a list of observers and to notify them of
state changes by calling their update () operation.

* observers is to register (and unregister) themselves on a subject (to get
notified of state changes) and to update their state when they are notified.

This makes subject and observers loosely coupled.

Observers can be added and removed independently at run-time.

* This notification-registration interaction is also known as publish-subscribe.

COMP2511: Observer Pattern

VVVVVV

Multiple Observers and Subjects

Change propagation

Observer-n

Observers / Subscribers / Listeners

Observer-4

Thermometer
(subject)

Change propagation

\

Hydrometer
(subject)

Observables / Subjects / Publishers

COMP2511: Observer Pattern

VVVVVV

Observer Pattern: Possible Solution

«interface» «interface»
Subject Observer
attach(Observer):void + update(Subject): void
detach(Observer):void
notify():void
’ﬂ D‘ ”"'—'V :4 v~~‘~\
N = Observer-1 = Observer-2 = Observer-n
= Thermometer = Hydrometer TR
+ update(Subject): void + update(Subject): void + update(Subject): void

+ attach(Observer): void + attach(Observer): void

+ detach(Observer): void + detach(Observer): void

+ notify(): void + notify(): void

ArrayList<Observer> listObservers = new ArrayList<Observer>();
Read the example code
public void notifyObservers() { discussed/developed in the lectures,
for(Observer obs : listObservers) { and also provided for this week
obs.update(this);
}
}
B
COMP2511: Observer Pattern 7 <

Passing data: Push or Pull

The Subject needs to pass (change) data while notifying a change to an Observer. Two
possible options,

Push data

» Subject passes the changed data to its observers, for example:
update(datal,dataz2,..)

* All observers must implement the above update method.

Pull data

* Subject passes reference to itself to its observers, and the observers need
to get (pull) the required data from the subject, for example:
update(this)

* Subject needs to provide the required access methods for its observers.
For example, public double getTemperature() ;

COMP2511: Observer Pattern &=

VVVVVV

public interface Subject { public class Thermometer implements Subject {

public void registerObserver(Observer o0); ArrayList<Observer> listObservers = new ArrayList<Observer>();
public void removeObserver(Observer o); double temperatureC = 0.6;
public void notifyObservers();)
@0verride
} public void registerObserver(Observer o) {
if(! listObservers.contains(o)) { listObservers.add(o); }
}
@0verride

public void removeObserver(Observer o) {
listObservers.remove(o);
}

@0verride
public void notifyObservers() {
for(Observer obs : listObservers) {
obs.update(this);

}
}
Read the example code public double getTemperatureC() {
discussed/developed in the lectures, return temperature(;
and also provided for this week }

public void setTemperatureC(double temperatureC) { |
this.temperatureC = temperature(; .
notifyObservers(); Notify Observers

} after every update

public interface Observer {

public void update(Subject obj);

}
Update for
Multiple Subje
Display after an update
Read the example code

discussed/developed in the lectures,
and also provided for this week

P

cts

public class DisplayUSA implements Observer {
Subject subject;
double temperatureC = 0.0;
double humidity = 0.0;

@Override
public void update(Subject obj) {

if(obj instanceof Thermometer) {
update((Thermometer) obj);

}

else if(obj instanceof Hygrometer) {
update((Hygrometer)obj);

}

'

}

public void update(Thermometer obj) {
this. temperatureC = obj.getTemperatureC();

. W

— display();
}

public void update(Hygrometer obj) {
\ this.humidity = obj.getHumidity();
display();
}

public void display() {
System.out.printf(“From DisplayUSA: Temperature is %.2f F, "
+ "Humidity is %.2f\n", convertToF(), humidity);

}
public double convertToF() {

}

return (temperatureC *(9.0/5.0) + 32);

public class Testl {

public static void main(String[] args) {
// TODO Auto-generated method stub

Thermometer thermo = new Thermometer();
Observer usaDisplay = new DisplayUSA();
thermo.registerObserver(usaDisplay);

— add / register

Observer ausDisplay = new DisplayAustralia();
thermo.registerObserver(ausDisplay);

System.out.println("“\n----------------- thermo.setTemperatureC(30) ------------ “);
Q?‘ thermo.setTemperatureC(30);
‘ é System.out.println("\n------cccceanaan thermo.setTemperatureC(12) ------------ -
& thermo.setTemperatureC(12) ; < h ik
@ - Change state
> @
@
o S Hygrometer hyg = new Hygrometer();
Ob £ é) hyg.registerObserver(usaDisplay);
TR
2 QO 3 System.out.println("\n---------c-c-zo-- hyg.setHumidity(77) ------------ ");
ISFES hyg.setHumidity(77);
> .3 System.out.println(*\n----------ceoen- hyg.setHumidity(96) ------------)i
6\' ﬁ’ R hyg.setHumidity(96);
:) System.out.println(*\n----------------- thermo.setTemperatureC(35) ------------ ")
(/] O
S MR thermo.setTemperatureC(35);
S — remove
q'? Os’ ‘}"’ thermo.removeObserver(usaDisplay); "
<& s{o > System.out.println(“\n----------------- thermo.removeObserver(usaDisplay) ------------ 2
Q
o> System.out.println("\n----------<--c--- thermo.setTemperatureC(41) ------------ “):
thermo.setTemperatureC(41);
System.out.println(“\n---------cecmoonn coeooaaae)i
}

Live Demos ...

** Make sure you properly understand the demo example code available for this week.

Observer Pattern: Example

cd: Observer Newspublisher E xam ple - UML Class Diagram)

for all o in subscribers {
o.update(this);
}

NewsPublisher

-subscribers ArrayList<Subscriber>
-latestNews:String

Subscriber

+attach(subscriber. Sub scriber): void
+detach(subscriber Sub scriber): void
+notifyObservers(void
+addNews(news:int)void
+getLatestNews():String

+update(newsPublisher:NewsPublisher):voi!

i

Bussineshl ewsPublisher

SMSSubscriber

+updat e(newsPublisher:NewsPublisher): void

EmailSubscriber

+update(newsPublisher:.NewsPublisher): void

void update(Ne wsPublisher newsPublisher) {

System .out printin(newsPublisher.getLatestNews())

The above image is from https://www.oodesign.com/observer-pattern.html

COMP2511: Observer Pattern

Observer Pattern: Ul Example

Summary

Advantages:

* Avoids tight coupling between Subject and its Observers.

* This allows the Subject and its Observers to be at different levels of abstractions
in a system.

* Loosely coupled objects are easier to maintain and reuse.
* Allows dynamic registration and deregistration.

Be careful:

* A changein the subject may result in a chain of updates to its observers and in
turn their dependent objects — resulting in a complex update behaviour.

* Need to properly manage such dependencies.

COMP2511: Observer Pattern 15

SSSSSS

Summary

BULLET POINTS
The Observer Pattern defines a one-to-many relationship between objects.
Subjects, or as we also know them, Observables, update Observers using a common interface.

Observers are loosely coupled in that the Observable knows nothing about them, other than that they
implement the Observer interface.

You can push or pull data from the Observable when using the pattern (pull is considered more “correct”).
Don’t depend on a specific order of notification for your Observers.

Java has several implementations of the Observer Pattern, including the general purpose
java.util.Observable.

Watch out for issues with the java.util.Observable implementation.
Don’t be afraid to create your own Observable implementation if needed.
Swing makes heavy use of the Observer Pattern, as do many GUI frameworks.

You’ll also find the pattern in many other places, including JavaBeans and RMI.

From the reference book: “Head First Design Pattern”

COMP2511: Observer Pattern

L

-
T2k \v
=

16

«
=<
o
z
m
<

Decorator Pattern

COMP2511, CSE, UNSW

Decorator Pattern: Intent

"Attach additional responsibilities to an object dynamically.

Decorators provide a flexible alternative to sub-classing for extending functionality."
[GoF]

Decorator design patterns allow us to selectively add functionality to an object (not the
class) at runtime, based on the requirements.

Original class is not changed (Open-Closed Principle).

Inheritance extends behaviors at compile time, additional functionality is bound to all the
instances of that class for their life time.

The decorator design pattern prefers a composition over an inheritance.
Its a structural pattern, which provides a wrapper to the existing class.

Objects can be decorated multiple times, in different order, due to the recursion involved
with this design pattern. See the example in the Demo.

Do not need to implement all possible functionality in a single (complex) class.

COMP2511: Decorator Pattern

SSSSSS

Decorator Pattern: Structure

*L

Client : refers to the Component interface.
Component: defines a common interface for
Component1 and Decorator objects
Componentl : defines objects that get
decorated.

Decorator: maintains a reference to a
Component object, and forwards requests to
this component object (component.operation())
Decoratorl, Decorator?2, ... :

Implement additional functionality
(addBehavior()) to be performed before and/or
after forwarding a request.

«class»
Client

—— component —>

-component : Component

COMP2511: Decorator Pattern

«interface»

Component

+operation()

N

«class» «interface»
Componentl Decorator
+operation() +operation()
«class» «class»

Decoratorl Decorator2
+Decorator1(Component c) +Decorator2(Component c)
+operation() +operation()
+addBehavior() +addBehavior()

ol
- P
3 Sz

Decorator Pattern: Structure

+* Given that the decorator has the same
supertype as the object it decorates,

«class»
Client

—— component —>

-component : Component

we can pass around a decorated object in place

of the original (wrapped) object.

** The decorator adds its own behavior either
before and/or after delegating to the object it

decorates to do the rest of the job.

COMP2511: Decorator Pattern

«interface»

Component

+operation()

N

«class»

Componentl

+operation()

«interface»

Decorator

+operation()

/‘7\

«class»

Decoratorl

«class»

Decorator2

+operation()
+addBehavior()

+Decorator1(Component c)

+Decorator2(Component c)
+operation()
+addBehavior()

Decorator Pattern: Example

Welcome to Starbuzz Coffee
Bevevaye i an dbsbract £ (’
subelassed by all beverages ~
oLhered in the eoffee shop:
Beverage The desch?{’,loh instante vaviable

s set in eath subtlass and holds 3

i deseription of the beverage, like
onsl " ark Roast”.
R‘ng)&w _’ T~ R r:t si::::;o method

1/ Other useful methods...

7\

HouseBlend DarkRoast Decaf Espresso
cost() cost() cost() cost()

Eath subelass implements cost() to veturn the cost of the beverage.

Decorator Pattern: Example

Beverage Welcome to Starbuzz Coffee

descripion

getDescription()
costf)

I/ Other useful methods —

Y/

HouseBlendWithSteamedMilk DarkRoastWithSteamedM e i p—
ousel a eal DecafWithSt y andMocha
andMocha andMocha h Milk
andMocha
cost{) cost() 10

DarkRoastWithSteamedMilk
andCaramel

| cost)

cost()

Each cost method computes the " DecaWithWhipandSoy
cost of the coffee along with the

other condiments in the order

DarkRoastWithWhipandSoy

cost()

cost()

COMP2511: Decorator Pattern

Decorator Pattern: Example

Welcome to Starbuzz Coffee

Beverage acts 3% o \
nt ¢lass:
abstract WY""‘\ component ‘

And heve ave our tondiment decorators; notice
f%ued to implement not only eost() but also
9

escri?‘(:ion(). We'll see wisy in @ moment...

Decorator Pattern: Example

Constructing a drink order with Decorators

The Motha obe;t* o‘:j:& i is decoratingf

kype mivrors (By “mivror,
[\ ¥ s case, 3 Beverase B‘I)

we mean it is the same byre

0
e mmm s v can trest
and U"““g weapped in Motha 33 L

wbkype of Berer2se

TR

Whip is a detorator, so it also
mivvors DarkRoast's type and
intludes a tost() method.

© Whip calls costl) on Motha. /

© First, we call tost() on the
oubmost detorator, Whip.

© Whip adds its total, [0 cents,
to the vesult from Mocha, and

veturns the final muH:—iI! 29

(You'“ see how !

(3 Motha ealls tost() on
DarkRoast.

@ DarkRoast veturng
its tost, 99 cents.

Motha adds its cost, 20 tents,
o 4o the vesult from Davkkoafb
and veburns the new total, 7119

Decorator Pattern: Code

public double cost() {

double beverage cost = beverage.cost();

System.out.println("Whipe: beverage.cost() is: " + beverage cost);
Beverage beverage = new Espresso(); System.out.println(: - adding One Whip cost of 0.16c ");
System.out.println(beverage.getDescription() System.out.println(- new cost is: " + (0.10 + beverage cost));

+ " $" + beverage.cost());
System.out.println("----ccvmcmmmmmmmnaaaa }
Beverage beverage2 = new DarkRoast();
beverage2 = new Mocha(beverage2);
beverage2 = new Mocha(beverage2);
beverage2 = new Whip(beverage2);

return 0.10 + beverage cost ;

System.out.println(beverage2.getDescription() code
+ " $" + beverage2.cost()); pead the e});a mple € e e in the lectures,
K
. il discussed/ @€~ e ¢ this wee
System.out.println("---------ccoemmomaoo): da\Sop ovided 0

Beverage beverage3 = new HouseBlend();
beverage3 = new Soy(beverage3);
beverage3 = new Mocha(beverage3);
beverage3 = new Whip(beverage3);

public double cost() {
double beverage cost = beverage.cost();
System.out.println(“Mocha: beverage.cost() is: " + beverage cost);

System.out.println(beverage3.getDescription() System.out.println(® - adding One Mocha cost of 0.20c *);
+ " $" + beverage3.cost()); System.out.println(" - new cost is: " + (0.20 + beverage cost));
System.out.println("---------ccemcccmcaaaannn

return 0.20 + beverage cost ;

Decorator Pattern: Java I/O Example

A text file for veading.

tSkream i The compener
N ey detdS L
, intlud?

LineNumber|nputStream i : omRor e ferinputStred™ ¢
Tl ey gl v et
[t adds the abil; a tont etox : Lhese 9 bykes
cm‘t ﬂe llM mr?ba—s as Bw&endh?n{:s yeam adds o{)\e"s a\‘t ‘crw “\“c\\ ‘b Vfoad Yus
it veads data. buffering behavior to a tomponen

FilelnputStream: it bubfers
input to improve performance.

Decorator Pattern: Java I/O Example

t
Heve's ov¥ sbstract ogones

f\ Filhvlnyu’&gm

InputStream is an abstract
S 5 v o 1 /\ detorator.
FilelnputStream StringBufferinputStream ‘ ByteArrayinputStream FilterinputStream
R g ‘ \/ \/ N /
/ PushbackinputStream BufferedinputStream DatalnputStream LineNumberinputStream

These InputStreams act as the tonerete \ 7 /7
tomponents that we will wrap with

ators.
detorators. Theve are a few more we And finally, here ave all our tontrete detor
didn't show, like Object/nputStream.

Decorator Pattern: Code

InputStream fl = new FileInputStream(filename);
InputStream bl = new BufferedInputStream(fl);
InputStream 1Casel = new LowerCaselInputStream(bl);
InputStream rotl3 = new Rotl3(bl);

while ((c = rotl3.read()) >= 0) {
System.out.print((char) c);

}

Decorator Pattern:

ereeeeene.. DEMO ...

End

Functional
Paradigm in Java

COMP2511, CSE, UNSW

Java Lambda Expressions

** Lambda expressions allow us to
¢ easily define anonymous methods,
% treat code as data and
*» pass functionality as method argument.

% An anonymous inner class with only one method can be replaced by a lambda
expression.

** Lambda expressions can be used to implement an interface with only one abstract
method. Such interfaces are called Functional Interfaces.

» Lambda expressions offer functions as objects - a feature from functional programming.

» Lambda expressions are less verbose and offers more flexibility.

COMP2511: Functional Paradigm in Java

VVVVVV

Java Lambda Expressions - Syntax

A lambda expression consists of the following:

¢ A comma-separated list of formal parameters enclosed in parentheses. No need to provide data
types, they will be inferred. For only one parameter, we can omit the parentheses.
** The arrow token, =>

+* A body, which consists of a single expression or a statement block.

MyFunctionInterfaceA fl = (x, y) => X + Yy ;

public interface MyFunctionInterfaceA { .
public int myCompute(int x, int y); MyFunctionInterfaceA f2

(x, y) => x =y + 200;

} MyFunctionInterfaceB f3

(x, y) = x>y ;

public interface MyFunctionInterfaceB {

2 MyFunctionInterfaceC f4 = x -> {
public boolean myCmp(int x, int y);

double y = 1.5x%x;

} return y + 8.0;
};
public interface MyFunctionInterfaceC {
public double doSomething(int x); System.out.println(fl.myCompute(1@, 20)); // prints 30
} System.out.println(f2.myCompute(1@, 20)); // prints 190
System.out.println(f3.myCmp(10, 20)); // prints false

System.out.println(f4.doSomething(10)); // prints 23.0

COMP2511: Functional Paradigm in Java

Method References

We can treat an existing method as an instance of a Functional Interface.

There are multiple ways to refer to a method, using ¢ ¢ operator.

+* A static method (ClassName: :methName)

*» An instance method of a particular object (instanceRef : :methName) or

(ClassName: :methName)
+** A class constructor reference (ClassName: : new)

¢ Etc.

COMP2511: Functional Paradigm in Java

VVVVVV

Function Interfaces in Java

#* Functional interfaces, in the package java.util.function, provide predefined target types for
lambda expressions and method references.

7

#+ Each functional interface has a single abstract method, called the functional method for that functional
interface, to which the lambda expression's parameter and return types are matched or adapted.

®,

% Functional interfaces can provide a target type in multiple contexts, such as assignment context, method
invocation, etc. For example,

Predicate<String> p = String::isEmpty;
s

// Collect empty strings
List<String> strEmptylListl = strlList.stream()

filter(p)
.collect(Collectors.toList());

System.out.printin("Number of empty strings: " + strEmptyListl.size());
// prints 3

// Collect strings with length less than six
List<String> strEmptyList2 = strList.stream()
.filter(e => e.length() < 6)
.collect(Collectors.toList());

Lambda expression

System.out.println("Number of strings with length < 6: " + strEmptyList2.size());
// prints 4

Function Interfaces in Java

+»* There are several basic function shapes, including
** Function (unary function from T to R),
+* Consumer (unary function from T to void),
+* Predicate (unary function from T to boolean), and

<+ Supplier (nilary function to R).

** More information at the package summary page

https://docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.html

Function Interfaces in Java: Examples

Function<String, Integer> func = x -> x.length();
Integer answer = func.apply("Sydney");
System.out.println(answer); // prints 6

Function<String, Integer> funcl = x -> x.length();
Function<Integer, Boolean> func2 = x => x > 5;
Boolean result = funcl.andThen(func2).apply("Sydney");
System.out.println(result);

Predicate<Integer> myPass = mark -> mark >= 50 ;
List<Integer> listMarks = Arrays.asList(45, 50, 89, 65, 10);
List<Integer> passMarks = listMarks.stream()
.filter(myPass)
.collect(Collectors.toList());

System.out.println(passMarks); // prints [50, 89, 65]

Consumer<String> print = x -> System.out.println(x);
print.accept("Sydney"); // prints Sydney

Function Interfaces in Java: Examples

// Consumer to multiply 5 to every integer of a list
Consumer<List<Integer> > myModifyList = list -> {
for (int i = 0; i < list.size(); i++)
list.set(i, 5 * list.get(i));

}H

List<Integer> list = new ArraylList<Integer>();
list.add(5);
list.add(1);
list.add(10);

// Implement myModifylList using accept()
myModifylList.accept(list);

// Consumer to display a list of numbers
Consumer<List<Integer>> myDispList = myList -> {
myList.stream().forEach(e -> System.out.printin(e));

};

// Display list using myDisplList
myDispList.accept(list);

Comparator using Lambda Expression: Example

//Using an anonymous inner class

@Override
public int compare(Customer ol, Customer 02) {

}
} 3

custA.sort(myCmpAnonymous);

Comparator<Customer> myCmpAnonymous = new Comparator<Customer>() {

return ol.getRewardsPoints() - o02.getRewardsPoints() ; ~\\\

Only one line!

