
COMP2511

Visitor	Pattern	

Prepared	by
Dr.	Ashesh Mahidadia



Design	Patterns

Creational	Patterns
v Factory	Method
v Abstract	Factory
v Builder
v Singleton

Structural	Patterns
v Adapter
v Composite
v Decorator

COMP2511:	Visitor	Pattern 2

Behavioral	Patterns
v Iterator
v Observer
v State
v Strategy
v Template
v Visitor



Visitor	Pattern

Some	of	the	material	is	from	the	websites	https://refactoring.guru/design-patterns/	and	the	wikipedia pages.

3COMP2511: Visitor Pattern



Visitor	Pattern
v Visitor	is	a	behavioral design	pattern	that	adds	new	operations/behaviors	to	the	existing	

objects,	without	modifying	them.

v The	visitor	design	pattern	is	a	way	of	separating an	algorithm	from	an	object	structure	on	
which	it	operates.	

v A	practical	result	of	this	separation	is	the	ability	to	add	new	operations	to	existing	object	
structures	without	modifying	the	structures.	

v It	is	one	way	to	follow	the	open/closed	principle.

v A	visitor	class	is	created	that	implements all	of	the	appropriate	specializations	of	the	
virtual	operation/method.	

v The	visitor	takes the	instance	reference	as	input,	and	implements	the	goal	(additional	
behavior).

v Visitor	pattern	can	be	added	to	public	APIs,	allowing	its	clients	to	perform	operations	on	
a	class	without	having	to	modify	the	source.

COMP2511:	Visitor	Pattern 4



Visitor	Pattern

Problem:	
o A	geographic	information	structured as	one	colossal	graph.	
o Each	node of	the	graph	may	represent	a	city,	an	industry,	a	sightseeing	area,	etc.	
o Each	node	type	is	represented	by	its	own	class,	while	each	specific	node	is	an	object.
o Task:	you	want	to	export the	graph	into	XML	format.

COMP2511:	Visitor	Pattern 5

The	XML	export	method	had	to	be	added	into	all	node	classes,	which	
bore	the	risk	of	breaking	the	whole	application	if	any	bugs	slipped	
through	along	with	the change.



Visitor	Pattern
Solution:	

v The	Visitor	pattern	suggests	that	you	place	the	new	behavior	into	a	separate	class	called	visitor,	
instead	of	trying	to	integrate	it	into	existing	classes.	

v The	original	object	that	had	to	perform	the	behavior	is	now	passed	to	one	of	the	visitor’s	
methods	as	an	argument,	providing	the	method	access	to	all	necessary	data	contained	within	
the	object	(see	the	example	for	more	clarification).

v The	visitor	class	need	to	define	a	set	of	methods,	one	for	each	type.	
For	example,	a	city,	a	sightseeing	place,	an	industry,	etc.	

v The	visitor	pattern	uses	a	technique	called	“Double	Dispatch”	to	execute	a	suitable	method	on	a	
given	object	(of	different	types).	
o An	object	“accepts”	a	visitor and	tells	it	what	visiting	method	should	be	executed.	See	the	
example	for	more	clarifications.

o One	additional	method	allows	us	to	add	further	behaviors	without further	altering	the	code.