//Using Lambda expression — simple example (only one line)

custA.sort((Customer ol, Customer 02)->0l.getRewardsPoints() - o2.getRewardsPoints());

custA.forEach((cust) => System.out.println(cust));

«— Print using Lambda expression

COMP2511: Functional Paradigm in Java

Comparator using Lambda Expression: Another
Example

Parameters — 01 and 02
//Using Lambda expression ~fAnother example (with return)

custA.sort(|(Customer ol, Customer 02)-> {
if(ol.getPostcode() != o2.getPostcode()) {

return ol.getPostcode() - o02.getPostcode() ; }
return ol.getRewardsPoints() - o2.getRewardsPoints() ;

Hi e Body

Pipelines and Streams

*» A pipeline is a sequence of aggregate operations.

¢ The following example prints the male members contained in the collection roster with a
pipeline that consists of the aggregate operations £ilter and forEach:

roster Using pipeline and aggregate ops:

.Sstream()
.filter(e -> e.getGender() == Person.Sex.MALE)

.forEach(e -> System.out.println(e.getName()));

Traditional approach,

for (Person p : roster) {
using a for-each loop:

if (p.getGender() == Person.Sex.MALE) {
System.out.println(p.getName());

}

}
*» Please note that, in a pipeline, operations are loosely coupled, they only rely on their incoming
streams and can be easily rearranged/replaced by other suitable operations.

¢ Just to clarify, the “” (dot) operator in the above syntax has a very different meaning to the “

(dot) operator used with an instance or a class. o

COMP2511: Functional Paradigm in Java

Pipelines and Streams

*

A pipeline contains the following components:

* A source: This could be a collection, an array, a generator function, or an I/O channel. Such as
roster in the example.

» Zero or more intermediate operations. An intermediate operation, such as filter, produces a
new stream.

A stream is a sequence of elements. The method stream creates a stream from a collection
(roster).

The filter operation returns a new stream that contains elements that match its predicate. The
filter operation in the example returns a stream that contains all male members in the collection
roster.

A terminal operation. A terminal operation, such as forEach, produces a non-stream result, such
as a primitive value (like a double value), a collection, or in the case of forEach, no value at all.

roster
.stream()
.filter(e -> e.getGender() == Person.Sex.MALE)
.forEach(e -> System.out.println(e.getName()));

COMP2511: Functional Paradigm in Java 12

Pipelines and Streams: Example

X4

X4

X4

X4

double average = roster
.Stream()
.filter(p -> p.getGender() == Person.Sex.MALE)
.mapTolInt (Person: :getAge)
.average()
.getAsDouble();

The above example calculates the average age of all male members contained in the collection
roster with a pipeline that consists of the aggregate operations filter, mapTolnt, and average.

The mapTolnt operation returns a new stream of type IntStream (which is a stream that contains
only integer values). The operation applies the function specified in its parameter to each
element in a particular stream.

As expected, the average operation calculates the average value of the elements contained in a
stream of type IntStream.

There are many terminal operations such as average that return one value by combining the
contents of a stream. These operations are called reduction operations; see the section
Reduction for more information at https://docs.oracle.com/javase/tutorial/collections/streams/reduction.html

COMP2511: Functional Paradigm in Java 13

Pipelines and Streams: Another Example

double avgNonEmptyStrLen = strList.stream()
.filter(e => e.length() > 0@)
.mapToInt(String::length)
.average()
.getAsDouble();

End

Singleton Pattern
and Asynchronous
Design

COMP2511, CSE, UNSW

Creational Pattern: Singleton Pattern

Creational patterns provide various object creation mechanisms, which increase
flexibility and reuse of existing code.

** Factory Method

o provides an interface for creating objects in a superclass,
but allows subclasses to alter the type of objects that will be created.

¢ Abstract Factory

o let users produce families of related objects
without specifying their concrete classes.

¢ Singleton

o Let users ensure that a class has only one instance,
while providing a global access point to this instance.

COMP2511: Singleton Pattern and Asynchronous Design

VVVVVV

Singleton Pattern

Intent: Singleton is a creational design pattern that lets you ensure that a class has
only one instance, while providing a global access point to this instance.

Problem: A client wants to,
** ensure that a class has just a single instance, and
» provide a global access point to that instance

Solution:
All implementations of the Singleton have these two steps in common:

** Make the default constructor private, to prevent other objects from using the new operator
with the Singleton class.

** Create a static creation method that acts as a constructor. Under the hood, this method calls the
private constructor to create an object and saves it in a static field. All following calls to this
method return the cached object.

¢ If your code has access to the Singleton class, then it’s able to call the Singleton’s static method.

** Whenever Singleton’s static method is called, the same object is always returned.

COMP2511: Singleton Pattern and Asynchronous Design

Singleton: Structure

+* The Singleton class declares the static
method getinstance (1) that returns the

same instance of its own class.

** The Singleton’s constructor should be

hidden from the client code.

¢ Calling the getinstance (1) method
should be the only way of getting the

Singleton object.

Singleton P —

Client

- instance: Singleton
- Singleton()

+ getlnstance(): Singleton 1

if (instance == null) {

// Note: if you're creating an app with

// multithreading support, you should

// place a thread lock here
instance = new Singleton()

}

return instance

COMP2511: Singleton Pattern and Asynchronous Design

Singleton: How to Implement

%+ Add a private static field to the class for storing the singleton instance.
%* Declare a public static creation method for getting the singleton instance.

% Implement “lazy initialization” inside the static method.

o It should create a new object on its first call and put it into the static field.
o The method should always return that instance on all subsequent calls.

+* Make the constructor of the class private.

o The static method of the class will still be able to call the constructor, but not the
other objects.

% In aclient, call singleton’s static creation method to access the object.

For more information, read:
https://refactoring.guru/design-patterns/singleton/java/example

COMP2511: Singleton Pattern and Asynchronous Design

VVVVVV

https://refactoring.guru/design-patterns/singleton/java/example
https://refactoring.guru/design-patterns/singleton/java/example
https://refactoring.guru/design-patterns/singleton/java/example
https://refactoring.guru/design-patterns/singleton/java/example
https://refactoring.guru/design-patterns/singleton/java/example

Synchronous vs Asynchronous
Software Design

What is Synchronous programming?

* |n synchronous programming, operations are carried out in order.

* The execution of an operation is dependent upon the completion of the
preceding operation.

* Tasks (functions) A, B, and C are executed in a sequence, often using one thread.

>

L0 [®]

COMP2511: Singleton Pattern and Asynchronous Design 7
J y J UNSW

VVVVVV

What is Asynchronous programming?

* In asynchronous programming, operations are carried out independently.

* The execution of an operation is not dependent upon the completion of the
preceding operation.

* Tasks (functions) A, B, and C are executed independently, can use multiple
threads/resources.

Ai 8
Call Back

function for B A
Call Back
function for C

COMP2511: Singleton Pattern and Asynchronous Design

VVVVVV

Example: Synchronous vs Asynchronous programming

Synchronous

function getRecord(key) {
establish database connection
retrieve the record for key
return record;

}

function display(rec){
display rec on the web page

}
rec = getRecord('Rita’); J__,;;
display(rec)

rec = getRecord('John');
display(rec)

Asynchronous

function getRecord(key, callback) {
establish database connection
retrieve the record for key
callback(record);

}

function display(rec)/{
display rec on the web page

}

getRecord(‘Rita’, display)
getRecord(‘John’, display)

'

COMP2511: Singleton Pattern and Asynchronous Design

Kafka: An Example of Asynchronous Software Design

+»* Today, streams of data records, including streams of events, are continuously generated by many online applications.

+* A streaming platform enables the development of applications that can continuously and easily consume and process

streams of data and events.

¢ Apache Kafka (Kafka) is a free and open-source distributed streaming platform useful for building, real time or

asynchronous, event-driven applications.

+»+ Kafka offers loose coupling between producers and consumers.

«» Consumers have the option to either consume an event in real
time or asynchronously at a later time.

++ Kafka maintains the chronological order of records/events,
ensuring fault tolerance and durability.

%+ To increase scalability, Kafka separates a topic and stores each
partition on a different node.

%* Producer APl - Permits an application to publish streams of
records/events.

%+ Consumer API - Permits an application to subscribe to topics
and processes streams of records/events.

Producer Producer Producer
Kafka Cluster
Topic Topic Topic
| Partition | | Partition | |Partition|
[Partition | | Partition | |Partition|
’Panilion] [Partition} [Panilion}
Consumer Consumer Consumer

COMP2511: Singleton Pattern and Asynchronous Design

END

Software
Architecture

COMP2511, CSE, UNSW

These lecture slides are from the book “Head First Software Architecture”,
by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

Software Architecture as a Metaphor

** While building a house, architectural decisions (rooms, floors, layout) are
crucial and costly to change later.

¢ A poorly architectural house can lead to substandard and uncomfortable
living conditions.

Not on\\{ is this house
wlYs it’s not very
‘C\md',iov\a\ either

This house has a
nice arthitecture.

Load—bearing

tolumn

SSSSSS

What is Software Architecture?

¢ Software architecture defines the fundamental structure of a software system.

» Influences how effectively the software can adapt to changes, scale, perform,
and maintain its reliability.

» Software Architecture diagrams represent relationships between components
(e.g. databases, services, interfaces).

;3 Client Requests | | Client Requests | Client Requests |
- chonne ¥ ¥ (User Interface)

[Presentation Layer] [[,—T

- p— v v API Layer v I 1 1 3
[Business Layer] et e / [[/[| [/| / (Gomporer) (Gomporer) (Gomponer) (Gomponen)

- 4 4 4 (Component) (Component) (Component) Component
[Persistence Layer] L L L [1]]

e Service Service Service Service Service Yy £
[Database Layer] —» Pmcessnlr | Module) [Module) | Module) [Module) [Module)
Y M [Module [Module] [Module] [Module] [Module]

C el e
Database Database Database

 ——

Database
Database Database
A

The Four Dimensions of Software
Architecture

1. Architectural Characteristics
2. Architectural Decisions
3. Logical Components

4. Architectural Style

SSSSSS

Dimension 1: Architectural Characteristics

¢ Architectural Characteristics define ot s f e
fundamental qualities software architecture —_— &
must support. U Dbty
ka e~ =3 be ¢tonsistent and laocnc\a;ha:c
H ~
gaeckurl:\yc stringen Jc }
s* Commonly used Architectural Characteristics: i b o
op- Both domains have sealability as
o Scalability (support growth) e .
. ope . . mbers of tonturve "
o Reliability (consistent operation) O or it '
o Availability (system uptime) gsgb"ifgzﬁm N (
ope . easy to use quick and
o Testability (ease of testing components) c%wv!:d .
o Security —

Online auction

Consistency) AN Kilflabl'fy o
""""""""""""""""""""""""""""""""""""" Bd must be cay{ ved liabl €S mu e
' ‘cc{lyadnovdc veliable—users don Ukeu?

| th:accfd b

Audltablllty Performance Securlty Reqmrements Data Legallty Scalablllty

Dimension 2: Architectural Decisions

s Long-term structural decisions influencing software behaviour.

*» Architectural Decisions set constraints guiding future development.

-
7

Hcrc’s an c*am?lc

of an arehitettural This avehitectural / 7
What should your home look dotision Architectural detision imposes
like? This kind of decision \ﬁ decision a tonstraint and
is an architeetural one. . atts as a 3uidc-
\/ The user interface must Vata
go through the data /_\ Access

access service to read Service
or write data; it cannot
communicate directly with

the database.
This .magc
‘j\ rcyrcscn{s a
i b
\/oul” be lcarnin5 a lo{: e \/ou F

it aloti
about avehitectural ichcmeoia ot in
detisions in Chapter 3. e

Thls is the
database.

Dimension 3: Logical Components

** Functional building blocks representing business features.

Order
Trackin
All of Lhese boxes / !

/ vepresent \ji\ca\ tomponents: k
Order Payment - <—\

Placement Processing Shipping We dive int, (),
details of ,"Sidal
ComPonc,,{:S and
how £o Creat,
The Payment Protessing em i O JE
logical Com?oncnjc is E app Pter 4.
Inventory identified through this
Managewment divectory structure and is order
implemented {hvou%h these
three sourte tode Yiles. __7 L| payment
[E| pay_with_creditcard.py
ﬁ::;iitkie E pay_with_giftcard.py

,anguagc—aanos{w

We\jus{: haPFcn to _j
be using P‘/‘l’,hon

heve.

process_refund.py

Dimension 4: Architectural Styles

s Overall system shape and structural patterns. % Real-world Examples:

< Common styles: o Netflix adopting microservices.

o Traditional enterprise apps using
layered architecture.

o Layered (clear separation of concerns)
o Microservices (highly scalable and agile)
o Event-driven (responsive and scalable)

Theve are a number of different

architectural styles, but \Cor{:unafcl\/
not as many as there ave house styles.

Architecture vs. Design

+* Architecture: Structural decisions (hard to change).

» Design: Appearance and detailed decisions (easy to
change).

+* Decisions exist on a spectrum from pure
architecture to pure design.

i Strategic decisions (architecture):
Long-term, high impact, high effort.

*» Tactical decisions (design):
Short-term, low impact, low effort.

Example:

+* Choosing databases (architecture) vs.
Ul button colour (design).

Significance of frade-offs Strategic or tactical
Using a queve will increase responsiveness when Not wany people need fo be
placing an order, but inventory wmay not be updated The Siahiwc itant involved in this decision, and
in a timely manner, likely creating back-order W trade-offs push this it dogsn’t involve long-term
conditions. These are prefty significant frade-offs, detision tloser to planning, so it’s wore tactical.

architetture.

g

Lo

Architecture

Taking the mean of all three factors puts the decision
right about here, meaning this decision has some
architectural aspects and an architect should probably
be consulted or involved. We needed all three factors
to determine whether this decision was more about
architecture or design.

Level of effort

It doesn’t take a whole lot
of effort 1o send a message
1o another service. This is
pretty standard stuff.

ldentifying Architectural Decisions

This detision involves This eq ves a lo ’cdoC F{a gl .
. . RS ¥ ¢ entive Qam onary, a ves @
** Questions to consider: s) g& MPIC\
» s it strategic (long-term) or tactical (short-term)? &J§; e m§fm
. ;&iﬁ ,ow,;nm, your first dog clowdor on prises
> Effort to change: high or low? S i D
. . . .o) ERE {::sia;c:?:fons :lincc»
» Does it involve significant trade-offs? \ et B
& & Choosing a &
Migrating pars Sy Using a design
ng::’g:f‘;’g:e‘" your gysmm oo pgﬁcrn ’

wicroservices °d 4.
K "4k

Examples:

o Migrating from monolith to microservices
(architecture, strategic).

o Changing background colour of login page (design,
tactical).

Strategic Somewhere in Tactical
between

Trade-offs in Decision Making

Okay, so maybe this is 3

. . . . s iFieult detision somet-
* Architectural decisions often involve Slgnitieant Teadeotfs? [e detiion sometines.
S gn ificant trade-offs. || VYes IX] No Picking out what clothes to wear to work today
[E Yes [] No Choosing to deploy in the cloud or on prewisis L beade-
Example: There aveeertant SO0 o
loud deol \abil [|Yes [Xj No Selecting a user interface framework & _((< heve, so this o€
o Cloud deployment: scalability vs. cither VY
ost ploy Y | |VYes @ No Peciding on the name of a variable in a class file
C .
) : [|Yes K] No Choosing between vanilla and chocolate ice cream
© Asyn cm -eS Saging: performance vs. [E Yes [|No Deciding which architectural style to use k\w mpatt scalability
complexity. e emante, avd 0l

K] Yes | |No Choosing between REST and messaging ™ . it
. K maw&a \f
o Choosing between performance

. [X<lYes | |No Using full data or only keys for the message payload Q
and data consistency.

[|Yes @:] No Selecting an XML parsing library

[E Yes | No Peciding whether or not to break apart a service

¢ Architects handle strate gicc hoices; D(]Yes [No Choosing between atowic or distributed tramsactions
develope r's manage detailed tactical [Yes [X|No Deciding whether or not to go out to diner tonight ﬂ
i Are ou :
Cho ICES You getting hungry yet? j This tan impact data intearity

and data Consis{cnt‘/, but also
sealability and ycncormancc.

Summary (1)

/

** Architecture focuses on structure and system-wide qualities; design is more about code-level
appearance and organization.

¢ Four essential dimensions of software architecture:
o Architectural Characteristics — Foundation traits like scalability, availability, security.
o Architectural Decisions — Guideposts that define the system's constraints and trade-offs.
o Logical Components — Functional building blocks implemented in code.

o Architectural Style — High-level patterns like layered, event-driven, or microservices.

Summary (2)

» Software architecture is about making informed structural decisions, not just organising code.
% Understand and prioritise architectural characteristics for your system.

** Every architectural decision involves trade-offs, know the “why.”

» Use ADRs to document decisions and ensure long-term clarity.

% Choose an architectural style that supports your system’s most critical characteristics.

% Know when a decision is architectural (system-wide impact) or design-level (local impact).

“Good architecture supports change. Great architecture explains why.”

Architectural
Characteristics

COMP2511, CSE, UNSW

These lecture slides are from the book “Head First Software Architecture”,
by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

What Are Architectural Characteristics?

¢ Architectural Characteristics define
fundamental qualities software architecture
must support.

** They are often not explicitly defined

** They influence structure, infrastructure, and
quality of the system

¢ Architectural characteristics guide decisions
like architectural style, deployment, and
scalability.

Notice how many of them

end with “——iM’,\/"
Avditability
Banks must provide a way . i
to vcmc\l transattions. vafa l"fegrlfy
F"\a"t'al "l“ahiétﬁor.s must
s ',:}r be tonsis{:cn{ and ateurate.
Security =l ———
Banks vequire s{ringcn{ Bank
scc\m{y to ?VOJCCC{
«C‘manc"al tonterns
Both domains have scalabim
an architectural tharacteristic

they must support. scalabilify Banks must: support largc

numbers of Conturvent users
Online auttions must support
a large number of bidders.

Usability

Aucfion sites must be
easy to use for quick and
efficient entry of bids.

- &

o

=,
Online auction

T r~=_ Reliability

: Aucttion sites must be

Bids must be captured |)
COnsis{:cr\H\/ and in order Yelishie~vsers don't like it i‘c

«Cor auétlons {‘p work. fhti"‘ COthCinn dYOFS " {M
middle of an auttion.

COMP2511: Architectural Characteristics 3

Some of the Popular Architectural Characteristics

o Scalability: Handles growth in traffic or data size
o Availability: Ensures system uptime
o Maintainability: Easy to update, fix, or extend

o Security: Prevents unauthorized access

Elasticity: Automatically adjusts resources based
on load

Deployability: Enables safe, frequent updates

Responsiveness: Provides quick feedback to users

** There is no fixed or exhaustive list — they evolve with time and context

** Many required characteristics are not explicitly stated in the requirements

** Proper domain and contextual understanding is essential to identify them

** They are essential to align architecture with real-world needs, for successful development,

deployment, and future system resilience

COMP2511: Architectural Characteristics 4

Case Study - Lafter (Sillycon Symposia)

+* A fictional tech-comedy conference platform to illustrate architectural thinking.

% Use Case: Participants post jokes/puns, react with "HaHa" or "Giggle," and engage with speakers.

7

** Functional Needs:

User registration

Posting content (jokes/puns)
Reaction buttons and speaker tools

O O O O

Language support (international audience)

¢ Architectural Constraints:

Scalability: Must handle traffic bursts during peak conference hours.
Availability: Downtime would impact live sessions and user interaction.
Security: Accounts and speaker tools require access control.
Maintainability: Small team must support system with minimal overhead.

O O O O

COMP2511: Architectural Characteristics 5

Applying Architectural Thinking to Lafter

7

¢ Design Decisions Influenced by Characteristics:

o Choose microservices for independently deployable features (e.g., joke-posting vs. notifications).
o Use cloud-based hosting with autoscaling to manage bursty traffic.
o Implement CI/CD pipelines to ensure rapid, reliable deployments.

o Enable internationalisation to support a multilingual audience.

s Examples of Characteristics Applied:
o Elasticity - Serverless functions for unpredictable joke-post surges

o Responsiveness - Real-time interactions using WebSockets

o Testability - Unit-tested microservices enable quick fixes

COMP2511: Architectural Characteristics 6

Architectural Characteristics vs. Logical Components

¢ Architectural Characteristics: How the system performs under various constraints

¢ Logical Components: What the software does (domain behavior)

** Both are essential for structural design

Component: User Registration

Characteristic: Scalability
(handles thousands of concurrent signups)

Component: Content Posting

Characteristic: Availability
(system is up when users post jokes)

Component: Notifications

Characteristic: Responsiveness
(sends real-time updates with low latency)

Component: Admin Dashboard

Characteristic: Security
(restricts access to authorized users only)

q - P
COMP2511: Architectural Characteristics 7

SSSSSS

Characteristics Affect Structure

In a distributed
avchitecture, each
service is deployed

)

independently.
This is a monoh{:hic b Penden y
arthitetture. '} o 3 S
K) event Add event :::::te U
é ——
|(.' P\rorno{c(;ons j == =
hCCdS {')0 x 3 bus Promotions ¥ ~—"
n Vrodut{ion, the ::s;:age p—
whole application
V\CCdS {p bc \J Post Promotions
YCdc?lOYCd message
C_}) [n this tase,
é PVOmo{:ions tan
N v 1 00 to produttion
& 17 ~— an\/ﬁimc they like!

-
T2k \v
=

COMP2511: Architectural Characteristics 8

«
=<
o
z
m
<

Characteristics Affect Structure

4)

Architectural Characteristics

o Security: May require encryption layers, role-based Architectural Impact
access control, audit trails

o Scalability: May need load balancers, stateless services,
database sharding

o Monolithic vs
Microservices

o Availability: May require failover mechanisms,

replication, redundant systems 9 QIEH RS OIRA

' . . deployment
o Responsiveness: Might demand caching, asynchronous c
processing 0 Bl
. . . NS J
o Elasticity: May need autoscaling and container
orchestration
N J

COMP2511: Architectural Characteristics 9

Don’t Overengineer!

*» Too many characteristics = complexity

** They are:
o Synergistic (affect each other, improving security may result in low performance)
o Continuously evolving
o Impossible to standardize (performance and responsiveness might indicate the same behavior)

** Limit characteristics to prevent overengineering

Identifying which characteristics are most critical acts as a filtering mechanism
Helps eliminate "nice-to-have" features that add unnecessary complexity and cost
Stay focused on traits essential for success

Limit to around 7 key characteristics, humans best manage 7 + 2 items!

O O O O

COMP2511: Architectural Characteristics 10

Implicit vs Explicit Characteristics

Explicit
» Packages are
stacked

¢ Explicit: Stated clearly in the requirements document outside a door.

o "The system must support French and Japanese" - Internationalization
"Allow only registered users to access admin panel” - Authorization

** Implicit: Not stated, but understood or expected (requires domain/context
understanding)

o Users expect their data to be secure even if not mentioned - Security

An app must perform well during high traffic without explicit mention -
Performance/Scalability

Implicit
o A public website is expected to be available 24/7 = High Availability ‘

No one is home.

« This family orders a
bunch of stuff
online.

** Architects must read between the lines to uncover hidden requirements » Is this family on

vacation?

COMP2511: Architectural Characteristics 11

Types of Characteristics

** Process Characteristics: Deployability, Maintainability
¢ Structural Characteristics: Modularity, Coupling
¢ Operational Characteristics: Scalability, Availability

¢ Cross-cutting Characteristics: Accessibility, Security

COMP2511: Architectural Characteristics

> modularity
o) oqs
OgO The degree to which the o testablllty

software is composed e How complete the system’s
] (] Jre A & G g
P rO C e S S h a ra Ct e r I St I C S ()l (hs‘-lr“- (-()l"p()ncnls. < ((‘S"“g . :l"(l h()\\' casy [hcsc
“tv aflects , . . . “ .

(: Modularity affects how A~ | tests are to run, including unit, Esf,ab,{ify“ vebers
architects partition functional, user acceptance, and to Jccsfi,-,g at
behavior and organize exploratory tests. development Lime
logical building blocks. (suth as unit testi 3)

ng/,

¢ ooty e
. . AN Quality assurance.
** Represent the intersection between agility
. A composite architectural
arc h |teCtU re an d th e SOftwa re ('11:1r;1('llcri:li(‘ (Imllcn(('()|n|)asscs

Aaility is a composite testability, deployability, o~ :
d eve I O p me nt p rocess a?chizcc{j\ra\ Chavad{chs{:ﬁ modularity, and a host of other rL\’cx‘Z(g;;;;af;';r":hi:z{wal

we'll diseuss later in this architectural characteristics ¢h E
tech ; aracteristics eut acvoss
.)] i ats {uncd_! that facilitate and enable agile :) :
‘0’ Reflect hOW the SySteI niIsS b ul |t; ¥ ! software development practices. Ca{:cgohes, g I see in the

ncxf “'\Cw Pagcs, l
extensibility

How easy it is for developers

tested, deployed, and evolved

** Guide decisions related to #7 deployability o iciténd the iytenn: TIis

. . . . [How easy and efficient it is to may encompass architectural
en gl neerin g p ra Ct Ice S, d UtO m at ion) deploy the software system. structure, engineering
an d tea m wWo rkfl OWS s sl many _/\ !r)(l“l:lrll(‘(l:l(l:mrnll design, and
g ance.

architectural ehavacteristies
H\BJC make up “ag\li{’,\/-

decouple-ability k™ T
Coupling describes how parts of the Yes, we know this is a made-
() system are joined together. Some up word. That happens a lot
1~ architectures define how to decouple ™ sof tware architectuve!
~ parts in specific ways to achieve certain
benefits; this architectural characteristic
measures the extent to which this is
possible in a software system.

COMP2511: Architectural Characteristics 13

. Security appears in ever
Secul’lty /\ apylica{:ion, as an im?héi‘z
How secure the system is, or explicit architectural
holistically. Does the data

Structural Characteristics et by ot

Ll Ll L3 Ll
database? How about for e mamtamablllty
network communication Tﬁ 4 . How easy it is for architects and
between internal systems? pe »\V " developers to apply changes to
What type of authentication ‘ enhance the system and/or fix
needs to be in place for bugs.

%* Concerned with the internal structure remote user access?

& Portability can apply to any
a nd o pOSItlon Of the sy5tem part of J\c system, intluding

the user 'm{',cr-(:aCc and

** Influence how components are This is one of those implementation ?‘aﬁf‘“'

coupled, interact, and evolve O e oors L_) VA fl’m‘ta'f[’ﬂ(lty

independently l 47 the system on more.
extensibility \7—1—/' e

* . - . . example, Windows
** Impact design qualities like How casy it is for developers and macOS).

to extend the system. This

Mo d u | d rlty, Cco h es | on) an d may encompass architectural
a da pta b| | |ty structure, engineering

practices, internal design, and

g()\'(‘rnan(‘c.j\ localizaﬁon

Some arthiteetural
¢tharacteristics cover
development tonterns vather
than pwcl\/ domain tonterns.

How well the system
supports multiple languages,
units of measurement,
nother flavor .
#:-? lotalization is currencies, and other
otalizati

\nfcrnaﬁonalizaﬁon
Gl8n). used globally.

factors that allow it to be

COMP2511: Architectural Characteristics 14

- La A
availability
L o What percentage of the time the
system needs to be available and, if
24/7, how easy it is to get the system

=)

Operational Characteristics

recoverability

up and running quickly after a failure.

** Represent how architectural
decisions shape and support system
behavior at runtime

s Define what the operations team can
monitor, control, or adapt while the
system is running

s Directly influence system reliability,
performance, and fault tolerance

Usually vepresented as a j
number 04(" “pines’ (Cﬁaaﬁ%
uptime = % nines, a bit
under b minu{:cs/ycar).

=)

4

A good example of the
axiom that you tan take fn\/
ad\')cctivc and add “-ility

to make a new arthitectural
thavattevistie!

How quickly the system can

get online again and maintain
business continuity in case of

a disaster. This will affect the
backup strategy and requirements
for duplicated hardware.

& robustness
The system’s ability to

handle errors and boundary
conditions while running,
such as if the power, internet
connection, or hardware fails.

When these are
important, they ave very

im?orbanf _]/
reliability / safety

Whether the system needs to be

=
= fail-safe, or if it is mission critical
- - in a way that affects lives. If it fails,

will it endanger people’s lives or cost
the company large sums of money?
Common for medical systems, hospital
software, and airplane applications.

COMP2511: Architectural Characteristics

& performance
B How well the system
achieves its tming
requirements using the
available resources.

As you willl see shortly,
‘\?criormana" has many
diffevent aspects.

Some “—ilities” ave easier to
athieve than others. This
one is often di(:(:]CuH’,vQ

scalability
I How well the system
nll I

Our Lafter

application
performs and operates as will definitel
the number of users or need this!

requests increases. ¢—"

Thv: {i;onc of those
architecturs| ‘

hot are afwayiharacfcws{ia
happens 4o be

holistically. Does the data Contern,

need to be encrypted in the (v_/

database? How about for

security

How secure the system is,

Cross-Cutting Characteristics

network communication
between internal systems?

What type of authentication

., legal

How well the system
complies with local laws

/_} needs to be in place for remote
L user access?
Authentication ‘

and authorization
are aschfS 0(:
sca«ri{\/-

** Span multiple parts of the system and
affect other characteristics

about data protection and
about how the application
should be built or deployed.

authentication/authorization

How well the system ensures users are who they say

s Often enforced through design,

tooling, and governance privacy

How well the system

they are and makes sure they can access only certain

functions within the application (by use case, subsystem,

web page, business rule, field level, etc.).

Many government agenties
around the world vequire 3
baseline level of acc:ssibili{y.

N

accessibility

How casy is it for all your
users to access the system,
including those with
disabilities, like colorblindness
or hearing loss.

COMP2511: Architectural Characteristics

Many tountries and vegions
have striet laws governing
privacy, making tonsistenty
Lov international
a??litai’,iov\s {Yitky.

/
This is a great example of
how ambiguous archi{e{,{wal‘/\
tharactevistics tan be:

“usability” ean also vefer to
user expeviente design.

hides and encrypts
transactions so that
internal employees
like data operators,
architects, and
developers cannot see
them.

)

ez usability

| How casy is it for users
to achieve their goals. Is
training required? Usability
requirements need to be
treated as seriously as any
other architectural issue.

Composite Characteristics

s Formed from multiple simpler traits

** These high-level characteristics reflect complex system qualities that require multiple
dimensions to evaluate.

s Examples:
o Reliability = Availability + Consistency + Data Integrity
o Resilience = Robustness + Fault Tolerance + Recoverability

** Must break down into measurable parts

COMP2511: Architectural Characteristics 17

Sources of Characteristics

** Problem Domain (Feature-Driven): Driven by product goals, system features, and
expected usage patterns.

o A real-time multiplayer game must be highly responsive and scalable due to concurrent users
— Responsiveness, Scalability

o An e-commerce site must support flash sales and high traffic - Elasticity, Performance,
Availability

** Environmental Awareness (Organizational Constraints): Driven by company’s culture,
budget, and capabilities
o A startup must deliver features fast - favors Deployability, Agility
o A globally distributed team - needs Testability, Modularity for asynchronous collaboration
o Legacy-heavy organizations - may prioritize Integrability with existing systems

COMP2511: Architectural Characteristics

Sources of Characteristics

¢ Holistic Domain Knowledge (Industry and Compliance Expectations): Driven by
regulatory standards, industry best practices, and user trust factors.

o A banking app must comply with regulations = Security, Auditability, Availability

o A healthcare platform must protect patient data - Confidentiality, Data Integrity, Compliance

o Government services need to meet accessibility and privacy laws - Accessibility, Security,
Maintainability

** Why It Matters:
o Ignoring a source can lead to critical failures later

o Architects must triangulate across all three to identify the most important characteristics

COMP2511: Architectural Characteristics

Translating Business Goals into Architecture

s A core responsibility of the architect is to translate high-level business goals into concrete
architectural characteristics and decisions.

Examples:

R/

** Business: “The system must always work.”
o - High Availability, Fault Tolerance, Robustness

R/

% Business: “Customers shouldn’t wait.”
o —» Responsiveness, Performance, Latency Budgeting

R/

** Business: “We need to move fast and innovate.”
o —» Deployability, Modularity, Testability

R/

** Business: “We need to meet compliance and regulation.”
o —» Security, Auditability, Traceability, Accessibility

COMP2511: Architectural Characteristics 20

Trade-offs Between Architectural Characteristics (1)

s Architectural characteristics frequently compete or conflict

¢ Enhancing one trait can reduce or compromise another

Examples:
o Security vs. Performance [More security controls (e.g., encryption, validation) add processing overhead]

o Scalability vs. Simplicity [Scalable systems often introduce distributed complexity (e.g., microservices,
load balancers)]

o Availability vs. Maintainability [High availability may require complex failover and redundancy,
complicating upgrades and maintenance]

Key Insight:
o Trade-offs are not flaws, but conscious architectural decisions
o There are no universally right answers—"It depends."

COMP2511: Architectural Characteristics 21

Trade-offs Between Architectural Characteristics (2)

More Examples:

/7

* Deployability vs. Robustness: Rapid deployments can reduce test cycles and stability

** Responsiveness vs. Data Consistency: Fast user interactions might rely on eventually consistent models

¢ Flexibility vs. Performance: Designing for plugin support or configuration often introduces performance
bottlenecks

Best Practices:

* Engage stakeholders early to understand what matters most

¢ Prioritise characteristics based on system goals, user needs, and domain constraints
** Trade-offs reflect organizational priorities and constraints

** Use Architectural Decision Records (ADRs) to document trade-offs and rationale

COMP2511: Architectural Characteristics 22

Summary

** Architecture is about making conscious trade-offs
¢ Every decision comes with upsides and downsides
¢ Capture both the decision and the reason behind it

¢ Embrace change—architecture evolves with the system

** Architecture isn't about right answers—it's about right reasoning

COMP2511: Architectural Characteristics

Architectural

Decision Records
(ADRS)

COMP2511, CSE, UNSW

These lecture slides are from the books:

o “Head First Software Architecture”, by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

o “Fundamentals of Software Architecture”, 2nd Edition, by Mark Richards, Neal Ford

Architectural Decision Records (ADRs)

% "Why is more important than how.”

% Architectural decisions must be justified

** Future team members need to understand the rationale

» Without context, good decisions may seem arbitrary or incorrect

% Architectural Decision Records (ADRs) capture the what, why, and
impact

% An ADR has seven sections: Title, Status, Context, Decision,
Consequences, Governance, and Notes.

** Important aspects of an architectural decision are documented,
including the decision itself.

COMP2511: Architectural Decision Records (ADRs)

ADR

ADR Structure Overview

Main Sections:

¢ Title: Numbered and concise

i Status: Proposed, Accepted, Superseded, or Request for Comments (RFC)
» Context: Forces and constraints

» Decision: What was chosen and why

» Consequences: Trade-offs and impacts

» Compliance: Governance and enforcement

» Notes: Metadata (author, date, approval)

COMP2511: Architectural Decision Records (ADRs) 4

ADR Section - Title

** Purpose: ldentify and summarize the decision

** Best Practices:

o Number sequentially (e.g., ADR 001)
o Short, descriptive, and unambiguous

s Example:
“ADR 17: Asynchronous Messaging Between Order and Payment Services”

“ADR 21: Transition to PostgreSQL for Inventory Management”
“ADR 34: Enable OAuth 2.0 for Internal APIs”

COMP2511: Architectural Decision Records (ADRs) 5

ADR Section - Status

s Types:
o Proposed: Pending approval
o Accepted: Approved and active
o Superseded: Replaced by another ADR
o RFC: Open for feedback until a deadline
s Examples:
o ADR 12: Status: Accepted

o ADR 17: Status: Superseded by ADR 21
o ADR 34: Status: RFC, Deadline 30 May 2025

COMP2511: Architectural Decision Records (ADRs) 6

ADR Section - Context

** Purpose: Explain what situation led to this decision

*** Include:

o Problem or force requiring a decision
o Alternatives under consideration

s Examples:
o “The Order service must transmit payment info. Options include REST or messaging.”

o “Inventory updates are inconsistent across services; central DB vs. event-based sync
considered.”

o “Increased phishing attempts require re-evaluating access token validation approach.”

COMP2511: Architectural Decision Records (ADRs) 7

ADR Section - Decision

¢ Purpose: Describe what was chosen

** Best Practices:

o Use clear, assertive language: “We will use...”
o Justify with rationale

s Examples:
o “We will use asynchronous messaging due to latency and decoupling benefits.”

o “We will migrate inventory management to PostgreSQL to ensure consistency and
performance.”

o “We will adopt OAuth 2.0 using IdentityServer for access control.”

COMP2511: Architectural Decision Records (ADRs) 8

ADR Section - Consegquences

** Purpose: Describe outcomes and trade-offs

*** Include:

o Positive and negative impacts
o Known limitations

s Examples:
o “Improves performance, however adds complexity in error handling.”
o “Enables real-time updates; requires Kafka infrastructure.”
o “Strengthens security, but introduces user reauthentication challenges.”

COMP2511: Architectural Decision Records (ADRs) 9

ADR Section - Compliance

** Purpose: Define how decision enforcement is measured

s Types:
o Manual review
o Automated tests (e.g., fitness functions)

s Examples:

o Static code analysis rules for package structure compliance
o Integration test that validates token expiration and renewal workflows

COMP2511: Architectural Decision Records (ADRs) 10

ADR Section - Notes

¢ Purpose: Capture metadata

¢ Typical Fields:
o Author, approval date, approver
o Last modified, superseded reference

s Examples:
o Author: A. Johnson, Approved by: Arch Review Board, 15 May 2025
o Author: M. Singh, Modified on: 10 May 2025, Supersedes ADR 12
o Author: L. Chen, RFC Deadline: 30 May 2025

COMP2511: Architectural Decision Records (ADRs) 11

Benefits of Using ADRs

» Serves as a memory log for decisions

% Improves consistency and governance

» Helps new team members understand context

» Supports continuous evolution and learning

A sing
vetord
detision Was ™

These
settions make

up an ADR

s

\e ar ehitettur ald

eibes wha
des “de and why-

etision

Title
Status
Context

Decision

Consequences

Governance

Notes

over time
_—

Over time, You build
up a log of detision

vetords—one for every

detision. l

leads to
R —

This log sevves as a
the memory store

o‘c Your Fro\')cc{:,
cxylaining how and wh\/
the Proﬁccf go{: +t

is.

wheve i

Together, these
ADRs form the

OMP2511: Architectural Decision Records (ADRS)

Example: ADR

Title

Ol2: Use of queues Lor asynthronous messaging between order and downstream sevvices

Status

Accepted

Context

The brad'mg sevvice must 'm(:orm downstream servites (namcl\/ the no{i@ica{:ion and analy{i(,s sevvites, for now)
about new items available for sale and about all transactions. This tan be done through synthronous messaging
(using REST) or asynthronous messaging (using queues or topics).

Decision

We will use queues for asynthronous messaging between the trading and downstream sevvices.

Using queues makes the S\/s{:crn move extensible, sinte eath queue tan deliver a diffevent kind of message.
Furthermore, sinte the trading service is atutely aware of any and all subseribers, adding a new Lonsumer involves
modi‘cying it—which improves the security of the system.

Consequences

Queues mean a higher degree ot toupling between services.

We will need to provision queuing infrastructure. [£ will vequive Ctlustering to provide for high availabili{:\/.

[£ additional downstream sevvites (in addition o the ones we know about) need to be notified, we will have +o
make modifications to the {:\rading sevvite.

COMP2511: Architectural Decision Records (ADRs) 13

ADR — Auction System Example

Architectural Decision in the following auction system:

/

%* use separate point-to-point queues between the bid capture, bid streamer, and bid tracker
services instead of a single publish-and-subscribe topic (or even REST, for that matter)

+* ADR needs to justify the choice to prevent confusion or disagreements among other designers
or developers.

Bids Winner

v 4

Bid Bid Bid
Capture Streamer Tracker
service service service

COMP2511: Architectural Decision Records (ADRs) 14

ADR — Auction System Example

ADR 76. Separate Queues for Bid Streamer and Bidder Tracker Services

STATUS
Accepted

CONTEXT
The Bid Capture service, upon receiving a bid, must forward that bid to the Bid Streamer ser-

vice and the Bidder Tracker service. This could be done using a single topic (pub/sub), separate

queues (point-to-point) for each service, or REST via the Online Auction API layer.

COMP2511: Architectural Decision Records (ADRs)

L

-
T2k \v
=

15

«
=<
o
z
m
<

ADR — Auction System Example

DECISION
We will use separate queues for the Bid Streamer and Bidder Tracker services.

The Bid Capture service does not need any information from the Bid Streamer service or

Bidder Tracker service (communication is only one-way).

The Bid Streamer service must receive bids in the exact order they were accepted by the Bid
Capture service. Using messaging and queues automatically guarantees the bid order for the stream

by leveraging first-in, first out (FIFO) queues.

Multiple bids come in for the same amount (for example, “Do I hear a hundred?”). The Bid
Streamer service only needs the first bid received for that amount, whereas the Bidder Tracker
needs all bids received. Using a topic (pub/sub) would require the Bid Streamer to ignore bids that
are the same as the prior amount, forcing the Bid Streamer to store shared state between

instances.

The Bid Streamer service stores the bids for an item in an in-memory cache, whereas the Bidder
Tracker stores bids in a database. The Bidder Tracker will therefore be slower and might re-
quire backpressure. Using a dedicated Bidder Tracker queue provides this dedicated backpressure

point.
COMP2511: Architectural Decision Records (ADRs)

ADR — Auction System Example

CONSEQUENCES
We will require clustering and high availability of the message queues.

This decision will require the Bid Capture service to send the same information to multiple queues.

Internal bid events will bypass security checks done in the API layer.
UPDATE: Upon review at the January 14, 2025, ARB meeting, the ARB decided that this was an accept-

able trade-off and that no additional security checks are needed for bid events between these services.

COMPLIANCE
We will use periodic manual code reviews to ensure that asynchronous pub/sub messaging is being

used between the Bid Capture service, Bid Streamer service, and Bidder Tracker service.

NOTES
Author: Subashini Nadella

Approved: ARB Meeting Members, 14 JAN 2025

Last Updated: 14 JAN 2025
COMP2511: Architectural Decision Records (ADRs)

Summary of ADR

+*»* Each section contributes to clarity and traceability
s Together they provide context, rationale, and continuity

¢ Encourage consistent use across all teams and domains

COMP2511: Architectural Decision Records (ADRs) 18

Behavioural
Modelling

COMP2511, CSE, UNSW

What is Behavioural Modelling - .

st ﬁn:S::Me ReservationWindow HotelSystem Database
+String email +displayRooms() +checkAvailability() +query()
+login() +submitReservation() +makeReservation() +insert()
¢ Behavioural modelling captures how the system i
. . . Class Diagrams
behaves in response to events or interactions - J
over time.
\/ . .
*¢ Software Design and Architecture do not tell us 4 % S I 1)
how components behave or interact over time. T
= Enter search details >
+»» Different notations for expressing behaviour: = checktunlabity)3
queryAvailableRooms() 5=
o Sequence diagrams PR |
o . . =21 availableRooms - - -
o Activity diagrams | ——
O Sta te C h a rts % Resewn::wm“do HotelSystem Database

\ Sequence Diagram J

COMP2511 Behavioural Modelling 2

vvvvvv

Sequence Diagrams

s A sequence diagram is an interaction diagram —
showing how objects interact i tdd o e
. . I addrte.(pr_sductrd.
in a time-sequenced manner. S
H‘ ------ tUPdnted I]
) . ° ° . . =t - -« confirmations - -x-x-
«* Clarify interactions among objects and improve
system behaviour understanding. Q -

+* Show how operations are carried out through
message exchanges.

verify
YMenker(cqrdz,()
—

9etMember(eardry) =,
B (LT memberDetas . H
" verification result ... o
can bog, “

** Emphasize the temporal order of interactions.

COMP2511 Behavioural Modelling

More on
sequence
diagrams

UML sequence
diagrams

https://www.youtube.com/watch?v=pCK6prSg8aw (8 mins)

COMP2511 Behavioural Modelling

vvvvvv

https://www.youtube.com/watch?v=pCK6prSq8aw

Key Components of a Sequence Diagram
/

Actor: External user or system

U i o
T Objects: Entities involved, represented by

rectangles.

Message
K\

Response N

Lifelines: Lines (or dashed lines) showing object
existence during interactions.

7/ /)

A
o
- :
]
]
=

Messages: Communication between objects.

User
o User sends a message to ObjectA, activating ctivation Boxes: Indicate active processing of
ObjectA's processing. messages.

o ObjectA responds, deactivating afterwards.

COMP2511 Behavioural Modelling 5

Types of Messages

Synchronous: Sender waits for a response.

Asynchronous: Sender does not wait for an immediate response.

Server Server
User User
Request Request
> >
Immediate Response Delayed Response
- f908000000000000000000000000000000 A
Server Server
User User
Synchronous: User waits for Server to Asynchronous: User continues immediately
complete processing before proceeding. without waiting for Server's response.

COMP2511 Behavioural Modelling

Sequence Diagram Overview

*+ Horizontal axis captures participating objects. Example: User Login
o Objects are placed from left to right.
o Order reflects participation in message sequence. LoginSystem Database
o Horizontal layout is flexible but typically chronological. User

Submit Credentials

L 4

Verify Credentials

>

«» Vertical axis represents time (top to bottom).

v

o Time flows downward. Verification Result
i _ | EETCRTCPEEPCPETPEPPEPEEEPPERE
o Sequence diagrams focus on order, not duration. , _
. o o .] Login Success or Failure
o Vertical spacingis not indicative of actual time intervals. o JITCLCRETEELLUETI Rt ECRLELOETIREL
LoginSystem Database
% Messages are shown as horizontal arrows. Messages can be User

calls/invocations for some methods in a component, or results

given by that component User's credentials are checked against a database,

resulting in either login success or failure.
*» Execution shown using rectangles (activations boxes).

COMP2511 Behavioural Modelling 7

Optional Interaction

“* opt represents optional scenarios. System

User
opt [User is logged in]

View Dashboard

System

User

lllustrates optional logic based on
condition result (success).

COMP2511 Behavioural Modelling 8

° ° ° Websi
Conditional Interaction
Customer
alt [Login Success]
*» alt represents alternate scenarios. Login
»
Welcome
.‘
[Login Failure]
Login
-
Error Message
.1
Website
Customer

lllustrates branching logic based on
condition results (success or failure).

COMP2511 Behavioural Modelling 9

Looping Interaction

Cart PaymentGateway
Shopper
. . loop [Payment
** Ioop represent repeated actions. Attempts]
Attempt Checkout
-

Process Payment

-
Payment Result
Sensor System I e
Result Notification
loop [every 5s] e
sendData()
> Cart PaymentGateway
Shopper
IR s The loop continues until payment is successful,
emphasizing iterative process.

COMP2511 Behavioural Modelling 10

Parallel Processes

par represents concurrent processes.

OrderSystem Inventory PaymentService

par

Check Stock

L J

Initiate Payment

k J

OrderSystem Inventory PaymentService

Multiple processes, such as inventory checking and payment,
occur simultaneously.

COMP2511 Behavioural Modelling 11

ReservationWindow HotelSystem Database
User
Enter search details
checkAvailability()
.
queryAvailableRooms()
availableRooms
.‘
availableRooms
.‘ ..
E Xa m p I e . Display available rooms
(] R e P PP EPE PR
H t I R t . Select room + Enter details
otel heservation i
makeReservation(details)
-
saveReservation()
-
reservationSaved
R SRy
confirmation
.‘ ..
Show confirmation
SRy &
ReservationWindow HotelSystem Database
User

COMP2511 Behavioural Modelling 12

Software components

Calling class methods I \

E X a m p I e . % interface - Ul mainController - Controller routes : RouteLlst route : Route
[]

User

T l T T
° . . | | | |
A I B k enter (date, from, to) 1 : : :
Iriine boOoKINg > | : |
dlick [Search] > l ! l
a\ find route (date, from, ta) _ | | I
1 |
E find route (date, from, to) o | l
S route :
E e ——————=——————-- |
4 |
= getRouteDetails() > '
EQ < display route details E l
= select seat > : : :
S | | |
% click [Book] > i I I
\b bookRoute (route id,seat id‘J_ i i
W I |
ol D verify booking details ! I
' bookSeat(id, date) '
. showsuooesssoreen | i ’fﬂ
T I |
_{ ________________ |] |

** More information in The sequence diagram — IBM Developer

COMP2511 Behavioural Modelling 13

https://developer.ibm.com/technologies/web-development/articles/the-sequence-diagram/
https://developer.ibm.com/technologies/web-development/articles/the-sequence-diagram/
https://developer.ibm.com/technologies/web-development/articles/the-sequence-diagram/

LoginPage AuthService Database
xamples =&
Enter |
username/password >
authenticate(credent:
— als) >
etehUser(username)sm
-5:-:- - success/Failure - - - -
elleeaan Show result:-=---- |
LoginPage AuthService Database
User
Login Process
% ProductPage CartService Database
Uer T
l— Click "4dd to Cart" 5=
addItem(ProductId,
quantity) |
uPolo«teCart(userIol, ; |
item) L
----- cartUPdateo(S ﬂ
i
-.-::- --+- confirmation-------
L-:{E --Ttem added - --- |
| [
ProductPage CartService Database
User

Online Shopping — Add to Cart

COMP2511 Behavioural Modelling

Kiosk

Uer

[Scan [il:rary card }l

[

“i Prompt to scan book -

|— Scan book barcode =»

2 Borrow confirmed . -
L]

LibrarySystem

verifyMember(cardId) ——-

borrowBook(bookId,

memberId)

Kiosk

——

User

Library System — Borrow Book

LibrarySystem

Database

getMember(cardId) ==

« i:-:- - - memberDetailg - - - - -

updateBorrowingStat >

us()
SUCCESS e ns U

Database

=)
UNSW

SYDNEY

Benefits of Sequence Diagrams

» Clarifies interaction order and logic.

** Identifies inefficiencies and redundancies.

** Enhances team communication.

** Aids debugging and improves process clarity.

« Improves collaboration and understanding.

COMP2511 Behavioural Modelling 15

Common Mistakes

** Overcomplicating diagrams.
** Undefined roles and interactions.

¢ Incorrect message ordering.

COMP2511 Behavioural Modelling 16

Suggested Design Process in Software Engineering

Keep number of user stories small

Define architecture and draw diagram showing components and
external entities

Define ER diagram (can result in 1 or multiple databases)

ol LT UGS (0]gA8 1) Develop its sequence diagram 2) Design its user interface

lterate lterate between these activities

COMP2511 Behavioural Modelling 17

vvvvvv

Good Software
Design Practices

Things to do

e Keep design documents “live” and shared
between team members

e Use design as a way to decompose work
e Discuss design changes as a team

Things to avoid

e Too much focus on notation
e Quantity over quality

e Creating something for other manager (tick
boxes) and forgetting design is for team

COMP2511 Behavioural Modelling

VVVVVV

Web resources

Sequence diagrams

e Sequence Diagram Tutorial - Complete Guide with Examples (creately.com)

e Sequence Diagram Tutorial (visual-paradigm.com)

e UML Sequence Diagram Tutorial | Lucidchart

Software design principles

* Software Design Principles | Top 5 Principles of Software Development
(educba.com)

COMP2511 Behavioural Modelling 19

vvvvvv

https://creately.com/blog/diagrams/sequence-diagram-tutorial/
https://creately.com/blog/diagrams/sequence-diagram-tutorial/
https://creately.com/blog/diagrams/sequence-diagram-tutorial/
https://creately.com/blog/diagrams/sequence-diagram-tutorial/
https://online.visual-paradigm.com/diagrams/tutorials/sequence-diagram-tutorial/
https://online.visual-paradigm.com/diagrams/tutorials/sequence-diagram-tutorial/
https://online.visual-paradigm.com/diagrams/tutorials/sequence-diagram-tutorial/
https://online.visual-paradigm.com/diagrams/tutorials/sequence-diagram-tutorial/
https://www.lucidchart.com/pages/uml-sequence-diagram
https://www.lucidchart.com/pages/uml-sequence-diagram
https://www.educba.com/software-design-principles/
https://www.educba.com/software-design-principles/
https://www.educba.com/software-design-principles/

Logical
Components and
Modelling Using
C4

COMP2511, CSE, UNSW

These lecture slides are from the book “Head First Software Architecture”,
by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

What Are Logical Components?

¢ Functional building blocks of the system
dcdzcd‘ﬁ‘ “b , bk Order

R\ ok & &\\ \oq,\t d mam Tracking
et e 0
w15

o \

Order Paywment Order
Placement Processing Shipping

¢ Typically map to folders or modules in the

codebase lnventory
Management

** Represent major features or responsibilities

COMP2511: Logical Components and
Modelling Using C4

Logical vs Physical Architecture

** Logical Architecture: Describes what the

system does (functional perspective) T I s
¢ of the secvices
<& . . . Sa,\d da}(/a\)ascs
** Physical Architecture: Describes how the v

system is built and deployed (technical

Auction
perspective)

Auction
Search
/ . Viewer Scheduler
** Example:

o Logical: Bidding, Registration, Payment

Database
«

o Physical: APls, databases, gateways, services ==

COMP2511: Logical Components and
Modelling Using C4

Qevvite

Bidder
Registration

/Y

Bidder
B Sign-on

N

Logical tomponents)

VVVVVV

Creating a Logical Architecture

Follow a 4-step process:

¢ Identify core components
** Assign requirements
** Analyse roles & responsibilities

*» Align with architectural characteristics

» Revisit this cycle whenever system changes are introduced

COMP2511: Logical Components and
Modelling Using C4

Align with Architectural Characteristics

** Break down or merge components based on:

o Scalability
o Availability

o Performance

s Example: Move bid logging to separate Bid Tracker to improve speed and availability

COMP2511: Logical Components and
Modelling Using C4

Component Coupling

*» Afferent (incoming): How many depend on this component
*» Efferent (outgoing): How many this component depends on
*» Total Coupling = Afferent + Efferent

Goal: Keep coupling low for flexibility and maintainability

COMP2511: Logical Components and
Modelling Using C4

The Law of Demeter

+** Also known as the Principle of Least Knowledge
** Each component should only interact with its immediate neighbors

** Avoid tight coupling caused by too much knowledge about the system

COMP2511: Logical Components and 8
Modelling Using C4

Coupling Trade-offs

*»» Tightly Coupled System: Easier to trace workflow, harder to change
** Loosely Coupled System: More maintainable, but harder to understand in one place

Remember: Everything is a trade-off

COMP2511: Logical Components and
Modelling Using C4

Logical Components: Summary

** Logical components are your system’s functional map
» Use descriptive names based on responsibilities

» Avoid entity trap and generic components

» Reduce coupling using the Law of Demeter

» Regularly reevaluate components as requirements evolve

COMP2511: Logical Components and
Modelling Using C4

Introduction to C4
Architectural
Modelling

Fethi Rabhi (June 2025)

YYYYYY

Challenges in Architecture modelling

+ Addressing functional requirements
« Balancing non-functional requirements
* Finding a balance between “understandability” (by humans) and “correctness” (the

code) is a complex undertaking, especially in cross-functional teams, where you're
explaining to a mixed group of technical and non-technical people

 There isn't one but multiple software architectures
« High level architectures: closer to requirements
 Low level architectures: closer to implementations

« Simple/informal => Ambiguity in meaning
 Formal (e,g. UML) => Learning curve / understandability

COMP2511: Logical Components and
Modelling Using C4

What is C4 ?

» Gives names to different design

concepts
p
** Focuses on intuitive visual

representations of these concepts

Container
(e.g. dient-side web app, server-side web agp, console applcation,

» Defines a set of hierarchical diagram B ERS S Em
arranged by levels |

s Lightweight methodology for visual
and verbal communication

* Allows more efficient conversations
» Notation independent

» Tooling independent

COMP2511: Logical Components and
Modelling Using C4

C4 Levels

Showing overall system + users + external systems.

:;; System context level Useful for Business stakeholders, execs and non-tech
users

Showing major application/components like web apps,

Y Containers level APIs, DBs

Useful for developers, tech leads and architects.

Showing modules/services/classes within a container

g Components level (e.g. routes, services, repositories)
- Mainly for developers.

COMP2511: Logical Components and
Modelling Using C4

Level 1

¢ A context diagram is the most general description of what your system does
** Shows who will use it, and what other systems it will interact with.

** Will help you describe the scope of your project and help you pinpoint who the user
is and what problem you’re going to solve

COMP2511: Logical Components and
Modelling Using C4

Example

From Example | C4 model

Your system

COMP2511: Logical Components and
Modelling Using C4

Personal Banking
Customer

[Person)
A customer of the bank, with
personal bank accounts.

Views account
balances, and
makes payments
using

Internet Banking System

[Software System)
Allows customers to view
information about their bank

accounts, and make payments.

Gets account
information from,
and makes
payments using

Mainframe Banking

System
[Software System]

Stores all of the core banking
information about customers,
accounts, transactions, etc.

User

Sends e-mails to

~
N
~
E-mail System
__ Sendse-mail_ __ [Software System]
using The internal Microsoft Exchange

e-mail system.

External system

https://c4model.com/diagrams/example

Level 2

+* Container diagram takes the first step into describing the software system and

shows the APIs, applications, databases, and microservices that the system will
use.

¢ Each of these applications or services is represented with a container and the
interactions between them are shown at a high level.

COMP2511: Logical Components and 17
Modelling Using C4

Example

Your system
decomposed into
several
containers

Web Application

[Container: Java and Spring MVC]

Delivers the static content and the

Internet banking singie page
application.

Database

[Container: Orade Database Schema)

Stores user registration
information, hashed authentication
credentials, access logs, etc.

| Internet Banking System

| [Sofware System)

Personal Banking
Customer

[Person]
A customer of the bank, with
personal bank accounts.

- ~
- ~
- ~
Visits " ' s . ~
bigbank.com/ib WS account Views account Sends e-mails to
using balances, and balances, and ~
S eSS makes payments makes payments
~ /using usmg\

Mobile App
[Container: Xamarin]
Provides a limited subset of the
Internet banking functionality to
customers via their mobile device.

Single-Page Application
[Container: javaSeript and Angular]
Provides all of the Internet banking
functionality to customers via their
web browser.

Delivers to the
customer’'s web —
browser

X / Sencs emal
ends e-mai
Makes API calls to Makes API calls to usin
[ISONHTTPS] ISON/HTTPS] g
~
\ / ~

API Application
__Reads from and [Container: java and Spring MVC]

B ~— — Makes API calls to—
writes to

DIMUHTTPS]

i Provides Intemet banking
SQLAR functionality via a JSON/HTTPS APL.

@

New relations
created

COMP2511: Logical Components and
Modelling Using C4

Level 1 relations
preserved

E-mail System
[Software System)]

The internal Microsoft Exchange

e-mail system.

Mainframe Banking

System

[Software Systemm)

Stores all of the core banking
information about customers,
accounts, transactions, etc.

18

Level 3

** One step deeper than the container diagram, the component diagram details
groups of code within a single container.

** These components represent abstractions of your codebase.

** Comparable to a UML component diagram but follows a less-strict set of “rules” in
order to create the software architecture diagram.

COMP2511: Logical Components and 19
Modelling Using C4

Level 2 containers

Example /S

Mobile App

[Container: Xamarin]

Single-Page Application

[Container: JavaScript and Angular]

Provides a limited subset of the
Internet banking functionality to
customers via their mobile device.

Provides all of the Internet banking
functionality to customers via their

web browser. — -
-~ —
~ —
—_—~
- ~
— -
Makes API calls to Makes AP| calls to Makes API calls to Makes API calls to
/nsow»m’w:l SONHTTRS) DSON/HTTPS]_ DSONHTTPS
o S e ~ AN
- ~
- ~
Makes API calls to Makes API calls to
— [ISONMHTTPS) [SONHTTPS] ~
Level 3 components -
-~
- |
Uses Uses Uses
—~
—~
-
API Application |
[Cornainer] ' |]
L Reads from and Sends e-mail Makes API calls to I
writes to using D(MUII-{TTPSI
1

[SQUTCP]

Mainframe Banking
Database E-mail System System

[Container: Orade Database Schema) [Software System) [Softvare System]

Stores user registration The internal Microsoft Exchange Stores all of the core banking
information, hashed authentication e-mail system. information about customers,
credentials, access logs, etc. accounts, transactions, etc.

Level 4

¢ Has lots of detail to show how the code of a single component is actually
implemented.

+** Can use a UML class diagram or entity relationship diagram that describes the
component.

COMP2511: Logical Components and
Modelling Using C4

Example

1

InternetBankingSystemException

o

&5
GetBalanceRequest

com.bigbankplc.internetbanking.component.mainframe

MainframeBankingSystemFacade

AbstractRequest

MainframeBankingSystemFacadelmpl | Hwows | MainframeBankingSystemException
-~4creates
tuses g
GetBalanceResponse
\'s
BankingSystemConnection
k . sreceives
AbstractResponse

Class diagram for the Mainframe Banking System Facade component

Modelling Using C4

Recommended Modelling tool

() https://excalidraw.com

& ® %, 0 O O - - o A B ¢
Simple one
https://excalidraw.com/
¥ EXCALIDRAW
COMP2511: Logical Components and 23

Modelling Using C4

https://excalidraw.com/

Excalidraw Libraries

A directory of public libraries that you can easily add to Excalidraw.

Follow the instructions if you want to add your own library into this list.
All the following libraries are under MIT License.

Sort By - New - Updated - Total Downloads - Downloads This Week - Author - Name

1. Enter (4 =———————

2. Add to Excalidraw

(tip: you can type anywhere to start searching)

Hexagonal Architecture S
@Armando Cordova Pelaez B _E l:-‘,.i
0 7582 LR .

Created: 24 Sep 2021

Useful to diagram and learn more about Hexagonal (aka Ports and Adapters) Architecture by Alistair
Cockburn and implementation by Jakub Nabrdalik. More information:
https://gist.github.com/corlaez/32707a1c41485d056c00251206435c89

& Add to Excalidraw] ‘ Download

C4 Architecture

@Dmitry Burnyshev

3 3080
Created: 24 May 2022

C4 Simon's Brown concept elements based on https://c4model.com/

Items: C4 elements, Person, Web App, Mobile App, Component, System, Existing System, Database, Group, :s-
Relation 24 e

& ® w 0O © O - - ¢ A B & & Qm B X

Personal Library

You can create
your own EEmm———

shapes

Excalidraw Library

Lperson] You can drag
Who it is or what it does? shapes into the
canvas
You can use
COMP2511: Logical Components an thesge Shapes 25
Modelling Using C4 UNSW

«
=<
o
z
m
<

Il
og
&
5
O
O
O
¢
|

. A B &

O Open Ctrl+O
Y, Saveto...

&% Exportimage... Ctrl+Shift+E

Web Aﬂ’hco.‘tion
2\ Live collaboration... : [container: Angular etc.]
Defines order atiributes
4, Command palette rl+ e
[Investor]
Q. Find on canvas Ctrl+F
Places an order
[software system]
® Help ?
Submit Order fo Market
W Resetthe canvas
A Excalidraw+
§? GitHub
X Follow us [Exchange Systes]
Executes Orders
() Discord chat —
E Signup
Theme a ¢ 2
English -

Canvas background
COMP2511: Logical Components and
(_] Modelling.Using.C4

Good modelling
practices

techtribes.je

Anonymous User [Software System]

[Person] techtribes.je is the only way to keep up

ARE ot or theweh to date with the IT, tech and digital
Lo : sector in Jersey and Guernsey, Channel

*** Avoid acronyms for business terms islands.

*»» Add a title to your diagram

¢ Consistent naming of components

Web Application
[Container: Java + Spring MVC]

Twitter Connector
[Component: Spring Bean + Twitter4]

Allows users to view people, tribes,
content, events, jobs, etc from the local
tech, digital and IT sector.

Retrieves profile information and tweets
(using the REST and Streaming APISs).

%’“

COMP2511: Logical Components and 07
Modelling Using C4 U

«
=<
o
z
m
<

Good modelling practices (cont.)

¢ Lines
* Clearly labelled
* Undirectional (follows words in boxes)
¢ Legend
* Use it for additional shapes/colours you introduce
* Also additional icons that describe components (AWS-style)
* Use it to enhance only (if remove them, diagram still makes sense)

¢ A good diagram should be self-explanatory

** More details in Simon Brown’s video at:
https://www.youtube.com/watch?v=x2-rSnhpw0g&t=785s

COMP2511: Logical Components and
Modelling Using C4

Trading
System

\ Submits orders to

Exchange

Trading
System

/‘ Receives orders from

Exchange

https://www.youtube.com/watch?v=x2-rSnhpw0g&t=785s
https://www.youtube.com/watch?v=x2-rSnhpw0g&t=785s
https://www.youtube.com/watch?v=x2-rSnhpw0g&t=785s
https://www.youtube.com/watch?v=x2-rSnhpw0g&t=785s

Software architecture diagram review checklist

General

Does the diagram have a title? Yes No

Do you understand what the diagram type is? Yes No
Rev| eW CheCkl IS't | C4 mod e| Do you understand what the diagram scope is? Yes No

Does the diagram have a key/legend? Yes No
C4 Model

Does every element have a name? Yes No
C h e Do you understand the type of every element? (i.e. the level of abstraction; Yes No

e C k I I St e.g. software system, container, etc)
Do you understand what every element does? Yes No

Where applicable, do you understand the technology choices associated

with every element? ves No
Do you understand the meaning of all acronyms and abbreviations used? Yes No
Do you understand the meaning of all colours used? Yes No
Do you understand the meaning of all shapes used? Yes No
Do you understand the meaning of all icons used? Yes No

COMP2511: Logical Components and
Modelling Using C4

https://c4model.com/diagrams/checklist

Resources

C4 Model: https://cdmodel.com/abstractions

Tutorial video: https://www.youtube.com/watch?v=x2-rSnhpw0g&t=785s&ab channel=AgileontheBeach

Articles

* Should you use the C4 model for system architecture design? https://icepanel.medium.com/c4-model-for-system-
architecture-design-225e00ebbd9

* C4 model for system architecture design https://icepanel.medium.com/c4-model-for-system-architecture-design-
225e00ebbd9

Other tools

* Flowchart maker https://app.diagrams.net/

* Open source tool https://plantuml.com/

* Lucid Charts https://www.lucidchart.com/blog/c4-model

* Gliffy https://www.gliffy.com/blog/c4-model

L

%’m

COMP2511: Logical Components and 30
Modelling Using C4 U

«
=<
o
z
m
<

https://c4model.com/abstractions
https://www.youtube.com/watch?v=x2-rSnhpw0g&t=785s&ab_channel=AgileontheBeach
https://www.youtube.com/watch?v=x2-rSnhpw0g&t=785s&ab_channel=AgileontheBeach
https://www.youtube.com/watch?v=x2-rSnhpw0g&t=785s&ab_channel=AgileontheBeach
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://icepanel.medium.com/c4-model-for-system-architecture-design-225e00ebbd9
https://app.diagrams.net/
https://plantuml.com/
https://www.lucidchart.com/blog/c4-model
https://www.lucidchart.com/blog/c4-model
https://www.lucidchart.com/blog/c4-model
https://www.gliffy.com/blog/c4-model
https://www.gliffy.com/blog/c4-model
https://www.gliffy.com/blog/c4-model

END

Architectural
Styles

COMP2511, CSE, UNSW

These lecture slides are from the book “Head First Software Architecture”,
by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

Introduction to Architectural Styles

¢ Architectural Styles:

o Predefined patterns and philosophies guiding how software systems
are structured and deployed.

¢ Importance of Understanding Styles:
o Facilitates better design decisions.

o Aligns software architecture with project needs.

¢ Example:

o Residential housing styles influenced by geography, climate, personal
preference. Similarly, software architecture varies by project

requirements.

COMP2511: Architectural Styles

N2/ »
SN e B
o S —_—— i =3 .
ol | EL 2 Iy g ==}
Eath one of these j
N sl -
“ |
H == i e | 8

s{\/\cs exists for a
veason—be that
histovical, cultural,
Leehnical.

Categorizing Architectural Styles

Two main categories for architectural styles:

1. Partitioning Partitioning
o Technical vs. Domain-based. Teohnical Domain
o Layered
2. Dep|oyment -é Monolith Modular monolith
= Microkernel
o Monolithic vs. Distributed. g
% Distributed
o Event-driven Microservices
** Why Categorize?

o Helps systematically analyse and select appropriate
architecture.

COMP2511: Architectural Styles 4

Partitioning by Technical Concerns

Technical Partitioning:

o Code organized by functional roles or technical layers.

Characteristics:
o Clear separation of responsibilities.
o Easier specialization of teams.

Example: A standard web application:

o Presentation Layer (Ul);
o Business Logic Layer (Services)
o Data Persistence Layer (Database)

Presentation

Services

Persistence

» Real-world Analogy:
Roles in a fancy restaurant (host, server, chef, busser)
clearly divided by technical concerns (greeting,
cooking, cleaning).

COMP2511: Architectural Styles 5

Partitioning by Domain Concerns

Domain Partitioning:

o Code organized around business domains or problem areas.

Customer

Characteristics:
o Alignment with business goals.

o Easier maintenance of related features. A‘Invenfory

o Strong domain modeling.

Example: An e-commerce platform:

o Customer Domain (user accounts, user interface) > Real-world Analogy:

o Inventory Domain (product catalog, stock management) Food court restaurants, each specialised in
o Payment Domain (billing, transactions) distinct cuisines (pizza, salads, burgers).

COMP2511: Architectural Styles 6

Comparing Technical vs. Domain Partitioning

Technical Partitioning Domain Partitioning

Layered by technical roles Organized by business areas
Easier for specialised teams Aligned closely with business needs
Risk of over-generalisation Risk of duplicating common functionalities

Example Scenario: A banking application:
o Technical: Separate teams for frontend, backend, DB administration.

o Domain: Separate teams for loans, investments, account management.

COMP2511: Architectural Styles

SSSSSS

Deployment Models Overview

1. Monolithic Architecture
o Single deployable unit.

2. Distributed Architecture

o Multiple deployable units
communicating over networks.

Choice affects scalability, complexity, and cost.

This is @ monolithie

ay?liaa{:ion,

Customer
Con{‘,aining all the /é $10

logical components
in one dc?lo‘/mcn{

Uhl‘ﬁ-

Distributed

architettures

deploy lots o{)

smaller units.

COMP2511: Architectural Styles

CCOSYStCm] or as

a
in the NET wo\rldf\ Sl

e~ Recall that architectural
tharacteristios influence

the structure of £he
application.

Monolithic Architecture — Overview and Pros

Monolithic:

o Entire application deployed as one single executable

or package.

Pros:

o Easier initial development.

o Simplified debugging.

o Lower initial deployment cost.

Examples:

o Asingle .jar (Java) or .exe (.NET) containing all app

logic and resources.

o Smartphone as a single device doing many functions

(calling, browsing, tracking).

. . .
/\ simplicity
OD Typically, monolithic
applications have a single
codebase, which makes them
easier to develop and to
understand.

cost

reliability
=
@g\@/}) A monolith is an island. It makes
= = few or no network calls, which
usually means more reliable
applications.

next page.

COMP2511: Architectural Styles

Monoliths are cheaper to build
and operate because they tend
to be simpler and require less
infrastructure.

> ©®

feasibility

Rushing to market? Monoliths
are simple and relatively cheap,
freeing you to experiment and
deliver systems faster.

La B
debuggability
If you spot a bug or get an error
stack trace, debugging is easy,
since all the code is in one place.

K ch? an eye out ‘Co\r this ?oin{;

when we distuss tons on the

Monolithic Architecture - Limitations

Cons: 3
/ scalability
o Difficult to scale independently. |II If you ever need to scale

] l one part of the application {#5‘
. . . independently of the others, M’ evolvabili
O Slngle bug can dISFU pt entlre SyStem. well, you’re in trouble. It’s all or \ ty

: 2 2 As monolithic applications grow,
nothing with monoliths. g ¢
S making changes becomes harder.

o Inflexible when adapting to changing demands. s aatlente PUhomon uncadiewhole
AgamT \ o T8 application is one codebase, you
\’15Jc~\)05Jc aryew eo can’t adapt different technology

reliability (— {')\ough{', we'd yoin{: o= stacks to different domains if

=3
%EQJ Because monolithic applications yRuneediio:
= deploy as a single unit, any bug
Exa m p | e : that degrades the service will
affect the whole monolith.

. e : . , 7 /z) deployability
o Scaling a monolithic online store application There's veliability again! /7 Tmplementing any change

/ will require redeploying the
whole application, which could

o Scaling means duplicating the entire application, ibodtice ot ot
increasing resource consumption significantly.

COMP2511: Architectural Styles 10

Distributed Architecture - Overview

Distributed:

o Application components deployed separately, each as
individual processes/services.

=l

Man—

M
B
Maa—
MA~—

Pros:

o Independent scalability of components.

o Encourages modular design.

o Faultisolation—failures affect only single units.

scalability

Distributed architectures deploy
different logical components
separately from one another.
Need to scale one? Go ahead!

La B
testability
Each deployment only serves
a select group of logical
components. This makes
testing a lot easier—even as lhc‘ﬁv
application grows.

Distributed arehitectuves
are a lot more testable

than monolithie
applications.

fault tolerance

Sp
9 G
@@) Even if one piece of the system

Example:

o Microservices architecture for Netflix or Amazon,
allowing independent scaling of services like user
management, video streaming, and recommendation
systems.

COMP2511: Architectural Styles

fails, the rest of the system can
continue functioning.

@
2
8
S

modularity
Distributed architectures
encourage a high degree of
modularity because their logical
components must be loosely
coupled.

// deployability

Distributed architectures
encourage lots of small units.

They evolved after modern

engineering principles like
continuous integration,
continuous deployments, and
automated testing became the
norm.

H8V|n5 ,ofs O‘C small um{',s
with good testabil; Jc
vedutes the visk assoclajccd
with chlo\/mg changcs

Distributed Architecture - Challenges

Cons:

o High complexity due to network dependence.

o Increased maintenance and debugging complexity.
o Higher infrastructure and operational costs.

&)

L e

Example:

o Managing distributed transactions across
services—complex coordination required, o
increased risk of partial failures.

performance

Distributed architectures

involve lots of small services

that communicate with each
other over the network to do
their work. This can affect
performance, and although there
are ways to improve this, it’s
certainly something you should
keep in mind.

simplicity

Distributed systems are the
opposite of simple. Everything
from understanding how they
work to debugging errors

becomes challenging:

We cannot emphasize
> tannot

now ompl
Real-world Analogy: o it

¢an bel

o Earlier days—separate devices for GPS, web
browsing, and phone calls each required separate
maintenance and integration.

COMP2511: Architectural Styles

cost

Deploying multiple units means
more servers. Not to mention,
these services need to talk to one
another—which entails setting
up and maintaining network
infrastructure.

chu553n5 distributed systems
involves Jchinking deeply about
logging, and usually requires
aggregating logs. This also
adds to the cost.

debuggabilityéy

Errors could happen in any
service involved in servicing

a request. Since logical
components are deployed in
separate units, tracing errors can
get very tricky.

12

Introduction to Fallacies of Distributed Computing

¢ Originated at Sun Microsystems in 1994
** Common false assumptions about networks
¢ Crucial for architects of distributed systems

+* 11 total fallacies (8 classical + 3 additional)

COMP2511: Architectural Styles 13

Fallacy #1 - The Network Is Reliable

+** Reality: Networks can and do fail

** Impact: Services might be healthy but unreachable

s Mitigation:
o Use timeouts
o Retry policies

** Example: Service A sends request to Service B - no response due to intermittent
network issue

COMP2511: Architectural Styles 14

Fallacy #2 - Latency Is Zero

¢ Reality: Remote calls take milliseconds, not microseconds

** Impact: Chained service calls can add significant delay

s Mitigation:
o Monitor 95th-99th percentile latency

o Minimise unnecessary calls

s Example: 10 chained calls with 100ms each = 1s delay

COMP2511: Architectural Styles

Fallacy #3 - Bandwidth Is Infinite

** Reality: Bandwidth is limited, especially under load

*» Impact: Excessive inter-service communication slows the system

s Mitigation:

o minimizing the passing of large, complex data structures

s* Example: Returning 500KB when only 200B needed - 1Gbps load for 2k req/s

COMP2511: Architectural Styles 16

Fallacy #4 - The Network Is Secure

+* Reality: More endpoints = higher attack surface
¢ Impact: Inter-service communication can be vulnerable

s Mitigation:
o Zero-trust architecture
o Secure each endpoint

s* Example: Internal services hacked due to open port

COMP2511: Architectural Styles

Fallacy #5 - Topology Never Changes

+* Reality: Network topology evolves frequently
** Impact: Latency assumptions break

s Mitigation:
o Coordinate with network teams
o Use adaptive timeout policies

** Example: Sunday network upgrade - production timeouts Monday

COMP2511: Architectural Styles 18

Fallacy #6 - There Is Only One Administrator

*» Reality: Multiple admins across departments

¢ Impact: Miscommunication and missed changes

s Mitigation:
o Maintain a clear contact directory
o Standardize change coordination

** Example: Change in one subnet unknowingly affects dependent service

COMP2511: Architectural Styles 19

Fallacy #7 - Transport Cost Is Zero

¢ Reality: Infrastructure and routing costs add up

** Impact: Distributed systems are more expensive

s Mitigation:
o Assess total cost of ownership (TCO)
o Consider hybrid designs

** Example: Simple REST call needs new proxies, firewalls, gateway

COMP2511: Architectural Styles 20

Fallacy #8 - The Network Is Homogeneous

+* Reality: Different vendors, firmware, configurations
** Impact: Compatibility and packet loss

s Mitigation:
o Test network assumptions regularly
o Avoid hard dependencies on vendor features

** Example: Packet loss between Cisco and Juniper segments

COMP2511: Architectural Styles 21

Fallacy #9 - Versioning Is Easy

¢ Reality: Supporting multiple versions is hard

** Impact: Contract proliferation, test complexity

s Mitigation:
o Limit concurrent versions
o Use deprecation plans

s Example: Team supports 7 versions of same AP| endpoint

COMP2511: Architectural Styles

Fallacy #10 - Compensating Updates Always Work

¢ Reality: Rollbacks can fail too
¢ Impact: Data inconsistency

s Mitigation:
o Design for idempotency
o Include recovery mechanisms

s Example: Order placed, and rollback fails > duplicated state

COMP2511: Architectural Styles 23

Fallacy #11 - Observability Is Optional

** Reality: Without observability, debugging is impossible
¢ Impact: Silent failures across services

s Mitigation:
o Centralized logging

o Distributed tracing

» E.g., OpenTelemetry: open-source framework for collecting, processing, and exporting telemetry
data (traces, metrics, and logs) from cloud-native applications and infrastructure.

** Example: Request times out without any log trail

COMP2511: Architectural Styles 24

Fallacy - Summary and Implications

+*»* Fallacies reveal key weaknesses in distributed systems
** Addressing them improves resilience and clarity
** Must be communicated to development and operations teams

** Good architecture anticipates and mitigates these assumptions

COMP2511: Architectural Styles

Comparing Monolithic vs. Distributed

Simpler development & debugging Complex system integration
Lower initial costs Higher upfront infrastructure cost
Scaling is all-or-nothing Individual services scalable

Single failure disrupts whole system Fault tolerance through isolation

COMP2511: Architectural Styles

SSSSSS

Discussion - Regulatory and Compliance Needs

Consider special needs like:
o Regulatory compliance (e.g., financial industry).
o Security requirements.

Monolithic:

o Easier control and monitoring in regulated environments.

Distributed:

o Can complicate compliance but increases modularity and maintainability.

Example:

o Banking systems might use monolithic for core banking due to tight regulatory controls,
however distributed services for customer engagement modules.

COMP2511: Architectural Styles 27

Key Takeaways

** Numerous architectural styles exist; each with unique characteristics and trade-offs.

« Partitioning styles: Technical vs. Domain.
** Deployment models: Monolithic vs. Distributed.

» Choice of style influenced by:
o Project goals.

o Scalability requirements.

o Complexity management.

o Cost implications.

COMP2511: Architectural Styles 28

Layered
Architecture

COMP2511, CSE, UNSW

Introduction to Layered Architecture

\/ . .
** Layered Architecture separates technical and evenbually geks

responsibilities into distinct layers. a vesponse.
The user makes - g \ﬂ_
% Simplifies the design by dividing the system into ‘;“\133f£ the Request 6wy Response
manageable, logical parts. " / \
P AN
/ Presentation
Key benefits: Workflow
o Easy to understand and implement. \ Persistence /
\ /
o Promotes reuse and separation of concerns. \ /
kg

oz
Patabase i

COMP2511: Layered Architecture 2

Case Study: Naan & Pop Restaurant

% Startup restaurant serving Indian-inspired flatbread
sandwiches.

% Needs a simple website for online ordering quickly.

Requirements:
o Time to market: Quick launch.

o Separation of responsibilities: Clear division for Ul specialists
and database administrators.

o Extensible: Allow future enhancements easily.

COMP2511: Layered Architecture

=

January 2023

S M T WT F
1 2 3 4 5 ¢
8 9 10 1 1215 1

~N ©

D

15 6 \7 18 19 20 2!
22 23 24 25 2% 27 23
29 30 3\

SN
on

Why Choose Layered Architecture?

** Matches Naan & Pop’s needs: simplicity, fast

delivery, separation of technical roles. o oot
is logie and \ y [@2
. . ope . . » entities. \f:‘/
¢ Aligns closely with familiar design patterns like ‘ / ps Hodel ‘\
MVC updates manipulates
¥ [
) @ View @ Controller
\% ra/
. N @
Trade-offs involved: ‘*\ /5’
o Simplicity vs. extensibility. e
‘S

o Speed vs. maintainability.

COMP2511: Layered Architecture 4

Mapping MVC to Layered Architecture

Presentation =

¢ MVC concepts translate naturally into @ T forvien” n MVC

concerns the Ul and how the

arc h ite Ct ura I I a ye rs. Typical layered architecture P ¢ user interacts with the system.

__________________________________ In a layered architecture,

Ul elements appear in the
presentation layer.

** Additional layers may be introduced based on
real-world constraints (e.g., integration).

Presentation

o S Workflow

= Workflow &% 5

The workflow layer contains

most of the application’s code.

Business logic, workflows,

validations, and other domain

S Persistence

activities reside in this layer.

™ B

The model tontains

business logi¢ and \ N
domain entities. / Qg@ Model 4\

updates manipulates The ¢ontroller vepresents

L I \E\ﬂ\c workflow of the

aFFliCa{‘joh, domb'm'mg model
A ﬁ @ View @ Controller| clements and Facili{:aﬁng
The view their translation into view

vepresents the lemenks. | teeesesseseeimieimisisimie i i il e e e o &y
user interface \\S‘ / e This dotted 7 A ~

application’s vequivements. persistence layer in their
architecture to map code-based

I
‘ ' hierarchies (such as object-
X)
N |
!
|

~ |
N i
Like most layers, this N Persistence =
optional, dgFan,’ha on zr;‘ccus/ Many teams use a special

oriented languages) into set-
based relational databases.

S 4 “ » . . 4
of the S‘/S‘EC"\- Se, &2 box vepresents Monolith” implies & Vafabase =N
\ of the monolith. ™— that this is a single] While it’s optional, the “model™
/ dcylo\/mcn(’. unit from MVC usually maps to a

database or other persistence

i
user Layel’ed MO"OIHh mechanism. j

The monolithic deployment model, discussed in Chapter 3, is Not all applications use
Th : . often combined with layered architectures. While it’'s common database, but {hcy may
e user interacts with the T S persist imcorma{:io |sewheve:
application through th for different teams to work on the code and on the database, a r n elsewhere:
. £ . 9 ¢ wer monolithic architecture releases both database and code changes a xile SYSJCCM, the ¢loud, and
interface, using the work{low together. $0/0h

defined by the controller 4o
manipulate the model elements.

COMP2511: Layered Architecture 5

Layered Architecture — Philosophy

¢ Technically partitioned and usually monolithic.

¢+ Domain logic spans multiple layers: ond evenbualy get
. { ‘* A i a résponse.
o Presentation (Ul components). e wser makes ¢ 21 ;
o Workflow (business logic components). arﬁfﬂ;ﬂj* the Request Sl Response
appl on...
o Persistence (database schemas and operations). \
/ /. \\
/ Presentation \
Implication:
P _ _ Workflow
o Domain changes affect multiple layers.
\ Persistence
\ /
_ /
\ =
Database ——

COMP2511: Layered Architecture 6

Drivers for Layered Architecture

Why choose layered architecture?

¢ Specialization: Separates Ul, business logic, and database, allowing team specialisation.

7

¢ Physical separation: Matches real-world technology separation (frontend/backend/database).

7

*» Ease of reuse: Technical reuse across multiple projects.

7

«* Familiarity: Mirrors MVC, easy for developers to grasp.

COMP2511: Layered Architecture 7

Physical Architectures in Layered Systems

Common physical architectures:

Pros

+ Rich user interface

Two-Tier

Cons
Medium scalability

Reluab,hty is onf\/

" gk performance + Becomescomples LG0T
+ Simple ,—] when 1t gets big the network for 4
ﬁ LCeSi - Medium reliability aceess o or data
\/ M M . These anh:{cc’mus
% Two-tier (Client/Server): v snfle becae |
cvcr\i{h\ng tan b/?'tall\/)
i i be implemented as a t 1
o Client Ul directly accesses the database. e ek —
single pro) _
Three-Tier
Pros e | Cons
resentation
% I . + Detached Ul | Presentation_| - Least reliability
% Three-tier (We b) . (typically web) A . 1oy More tomplex
+ Highest scalability Y - ore compiex bctiusc it has ft
. g . . st moving Par
- Distributed me 9P
o Browser (presentatlon), » Disnfirated Distributed
.] architecture Periliionee headaches
o App server (business logic) benefits [Persistence |

Distributed arehitectures

Distributed arch\{cttwcs 1 ave more tomplex, wibh
. hi ” I bili m) ™) WI
o Database server (persistence) obfer bigher scapiity wore movng partsand

and similar ben > Lailure modes While a single stack

S— is nite, it 'S’\I£
=5 afwa\/s portable 4o
o other Platfonns

Embedded/Mobile

** Embedded/Mobile: Pros

+ Self-contained

Cons

- Least scalable

| - pe b
o All layers bundled into one deployable unit. otk com b an ~ T Single tech stack | ration - Resource-
advantage for + Hi constrained
mplicity. ighly tunablfe to]
simpheity hardware devices - Often tied to
implementation
platform

COMP2511: Layered Architecture 8

Physical Architecture — Pros and Cons

Physical Architecture

Pros

Cons

Two-tier
(Client/Server)

Simple, quick to build

Less secure, poor
scalability

Three-tier (Web)

Scalable, flexible

Complex infrastructure

Embedded/Mobile

High performance, simple
deployment

Limited scalability

COMP2511: Layered Architecture

Adding Layers — Integration Layer Example

¢ Additional layers can be introduced for specialised tasks
(e.g., Integration layer for delivery partners).

** Clearly isolates integration code from core business logic.

Example:

o Integration with Uber Eats API resides entirely within an Integration Layer.

COMP2511: Layered Architecture

Caveats — Domain Changes Impact Multiple Layers

+* Layered architecture easily supports changes in technical capabilities.

** However, changes in the domain (e.g., adding pizzas to menu) will affect multiple layers:
o Presentation layer (new Ul)

o Workflow layer (processing new item)
o Persistence layer (storing item data)

Trade-off:
o Ease of technical changes vs. difficulty of domain-wide changes.

COMP2511: Layered Architecture 11

Layered Architecture: Strengths

*»» Feasibility: Quick, cost-effective solutions.
*» Technical partitioning: Easy technical reuse.

*»» Data-intensive operations: Efficient local data processing.

*»» Fast development: Ideal for MVPs and small systems.

COMP2511: Layered Architecture

* Performance: High internal performance without network overhead.

Layered Architecture: Weaknesses

** Deployability: Monolith deployments become cumbersome as systems grow.

¢ Coupling: High risk of tight coupling (“big ball of mud”).
¢ Scalability: Difficult to scale individual functionalities independently.
¢ Elasticity: Poor performance under bursty traffic conditions.

¢ Testability: Increasingly difficult testing as codebase grows.

COMP2511: Layered Architecture

Laymd
arthitectures ave
nice and simple.

Monoliths in general
don't handle
stalability and
elasticity well, and
layered ones even
]CSS So.

Layered Architecture — Rating Chart (Example)

Tcs{;ing isn't especially
easy, but the team

has been dealing with
laycrcd architectures

- so lon v
Architectural Characteristic | Star Rating bl 3‘9{:2&7{"‘7 ‘
Maintainability * i“’)
Testability *x * S
Deployability *
— Well-designed laver
Simplicity * Kk Kk &k Xk arcch‘.{::{%éf JZZ‘ “
boast ﬁui{c hiah
Evolvability * perormance,
Performance * Kk k<
Scalability Y
Simplicity, in this
Elasticity * case, leads to
atfordability.
Fault Tolerance *
Overall Cost $

COMP2511: Layered Architecture

An online auction system where users can bid on items
Why?

A large backend financial system for processing and
settling international wire transfers overnight
Why?

A company entering a new line of business that
expects constant changes to its system

Why?

A swall bakery that wants to start taking online orders
Why?

A trouble ticket systewm for electronics purchased
with a support plan, in which field technicians
come fo customers to fix problems

Why?

Layered Architecture — Exercises

[] well suited for layered monolith
[]Might be a fit for layered monolith

[] Not well suited for layered monolith

[] Well suited for layered monolith
[]Might be a fit for layered monolith

[] Not well suited for layered monolith

["] well suited for layered monolith
[]Might be a fit for layered monolith

[] Not well suited for layered monolith

[] well suited for layered monolith
[] Might be a fit for layered monolith

[] Not well suited for layered monolith

[] Well suited for layered monolith
[]Might be a fit for layered monolith

[] Not well suited for layered monolith

COMP2511: Layered Architecture

Suitable Scenarios for Layered Architecture

Ideal Use Cases:

** Small, simple systems requiring quick delivery (e.g., small business websites).

+»» Data-intensive applications with local database storage

(e.g., desktop CRM apps).

¢ Applications needing clear specialization boundaries

(e.g., separate Ul, backend, DB teams).

COMP2511: Layered Architecture 16

Summary of Layered Architecture

Key points:

s Simple, fast to implement.
s Clearly separates technical concerns.

+* ldeal for stable domains with minimal changes.

+* Challenging to adapt when domain changes significantly.

COMP2511: Layered Architecture

Modular
Monoliths
Architecture

COMP2511, CSE, UNSW

These lecture slides are from the books:

o “Head First Software Architecture”, by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

o “Fundamentals of Software Architecture”, 2nd Edition, by Mark Richards, Neal Ford

Introduction to Modular Monoliths

*» Definition: A monolithic architecture organized by domain, not technical layers.

**» Goal: Align code and teams around business capabilities.
*» Key Trait: Deployed as a single unit, with domain-based modular structure

M ar mon /
:(IO}T:O']; ;)nooll:{{:l(/ K(]J\,)\fi {,hr}h OV'qahl}',U\g ‘
deployment model. “| _ Order Inventory e sppileation By
I/ naeeme"f‘l {Ma"ageme"f-l 7;/tv(.f.hm<‘vdl (‘von'(‘,(‘v ns,
q— we organize them by
bumr.,‘.ﬂ d main
[— Payment 7 o
Modular monoliths) ¢
>
also use a monolithie —
database ~

COMP2511: Modular Monoliths Architecture

Layered vs. Modular Monolith

*»» Layered: Organized by technical concerns (Ul,
services, DB).

» Modular: Organized by domain (Order, Payment,
Inventory).

** Problem with Layered: Changes often touch
many teams.

** Benefit of Modular: Changes are isolated within
a domain.

Modular monolith

IS FL]LO a monolithie

dcyloymcn{, model \\

...and even‘f‘,ua”\/ gets

a response.
The user makes %
5 rco\uc{sﬁ of the Re i Response
application.- / . ‘
I/ \\
/ Presentation \
Workflow
\ Persistence /
\ /
_ /
\ =
Patabase ~——
/ R&“\f,r {,han OV'gam?.mg

Order Inventory the application by

|— Placement —‘ [Management 1) /*‘“‘““"' Concerns,

we o\rt_‘)amzf “\(_m b‘/

bvﬂntﬂ‘» domain

I— Payment —I

Modular monoliths) i

also use a monolithie ——
N—

database ~— =

COMP2511: Modular Monoliths Architecture

What Is a Module?

Individual domains
make up the modules

“* Independent unit within a domain. Vel °§7°“”’*’F“§‘d°" TNy

Order Recipe Inventory
. dowmain domain domain
% Contains all business logic for its domain. - =
s)
£ | Presentation £ | Presentation S| Presentation
“* Examples: 5 g 2
¢ pies: = | Business rules S | Business rules £ | Business rules
e () t>...
o OrderPlacement module handles order lifecycle & | Kersictonce g ersistonee E [lenistencs
=
. . : : K N 7
o Recipe module contains ingredients and cooking) A

These “slices” vepresent a particular set
of business funetions within a domain.

steps
o Inventory module tracks stock levels and alerts

o UserManagement module handles user accounts

and roles

COMP2511: Modular Monoliths Architecture

Why Choose a Modular Monolith?

+ Business alignment: Modules map to subdomains

» Team ownership: Cross-functional teams per domain
» Faster changes: Changes isolated to one module

« High performance: No inter-service network latency

» Easier testing: Scoped test suites per module

COMP2511: Modular Monoliths Architecture

Code Organization in a Modular Monolith

** Single deployment
*» Separate namespaces/packages for each module

** Each module has:
o Public API

o Private internals

** Example (hamespace):
O com.naanpop.order

O Ccom.naanpop.inventory
O Ccom.naanpop.reports

COMP2511: Modular Monoliths Architecture

Managing Inter-Module Communication

** Don't: Direct calls between modules (tight coupling)
** Do: Use public APIs
** Risk: Big ball of mud from uncontrolled access

» Solution: Interface-based interaction only

Calls to any module
happen only to their
vespective APls.

Order [Recipe lnventory
domain &/ dowain dowmain
APl < > APl < > APl
Implementation Implementation Implementation
(private) (private) (private)

COMP2511: Modular Monoliths Architecture

Keeping Modules Modular

» IDE features (e.g. auto-import) can break boundaries
»* Separate folders/repositories

s Use build tools (e.g., Gradle subprojects) These avvous vepresen alls

Leom one layer in a module
1o a layer in another module.

One Second Another
¢ Use language features: T dowain - TN T dowai 7T T dowain 5
| Presentation Ll »| Presentation 4 Presentation I
. I I |
o Java: JPMS | Business rules / Business rules | Business rules I
. | Persistence 11 Persistence 11 Persistence |
o .NET: internal keyword e e e)

/& [€ left uneheeked, cath'g;iulc’s _)

tode betomes more tlosely oupled
with the other modules’ tode, and
theivr boundaries start to disappear.

COMP2511: Modular Monoliths Architecture

Modularizing the Database

** One DB per monolith, but partitioned by schema

+* Rule: Each module accesses only its own tables

** No foreign keys between modules —

[Order J [lnventory J e?’cill a modular
. monolith.
¢ Use ID references and API calls [Recipe |

We still only have one
/ database for the

modular monolith.

Eath of the lettered boxes
rc?vcscwts a sc?ara‘tc sthema

+o house the tables for eath
module. (O stands Lor Ovder,

and so on.)

COMP2511: Modular Monoliths Architecture

Avoiding Coupling in Data Access

+** Risk: JOINs across module tables reintroduce coupling

+* Solution:

| need the details
for recipe_item_id 2.

Hold on! Let
” R me look this u
et foryou.
o O
o Store IDs, not foreign keys ® e orter ke b Rete g
—— dowain module AP{’: b\/ passing dof;g)ie" —
. . . in retipe_item id.
o Retrieve info via module API = q
lmplengen’raﬁon lmplew;en’raﬁon
‘:‘ EX am p | e (private) < 7 (private)
The Retipe module
¢ vesponds wi{:h{:a l ¢
. the vetipe details .
o Order module stores RecipeltemID — order_schema —— [— recipe_schema ——
orders recipes
. id |recipe_item_id |... id |ingredients
o Calls Recipe API when needed

COMP2511: Modular Monoliths Architecture

Extending Modularity to Teams

» Align teams with subdomains (modular ownership)
» Foster domain expertise and autonomy
»* Minimize coordination overhead

» Example: Inventory team owns inventory module and tests

COMP2511: Modular Monoliths Architecture

Example — Expense Tracking App

** Requirements:

o Users add expenses
o Auditors review reports
o Audit trail for traceability

** Modules:

o ExpenseEntry
o AuditReview
o UserManagement

COMP2511: Modular Monoliths Architecture

Example — Educational LMS

** Requirements:
o Instructors upload courses
o Students enroll and complete assessments
o Admins manage roles and reports

** Modules:
CourseContent
Enrollment
AssessmentEngine
UserAdministration

O O O O

COMP2511: Modular Monoliths Architecture

Benefits of Modular Monoliths

«* Domain Partitioning: Better team alignment
» Performance: No inter-service latency

« Maintainability: Domain-local changes

» Testability: Scoped, isolated testing

% Deployability: Single unit, easier CI/CD

COMP2511: Modular Monoliths Architecture

Limitations of Modular Monoliths

** Reuse: Harder to share utilities
** One set of characteristics: No per-module customization
** Fragile modularity: Easy to break boundaries

*» Operational limits: Harder to scale or isolate faults

COMP2511: Modular Monoliths Architecture

Governance and Discipline

** Modular monoliths require:
o Discipline in access control
o Codebase enforcement (tools, practices)

o Database discipline (modular schemas)

** Governance tools help but don’t eliminate the need for vigilance

COMP2511: Modular Monoliths Architecture

When to Use Modular Monoliths

s Teams aligned to business domains
¢ Applications that must remain performant

s Systems needing easy testability and deployment

COMP2511: Modular Monoliths Architecture

Transition Path — Layered to Modular

+*» Start with layered > modularize by domain over time

¢ Introduce governance and APIs gradually

** Split database logically first, physically later

COMP2511: Modular Monoliths Architecture

Modular Monolith Advantages

’0

» Better domain alignment than layered monoliths

‘0

« Single deployment with domain modularity

’0

s Enables domain-oriented teams

L)

* Maintains runtime performance of monoliths

L)

L)

* Fewer operational headaches than microservices

L)

COMP2511: Modular Monoliths Architecture

Common Pitfalls in Modular Monoliths

2+ Bypassing module APIs (direct access)
»* Database JOINs across modules
» Overusing shared libraries (tight coupling)

** Lack of observability into module interactions

COMP2511: Modular Monoliths Architecture

Techniques for Success

** Define strong module boundaries
** Maintain minimal public API surface
** Invest in automated testing and monitoring

** Review architecture regularly for erosion

COMP2511: Modular Monoliths Architecture

These fave
better than
in the layered
arthitectuval

style.

Most monolithie ‘(:
arcthitectures per-torm
well, especially if well —>
designed.

Ovevall, more

expensive than layered
avchitectures. Modular
monoliths vequire more
?lanning, ‘Ehough{z, and

lona—term maintainante.

Modular Monolith Star Ratings

Architectural Characteristic | Star Rating
Maintainability Y% % %
Testability *x Kk &
Deployability * Kk %k
Simplicity * % % %
Evolvability * * %
Performance * %k %
Scalability) ¢
Elasticity) ¢

Fault Tolerance) ¢

Overall Cost $

SSSSSS

Exercise

Which of the following
systems might be well suited
for the modular monolith
architectural style, and why?

An online auction system where users can bid on itewms
Why?

A large backend financial system for processing and
settling international wire transfers overnight
Why?

A company entering a new line of business that
expects constant changes to its system

Why?

A swmall bakery that wants to start taking online orders
Why?

A trouble ticket system for electronics purchased
with a support plan, in which field technicians
cowme to customers to fix problems

Why?

COMP2511: Modular Monoliths Architecture

E] Well suited for modular monoliths
[] Might be a fit for modular monoliths

[] Not well suited for modular monoliths

[] Well suited for modular monoliths
[] Might be a fit for modular monoliths

[] Not well suited for modular monoliths

[] Well suited for modular monoliths
] Might be a fit for modular monoliths

] Not well suited for modular monoliths

[] Well suited for modular monoliths
[] Might be a fit for modular monoliths

[] Not well suited for modular monoliths

[] Well suited for modular monoliths
[] Might be a fit for modular monoliths

[] Not well suited for modular monoliths

Microservice
Architecture

COMP2511, CSE, UNSW

These lecture slides are from the book “Head First Software Architecture”,
by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

Introduction to Microservices

** Microservices are single-purpose, independently deployed units.

+» Ideal for environments requiring frequent changes and scalability.

Examples:
o Netflix's streaming services

o Amazon's product catalogue.

COMP2511: Microservice Architecture

microservices

Defining Microservices

s Performs one specific function exceptionally well.

Examples:

O

O O O O

Dedicated microservice like "Monitor Heart Rate."
"Authenticate User" service, "Generate Invoice" service.
"User Profile Management" service.

"Shopping Cart" service.

"Notification and Alert" service.

"Recommendation Engine" service (e.g., Netflix
recommendations).

COMP2511: Microservice Architecture

Monitor
All Vital
Signs

/R This large sevvice monitors all
o£ a ?a{:’ncrx{:}s vital signs.

This is quite small .
bCCausc it

Monitor
Heart
Rate

Exercise: Define Microservices

Identify single-purpose microservices below:

d Add a movie to your personal “to watch” list

a
a

Pay for an order using your credit card
Generate sales-forecasting and financial-performance reports

Submit and process a loan application to get that new car you’ve
always wanted

Determining the shipping cost for an online order

COMP2511: Microservice Architecture

Key Characteristics of Microservices

s Own their own data (Physical bounded contexts).

¢ Direct data access restricted to owning microservice.

Examples:

o Order service maintains its own order history database.

o ljnventory service owns and manages product availability
ata.

o Payment service manages transaction records
independently.

o User Authentication service securely stores user
credentials separately.

The Monitor
Heart Rate
mitroservite is
the on\\/ one
that can vead
or update heart

Monitor
Heart Rate

vate data. \\ “

The Monitor Heart
Rate mitroservite
doesn't have to
change when the
Sleep Status
database changes

S

This box
vepresents the
\vh\/slcal bounded
tontext.

COMP2511: Microservice Architecture

ﬁ

Monitor
Tewmperature

=

Same with
‘H\C Monitor
Temperatuve
and Monitor
Blood P\rcssurc

mitroservites.

The Monitor Heart Rate
mitroservice doesn't ateess the

f—glc:y Status database divectly.

“Raju’s heart rate seems low. Is he

currently awake or asleep?”

“Raju is asleep.”

)
; 4
Sleep
Status

Blood

Monitor !
Pressure

< - E

e
Changing the
data strutture
of a table
onl\/ aﬁ‘cc{s
the owning

milrosevvite.

2

Determining Granularity

*» Granularity: The scope of a microservice’s
responsibility.

*» Avoid too fine-grained ("Grains of Sand" antipattern).

Examples:

o Single microservice handling payment transactions.

o A microservice dedicated to shipping and tracking orders.

o Product review and rating as a distinct service separate
from product information.

o User notification service isolated from user profile
management

“Gingle—purpose”

here means
moni{lO\’]T‘ﬁ
blood pressure,
which intludes
all {’\ou\r o(:
these £un£‘tion$.

.

COMP2511: Microservice Architecture

Option 1

Monitor Blood
Pressure

Capture

Record

Analyze

Alert

é\

The white "S\nglc—?wyosc" here
boxes ave means M\/ﬂ&{hc
the logical blood pressure data
tomponents. and alerting skafl if
somc{:king is wrong,
Option 2 l
Capture Blood Analyze Blood
Pressure Pressure
Slnglc—yurposc” heve

°h"/ means retordin

the blood Pressure.

Option 3
Capture Blood Record Blood
Pressure Pressure
Analyze Blood Alert Staff
Pressure

Granvlarity PDisintegrators

I - T~ When should you consider making your N
G ra n u a rlty D I SI nteg ra to rs services smaller, with less functionality? ?S"‘JC‘S*%OYS
e~torte servites +o
. — break
(Reasons to Make Services Smaller) pelisport
1 20| ?
Cohesion: Functions within a service should be closely related. |
— fn{:cgraJcors forte
] . . . R_/scvrv'u‘,cs to tom
o Payment processing separate from user authentication. Granularity lntegrafors fopeire e
. . . o When should you consider making your
Fault Tolerance: Separating unstable functions for better reliability. services bigger, with more functionality?
o lIsolating an unstable email notification service.
Granulavity
Access Control: Easier management of sensitive data. f:::;;z::.m\v
. ode Cohesion e
o lIsolating financial data access. votatity 1 P
RN
Code Volatility: Isolating frequently changing parts. 3:::?;;§ij o
. . ccess Blood Pressure) Ter::r‘mre
o User interface components separated from stable backend logic. control —— (o)
Scalability: Independent scaling for high-demand components. /
. . . . calabil
o High-traffic "search" feature isolated for scaling. and throughput F§u.t

tolerance

COMP2511: Microservice Architecture 8

Granularity Integrators
(Reasons to Make Services Larger)

Datab
@, . . . trz:saacst?ons
*»» Database Transactions: Easier to manage single N ramivity
commit/rollback operations. e (s ikl
o Order creation and inventory deduction in one service. Shared
code B Monitor Basic
‘C Vital Signs
2 Data Denendencies: Maintain ticht] ed d hap L e
«* Data Dependencies: Maintain tightly coupled data together.) e —
i Dat /
o User profiles and preferences managed together. Baby | = /
Monitor
Heart Rate
% Workflow Efficiency: Reduce excessive inter-service
communication.
Workflow and
o Checkout service combining cart, pricing, and payment ClioreoUmMpY

functionalities.

COMP2511: Microservice Architecture 9

It’s about a right balance!

You guessed it—theve ave trade-
offs between these two Lovees,
which is why you have to £ind

the vight balance between H\Cm.>

Granvlarity disintegrators
When should you consider making
your services smaller and separating
functionalities?

Granvlarity integrators

When should you consider making

your services bigger and combining
functionalities?

Making our
microservices
smaller would give
us better scalability,
which is important
tous.

Making our
microservices bigger
would give us better

data integrity, which is

important to us.

éood \)ob_’ The next s{c? is \ciguring out
whith is move important: scalabili{:\/ or

data integrity. As the saying goes, you

tan't have Your take and eat it too.

COMP2511: Microservice Architecture 10

Sharing Functionality

** Shared Services: Standalone microservices accessed remotely.
o Authentication service used by multiple microservices.

o Shared alert functionality in MonitorMe medical alerts

Monitor Blood This mitrosevvite tontains
Pressure shaved functionality to

alevt medical staff of any
Blood Pressure :
anomalies. go'hc{:hina's y

the patient!
Monitor Alert y
Temperature Staff —
®

Temperature (Alert)

Monitor Heart /
Rate

kohg with

Y

COMP2511: Microservice Architecture 11

Sharing Functionality

¢ Shared Libraries: Embedded at compile-time, deployed with each service.

o Logging and error handling libraries.

This is the Alert shared

- libravy that tontains the .
Monitor Blood shaved alcrfmg ﬁund{:iona\i{:‘j- Monitor
Pressure Tewmperature

Blood Pressure
.........

\onge¥
mote
al ect

This sexvite N
has ko call 3 Y€

m\t,‘(oscw'\cc |
Lhe nurse Cool.

COMP2511: Microservice Architecture 12

Shared Services vs. Shared Libraries

** Services: Agile, suitable for diverse environments, slower, less fault-tolerant.
o Central user authentication service.

¢ Libraries: Faster, scalable, robust, but challenging dependency management.
o JSON parsing libraries used across multiple microservices.

COMP2511: Microservice Architecture 13

Exercise

Should the alert functionality in MonitorMe be a shared library or a shared service?

» Justify your decision.

Option 1: Shared service Option 2: Shared library
7
Mo!rri:::uzlem Monitor Blood Monitor

Pressure Temperature

Blood Pressure \ Alert Blood Pressure
Staff

Temperature
v SOmC{:HmS'S wron

Y Y
o < ! !
@ ®

COMP2511: Microservice Architecture 14

Workflow Management: Orchestration

** Central orchestration manages workflow, akin to
a symphony conductor.

o Pros: Centralized management, clear state/error
handling.

o Cons: Bottlenecks, high coupling, performance
concerns.

s Example:
o Centralised order processing orchestrating payment,
inventory, and shipment services.

COMP2511: Microservice Architecture

Juan
with a single vequest

wants to get this
5

data

Monitor
Temperature

Monitor
Heart Rate

(Temperature)

Monitor Blood
Pressure

Blood Pressure

Now there's a
hcalﬂn\/ patient.

Temp: 98F
BPressure: 120/80
Heart Rate: 63bpm

\

= This is the data, tonsolidated
into a single vesponse that is
passed back to Juan.

This is the
data ?asscd

back to the
ovehestrator-

/1
Heart Rate: 63bpm
/ Temp: 98F

Monitor
Vital Signs
Orchestrator

b(sua”y there’s one orthestrator
pev rcqucs{ or ma\or wo\rkﬂow,

so expect a lot owt) these.

—

Nre: 120/80

Monitor
Heart Rate

Heart Rate

Monitor
Temperature

Monitor Blood
Pressure

Blood Pressure

Workflow Management: Choreography

¢ Peer-to-peer service communication, like coordinated dance.
o Pros: Scalable, loosely coupled, high responsiveness.
o Cons: Complex error and state management.

s Example:

o Event-driven updates between cart, inventory, and shipping services in an e-
commerce site.

= Capture Blood Record Blood

- rvfIJ Pressure Pressure

(= f ;)

i ’ (Captore) (Record)

L dro?s

/Q This is ¢alled a [£ the blood pressure
S\ah\/gmomanomc{:cr—o{hcrwisc l [below 100/%0, alert the nurse.
known as a blood pressure eukf.

Analyze Blood Alert Staff
Pressure
—

o)) g

COMP2511: Microservice Architecture 16

Exercise

These are
Choreography C the steps:
Create 3 5 | Assian Ticket fo 4 5| Upload Ticket to Mark Ticket as
Ticket Expert App Fixed
1 2 \
Which workflow should The expert uses their
\)uah use {o Subn\i*{‘_ a mob lc devite {‘,o mark
ﬂ \[_ trouble ticket? a ticket as fixed.
ol [ip
1 ‘ Orchestration
> Ticket -
Orchestrator
Create Assign Ticket fo Upload Ticket to Mark Ticket as
Ticket Expert App Fixed
o]

7
[1 Choreography 4] Thc expert uses their

[] Orchestration obile app to tell

the orthestrator the
Reason: ticket is fixed.

COMP2511: Microservice Architecture

‘G

Advantages of Microservices

** Maintainability, Testability, Deployability, Evolvability.

¢ Exceptional scalability and fault tolerance.
s Examples:

o Continuous deployment at Spotify

o Scalable services at Netflix

COMP2511: Microservice Architecture 18

Limitations of Microservices

*» Complexity, especially in workflow management.

** Performance issues due to inter-service communications.

s Example:
o Increased latency in highly interactive systems like gaming or
real-time analytics platforms.

COMP2511: Microservice Architecture

Balancing Microservices Architecture

+*»* Decision criteria:
o Business agility
o Complexity handling
o Team structure

** Optimal balance between granular control and practical maintainability.

s Example:
o Amazon's product catalog services balancing granularity and maintainability.

COMP2511: Microservice Architecture 20

Case Study - StayHealthy MonitorMe

** Successful real-world implementation of microservices.

¢ Insights: Balance granularity, effectively manage shared resources.

+** Continuous focus on agility and operational stability.

s Example:

o Reliable and scalable health monitoring system for critical patient data.

COMP2511: Microservice Architecture

These thavatteristics
tontribute to
agility—the ability
to rcs?ond ﬂuitkl\/ to
Changc-

WC tan S(‘,a\c
mitroservites at 3

EunCJClO“ \CVC\'

ﬁ

Microservices Star Ratings

Architectural Characteristic | Star Rating
Maintainability * Kk ok &k ok
Testability * Kk Kk ok ok
Deployability * Kk Kk Kk Kk
Simplicity *

Evolvability * Kk Kk Kk %k
Performance *x X

Scalability * Kk ok Xk ok
Elasticity * % K %
Fault Tolerance * % Kk k X
Overall Cost $ $ $ $ $

COMP2511: Microservice Architecture

MicrOSCY‘ViCCS are

HARD.
<

<N

TOO mUC\'\
amication bety

tomm
mitroservites slows

down VC"\“CSJ(’S'

22

Exercise

Which of the following
systems might be well
suited for the microservices
architectural style, and
why?

An online auction system where users can bid on items
Why? High scalability and elasticity needs; high
Conlurventy, indcYCndcn{: puhcfions

A large backend financial system for processing and
seftling international wire transfers overnight
Why? Microservites' superpowers aven t needed

in this kind of complex system

A company entering a new line of business that
expects constant changes fo its system

Why? Hiah aaility and evolvability mean

mitvosevvices tould fit, but we need more info

A swmall bakery that wants to start taking online orders
Why? The hiah tost and Complcxitj of mitrosevvites
would be too muth for a small bakery

A trouble ticket system for electronics purchased
with a support plan, in which field technicians
come to customers to fix problems

Why? 'ndCPCndanc cunt{ions; a00d scalabiliﬁy
and elasticity; simple workflows

COMP2511: Microservice Architecture

E Well suited for microservices

[] Might be a fit for microservices

[] Not well suited for microservices

[] Well suited for microservices
[] Might be a fit for microservices

E Not well suited for microservices

[] Well suited for microservices
E Might be a fit for microservices

[] Not well suited for microservices

[] Well suited for microservices
[] Might be a fit for microservices

IX Not well suited for microservices

BWeII suited for microservices

[] Might be a fit for microservices

[] Not well suited for microservices

23

k.

%’m

=<
o
z
m
<

Summary

** Microservices offer high flexibility but involve significant complexity.
** Requires crucial granularity and communication decisions.

¢ Evaluate and manage trade-offs carefully.

s Example:
o Transitioning from monoliths to microservices at Uber.

COMP2511: Microservice Architecture 24

Event Driven
Architecture

COMP2511, CSE, UNSW

These lecture slides are from the book “Head First Software Architecture”,
by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

Introduction to Even-Driven Architecture

+* Event-Driven Architecture (EDA) structures systems to respond to
events, which are significant changes in system state.

¢ Unlike request-driven systems, EDA components don't directly
call each other.

¢ Example:

o An e-commerce system where placing an order triggers inventory
updates, payment processing, and shipping—all asynchronously.

These are the {hings the s\/s{:cm
This is the This is an event that does as a vesponse to the event.
g usev action. is genevated Leom the

usevr action.
Subwit an / Charge customer’s eredit
online order / card
Order
_—
E/ (Subwitted e AdjUST cUTTENt inventory
\ .

gare the order 3

CUMMFZO 1 I EVENT briven Arcnitectur

What is an Event

s An event represents something that has already occurred and carries data about it.

+* Events are immutable and often used as triggers.

7

** Example:
o "User Registered" event might include the user ID, name, and email.

These are the things the system

This is the This is an event that does as a vesponse to the event.
usev action. is genevated Lrom the
user attion.
Subwit an / Charge custower’s credit

online order card

Order
ﬁ
Q/ [Submitted —- Adjust cUrrent inventory
\ Prepare the order

COMP2511: Event Driven Architecture 4

Even vs. Messages

¢ Events broadcast that something happened, with no expectation of response.

**» Messages are more targeted, often demanding action.

7

** Example:
o Event: "ltem Added to Cart" (anyone can listen).
o Message: "Process Payment" sent directly to payment service.

These are events.
= Service [[<\ W
—
(/ Both these Order Order
Service | |[——————>> Event . : Placement | | =
- —, Servites vecteive Service Placed
Toplc \ ’H‘IC same event.
Service
You learned j\ % Payment || —— (Payment
about these in Service Rejected

chaF{ZCY‘ 3, \/
] — Shipping || — 5 Order
— This is the only Service Shipped
Service _—)E —3 | Service sevvice that w

Queuve veceives the Events are always

" messaoe. q q stated in past tense.
uuwu—LuClSSl .SS_VCI i Driven Architecture — o

These are messages. \/

Order
Placement| | = Apply
Service Payw“"“f

Packing || — > Ship
Service Order

Shipping || e————p Notify
Service Customer

Messages ave always j
stated as tommands.

Initiating and Derived Events

** Initiating events are triggered by users or external L -

=g Order Order
Customer Submitted Placement
subwits an Service

systems.

7

triggered by services

7

** Example:
o Initiating: "Order Placed"

This is the im{:n&{mg
event that kicks

order

*» Derived events are consequences of those events and

Sevvites tan vespond to
an event and in turn
trigger more events.

B

o Derived: "Payment Authorized", "Inventory Deducted",

"Shipping Scheduled"

COMP2511: Event Driven Architecture

cvcr\/{hmg off.

Order
Placed

\

Payment
Service

These are derived
events triggered
by the Order
Submitted

initiating cvcn{)
Orcdif Card
Expired

R These ave all the things that
¢an possibly happen in the
< Paymcn{ service.

Payment 5
Applied

Ewail
Notification
Service

Order
Fulfillment
Service

Why Publish Events Others May Not Care About?

** Broadcasting all events allows new services to listen without modifying existing systems.

s Example:
o Initially, only billing listens to "Order Placed".
o Later, analytics can subscribe to the same event to track order trends.

COMP2511: Event Driven Architecture 7

Asynchronous vs. Synchronous Communication

¢ In synchronous calls, the sender waits for a response.

** In asynchronous communication, it continues immediately after sending.

s Example:
o Synchronous: REST API call to get shipping quote
o Asynchronous: Order service emits "Order Placed" and moves on

Dotted lines

Order
Placement
Service

sighi‘c\/ ASYnChronous
tommunitation.

The Ovder Platement sevvice

doesn't wait for a vesponse
Leom the PaYmcwE sevvite
onte it sends an event..

Payment
Service

Asynchronous

The Pa\/mcn‘f: sevvice
cvcn{:uaHy receives the
event and responds
when it’s ready.

Order

Service

Solid lines indicate

s\/nchronous
tommunitation.

Placement Sfoy

The Ovrder Placement sevvice must stop and D

wait for a vesponse Lrom the Payment sevvice
before it can complete its work.

COMP2511: Event Driven Architecture

Synchronous

>| Paywent
Service

The Pa\/mcn{ sevvite must
be available when the Ovder
Placement sevvite sends it
inﬁovma{:ion.

Benefits of Asynchronous Communication

** Loose coupling allows services to operate and scale independently,
increasing speed and fault tolerance.

Example:

o With async processing, an online store confirms an order in 600ms;
with sync processing, it takes 1800ms.

COMP2511: Event Driven Architecture 9

Trade-Offs of Async Communication

s Asynchronous systems complicate debugging and tracing since there’s no immediate
response.

s Example:
o When inventory update fails, the order service might not know.
o You need to monitor event failures separately.

COMP2511: Event Driven Architecture 10

Database Topologies in EDA

** How services access and manage data affects modularity and scaling.

s Examples:
o Monolithic DB: All services write to one database (fast, tightly coupled).
o Domain-Partitioned: Related services share DB (moderately coupled).

o DB-per-Service: Each microservice owns its DB (fully decoupled, but complex joins
require events).

COMP2511: Event Driven Architecture 11

EDA vs. Microservices

** Microservices focus on small, self-contained services communicating via HTTP or RPC.

s EDA emphasizes event-based coordination.

s Example:
o Microservice model uses REST to trigger payment.
o EDA emits "Order Placed", and payment service listens and reacts.

[n milrosevrvices, tommunitation
is usuaH\/ done using REST,
which needs a vesponse +o

5 tontinue Froccssing.

As\/nc Syne
Order f Order [-
_____ > | Paywent e3> | Payment
Placement i Placement G
Service Service
Event-Driven Architecture Microservices Architecture

COMP2511: Event Driven Architecture 12

Event-Driven Microservices

This is a Fh\/sical bounded
tontext, meaning no

%* This hybrid model combines independent ool
services with event communication, boosting
flexibility.

Order i (" Order !
i | Placement || \ Placed): Paywent _i, [Payment

1| Serviee : | Service || :
‘ Order | :
% Example: ubmission —r = R
o Inventory, Shipping, and Billing each own e

H . n n i i
their DB and listen to "Order Placed" to act | [imerteer 1
1 Updated

asynchronously. / Service

—— These servites are now i —
mitroservites that use events, i @
c\f.ca’cing an CVCh{‘.—.‘d\rchn :‘ S ;
mitroservites architectuve. N icccccccanaas %

COMP2511: Event Driven Architecture 13

EDA Challenges

** EDA introduces challenges with observability and testing due to distributed
asynchronous operations.

s Examples:

o Event debugging is complex—errors are not immediate.

o Testing sequences requires simulating full event flows.

COMP2511: Event Driven Architecture 14

EDA Advantages

¢ EDA shines in environments requiring responsiveness, scalability, and autonomy.

s Examples:
o Maintainability: Add new features without changing existing services.
o Performance: Events processed in parallel.

o Scalability: Individual components scale independently.

COMP2511: Event Driven Architecture 15

Key Concepts

+* EDA emphasizes responsiveness and extensibility but requires thoughtful design to
manage complexity.

s Key Points:
o Events = Immutable notifications of state change
o Asynchronous = Fire-and-forget

o Combined with microservices for modern architectures

COMP2511: Event Driven Architecture 16

Event-driven Architecture Star Ratings

Architectural Characteristic | Star Rating
While i¥'s easy Maintainability * % % X
+o find whevre
to thange code, Testability * %k
{cs{ing and
deployment are Deployability * % %
risky and havd.
Simplicity *
Evolvability * % % k %
Less sevvite
ouplin means
ot oty | Performance * % ok k Xk
stieity:)
and elastic v\){ Scalability * % % % %
Elasticity * * k %k
* % % % %

Fault Tolerance
ﬁ Overall Cost

$$ 9%

Bcdausc most {:hings are
asynthronous and decoupled,
Lault tolevante is rcaH\/ high.

COMP2511: Event Driven Architecture

Thinas "kC error
handling and
asynthronous
‘:o’“”‘uhiéa{joh
make EDA

CO"‘P,cx.

NS

Fina“\/ , an
arthitectural
style that

?CY‘(:OYmS wc”_!

17

Exercise

Which of the following
systems might be well
suited for the event-driven
architectural style, and
why?

An online auction system where users can bid on
items

Why?

A large backend financial system for processing and
settling international wire transfers overnight
Why?

A company entering a new line of business that
expects constant changes to its system

Why?

A small bakery that wants to start taking online
orders
Why?

A social media site where users can post and respond
to comments

Why?

COMP2511: Event Driven Architecture

[] well suited for event-driven architecture
[] Might be a fit for event-driven architecture

[] Not well suited for event-driven architecture

[well suited for event-driven architecture
[] Might be a fit for event-driven architecture

[] Not well suited for event-driven architecture

[] well suited for event-driven architecture
[] Might be a fit for event-driven architecture

[] Not well suited for event-driven architecture

[] well suited for event-driven architecture
[] Might be a fit for event-driven architecture

[] Not well suited for event-driven architecture

[] Well suited for event-driven architecture
[] Might be a fit for event-driven architecture

[] Not well suited for event-driven architecture

Serverless
Architecture

COMP2511, CSE, UNSW

Introduction to Serverless Architecture

s Serverless computing allows developers to build and run applications without managing infrastructure.
** Developers focus on deploying individual functions without managing servers.

% Cloud provider dynamically manages server allocation.

% Function is executed in response to events.

% Also known as Function-as-a-Service (FaaSs).

% Example Platforms:

o AWS Lambda: Most popular serverless platform, integrated with the entire AWS ecosystem
o Azure Functions: Serverless platform for Microsoft Azure users

o Google Cloud Functions: Lightweight solution for Google Cloud services

o IBM Cloud Functions: Based on Apache OpenWhisk

COMP2511: Serverless Architecture 2

How Serverless Works

% User sends request (e.g., APl call)
% APl Gateway receives and triggers a Lambda/Function
** Function processes data and interacts with services (DB, storage, web services)

** Result returned to user

«* Example:

1. An S3 bucket (cloud storage) uploads an image

2. The event triggers a Lambda function to resize the image

3. The function stores resized image in another S3 location (cloud storage)

COMP2511: Serverless Architecture 3

Example: AWS Lambda

Static Storage Service

Amazon S3 hosts static websife content such
as HTML, CSS, JavaScript, etc...

\Object storage and website hosting)

i AMAZON S3

Amazon Cognito registers and authenticates

new users to your application 4

Authentication Service

AMAZON COGNITO USER POOL
User directory and authentication
RESTful API J

Database Service
.......................... ’ . R ’
Your app’s serverless backend

receives dynamic APl calls and

N RESTful API Serverless compute NoSQL database

Key Characteristics

» Auto-scaling: Instantly handles thousands of concurrent executions

» Faster time-to-market: Developers focus on business logic, not infrastructure

»* High availability: Functions are distributed across multiple availability zones

» Event-driven: Executes on triggers like HTTP requests, file uploads, or database changes.
» Micro-billing: You pay only for execution time, usage-based cost.

» Short-lived functions: Ideal for tasks that complete quickly.

COMP2511: Serverless Architecture 5

Serverless Use Cases

** Form submission triggers a Lambda to store data in DynamoDB.

** Google Cloud Functions reacts to Firebase database changes and sends real-time notifications to

users.
» Lambda automatically resizes images uploaded to S3 for use in different display formats.
» An e-commerce website uses Azure Functions to handle inventory updates on-demand.

» AWS Lambda processes incoming JSON health data from loT devices, generates alerts if required,

and stores data in Amazon DynamoDB for further analysis.

COMP2511: Serverless Architecture 6

Serverless Design Principles

*»» Stateless: Don’t rely on local memory; use shared storage (e.g., S3, DynamoDB)
** Event-driven: Design workflows around events, not request-response chains
** Minimal and composable functions: Keep single-responsibility per function

¢ Use queues/pubs/subs: Decouple flows using queues or Publish-subscribe messaging services

COMP2511: Serverless Architecture 7

Limitations and Challenges

Cold starts:
** Latency when functions are idle for a while (especially for JVM/.NET)
s Mitigation: Use warm-up plugins or provisioned concurrency

Vendor lock-in:
+»* Tied to provider’s ecosystem (e.g., AWS SDKs, IAM policies)

Observability:
+»* Harder to trace request flows across functions
+»* Solution: Use distributed tracing (e.g., AWS X-Ray, OpenTelemetry)

Resource limits:
+» Timeout (after a few mins on AWS Lambda)
+* Memory and ephemeral storage constraints

COMP2511: Serverless Architecture

Comparison: Serverless vs. Microservices

Feature

Microservices (Containers)

Serverless (Functions)

Deployment Unit

Container

Function

Management DevOps / CI/CD pipeline Fully managed by provider
Cost Model Fixed per compute unit Per request, per execution time
Scaling Container autoscaling Scales with invocations

Startup Time

Low latency (warm)

Cold starts may delay execution

Monitoring

Full stack observability

Requires custom integration

COMP2511: Serverless Architecture

el
N\ m

C
2

«
=<
o
z
m
<

Summary

** Serverless abstracts server management and reduces operational burden
** Works best for stateless, event-driven, and high-concurrency use cases
» Challenges include observability, cold starts, and vendor-specific tooling

** |deal as a lightweight, cost-effective architecture for modern cloud-native apps

COMP2511: Serverless Architecture 10

Course Review
Exam Structure

COMP2511, CSE, UNSW

Course Review

Course Review

This course provided a comprehensive overview of software design and architecture.

The key areas we covered include:

Object-Oriented Programming (OOP): The fundamental concepts of classes, objects, inheritance, and
polymorphism.

Object-Oriented (OO) Design Principles: Key guidelines like SOLID and favouring composition over inheritance to
create robust and maintainable code.

Code Smells and Refactoring: Identifying weaknesses in design that violate principles and restructuring the code
to improve its quality without changing its external behaviour.

Software Design Patterns: Reusable solutions to commonly occurring problems, categorized as Creational,
Structural, and Behavioural.

Software Architecture: The high-level structure of software systems, including different architectural styles,
modelling techniques, and the trade-offs involved in key decisions.

COMP2511: Course Review

Object Oriented Programming in Java

** Abstraction

** Encapsulation

% Inheritance

» Polymorphism

% Objects, Classes, Interfaces

s Method Overriding & Forwarding

** Generics & Exceptions

» Domain Modelling

COMP2511: Course Review 4

Object Oriented Design : Principles

» Encapsulate what varies

** Favour composition over inheritance

» Program to an interface, not an implementation

% Principle of least knowledge (Law of Demeter)

2w Liskov’s Substitution Principle

s Classes should be (OCP) open for extension and closed for modification
* Avoid multiple/diverse responsibilities for a class

» Strive for loosely coupled designs between objects that interact

COMP2511: Course Review

Code Smells and Refactoring

** Smells: design aspects that violate fundamental design principles and impact software quality
¢ Design Smells vs Code Smells

s Code smells are usually not bugs; they are not technically incorrect and do not prevent the program from
functioning.

*¢ They indicate weaknesses in design that may slow down development or increase the risk of bugs or failures
in the future.

*»» Regardless of the granularity, smells in general indicate violation of software design principles, and
eventually lead to code that is rigid, fragile and require “refactoring”

*» Code refactoring is the process of restructuring existing computer code without changing its external
behaviour.

COMP2511: Course Review 6

Behavioural Design Patterns

Behavioural patterns identify common communication patterns among objects to increase flexibility
in how they interact.

/

«* Strategy: Enables selecting an algorithm from a family of algorithms at runtime by encapsulating each one
and making them interchangeable.

/

«* Observer: Allows multiple observer objects to register and be notified of state changes in a subject object
they are observing.

COMP2511: Course Review 7

Structural Design Patterns

Structural patterns ease the design by identifying a simple way to realise relationships among
entities.

/

** Composite: Defines a tree structure of objects where every object (both individual leaves and composite
branches) has the same interface.

/

«* Decorator: Allows for adding additional functionality to an object dynamically at runtime, avoiding a
combinatorial explosion of subclasses.

COMP2511: Course Review 8

Creational Design Patterns

Creational patterns deal with object creation mechanisms, creating objects in a manner suitable to
the situation.

/

** Factory Method: Allows a class to defer instantiation to subclasses.

/

«* Abstract Factory: Provides an interface for creating families of related or dependent objects without
specifying their concrete classes.

/

«* Singleton: Ensures that a class has only one instance and provides a global point of access to it.

COMP2511: Course Review 9

Software Architecture

The fundamental structure of a software system, influencing its ability to adapt, scale, and perform.

Four Dimensions:

Architectural Characteristics: Qualities the system must support (e.g., scalability).
Architectural Decisions: Long-term structural choices that act as constraints.
Logical Components: Functional building blocks representing business features.

O O

Architectural Style: Overall structural pattern (e.g., layered, microservices)

@)

Architecture vs. Design:

o Architecture is strategic (hard to change), while design is tactical (easier to change).

COMP2511: Course Review

Architectural Characteristics & Decisions

¢ Characteristics: Define qualities like scalability, availability, security, and maintainability. Can be
explicit (stated in requirements) or implicit (expected by users, like security).

*» Trade-offs: A core part of architecture; enhancing one characteristic can compromise another
(e.g., more security can reduce performance).

¢ Architectural Decision Records (ADRs): Documents that capture the "why" behind a decision.
They record the context, decision, and consequences to help future team members.

COMP2511: Course Review

Behavioural & Structural Modelling

7

*»» Behavioural Modelling: Captures how a system behaves over time in response to events.

o Sequence Diagrams: Show object interactions in a time-sequenced manner.
» Use fragments like alt (alternatives), par (parallel), and loop (repetition).

¢ Structural Modelling:
o C4 Model: Provides a hierarchical way to visualize software architecture at different levels of detail.
» Context Level: For non-technical stakeholders.
» Container Level: For developers/architects, showing applications/databases.
» Component & Code Levels: For developers, showing internal modules and code structure.

COMP2511: Course Review 12

Architectural Styles: Monolithic

% Partitioning: Styles can be partitioned by technical concerns or business domains.

» Deployment: Styles can be monolithic (single deployable unit) or distributed (multiple
deployable units).

*»» Layered Architecture: A monolith partitioned by technical layers (e.g., Presentation, Workflow,
Persistence). Its weakness is that single-domain changes impact multiple layers.

» Modular Monolith: A monolith partitioned by business domain (e.g., Orders, Inventory). Enforces
low coupling by requiring modules to communicate via public APIs, not direct database access.

COMP2511: Course Review 13

Architectural Styles: Distributed

L)

* Microservices: An architecture of single-purpose, independently deployed services. Each service
owns its own data (bounded context) and can be scaled independently.
— Managed via Orchestration (a central controller) or Choreography (decentralized, peer-to-peer events).

)

*»» Event-Driven Architecture (EDA): A highly decoupled style that responds to events
asynchronously. Excellent for responsiveness and extensibility.

s Serverless Architecture: A model focused on Elasticity for handling unpredictable, bursty
workloads, where you only pay for compute time used.

COMP2511: Course Review 14

Exam Str

Final Exam : Structure

Four Sections:

s Section 1: Multiple Choice Questions (20 marks)
% Section 2: Short Answer Questions (20 marks)
s Section 3: Design and Programming Questions (30 marks)

s Section 4: Software Architecture Questions (30 marks)

COMP2511: Course Review

Final Exam Information

s The Sample Final Exam will be available in the exam environment during the

tutorial/lab period in Week 10. Please make sure to attend the Week 10 tutorial/lab.

s See “Exam Information”, available in the left pane under “Course Work” on the course webpage.

COMP2511: Course Review 17

Evaluation

** myExperience feedback is available via myUNSW.

¢ Tell us what you like/dislike about the course, we do take your input seriously.

+* Thanks ...

COMP2511: Course Review 18

And Finally

Good Luck with the Exames,

and with your future computing studies

	00_CourseIntroduction
	01_OOP_in_Java
	02_DomainModelling
	03_DesignByContract
	04_Exceptions
	05_Generics_Collections
	06_JUnit_Testing
	07_SoftwareDesignPrinciples
	08_Refactoring
	09_IntroDesign_StrategyPattern
	Slide 1: Introduction to Software Patterns and Strategy Pattern
	Slide 2: What Are Design Patterns?
	Slide 3: Why Use Design Patterns?
	Slide 4: Mastering Design Patterns – An Art & Craft
	Slide 5: Origins and History of Design Patterns
	Slide 6: Key Elements of a Design Pattern:
	Slide 7: When NOT to Use Patterns
	Slide 8: Design Patterns vs. Algorithms
	Slide 9: Design Patterns and Software Principles
	Slide 10: Problem Statement
	Slide 11: Implementation with If-Else
	Slide 12: Implementation with If-Else
	Slide 13: Alternative: Inheritance-Based Design
	Slide 14: Strategy Pattern: Motivation
	Slide 15: Strategy Pattern
	Slide 16: Alternative: Using Strategy Pattern (1)
	Slide 17: Alternative: Using Strategy Pattern (2)
	Slide 18: Using the Strategy-Based Car
	Slide 19: Strategy Pattern to the Rescue
	Slide 20: Video Rental Example: Using Inheritance
	Slide 21: Video Rental Example: Using Strategy Pattern
	Slide 22: Benefits of Strategy Pattern

	10_CompositePattern
	11_CreationalPatterns
	12_ObserverPattern
	13_DecoratorPattern
	Slide 1: Decorator Pattern
	Slide 2: Decorator Pattern: Intent
	Slide 3: Decorator Pattern: Structure
	Slide 4: Decorator Pattern: Structure
	Slide 5: Decorator Pattern: Example
	Slide 6: Decorator Pattern: Example
	Slide 7: Decorator Pattern: Example
	Slide 8: Decorator Pattern: Example
	Slide 9: Decorator Pattern: Code
	Slide 10: Decorator Pattern: Java I/O Example
	Slide 11: Decorator Pattern: Java I/O Example
	Slide 12: Decorator Pattern: Code
	Slide 13: Decorator Pattern:
	Slide 14

	14_Functional_Paradigm
	15_SingletonPattern_AsynchronousDesign
	01_SoftwareArchitecture
	02_Architectural_Characteristics
	03_ADRs
	04_BehaviouralModelling
	Slide 1: Behavioural Modelling
	Slide 2: What is Behavioural Modelling
	Slide 3: Sequence Diagrams
	Slide 4: More on sequence diagrams
	Slide 5: Key Components of a Sequence Diagram
	Slide 6: Types of Messages
	Slide 7: Sequence Diagram Overview
	Slide 8: Optional Interaction
	Slide 9: Conditional Interaction
	Slide 10: Looping Interaction
	Slide 11: Parallel Processes
	Slide 12: Example: Hotel Reservation
	Slide 13: Example: Airline Booking
	Slide 14: Examples
	Slide 15: Benefits of Sequence Diagrams
	Slide 16: Common Mistakes
	Slide 17: Suggested Design Process in Software Engineering
	Slide 18: Good Software Design Practices
	Slide 19: Web resources

	05_Components__and_C4_Modelling
	06_Architectural_Styles
	07_Layered_Achitecture
	08_ModularMonoliths_Architecture
	09_Microservice_Architecture
	10_EventDriven_Architecture
	11_Serverless_Architecture
	12_CourseReview_ExamStructure

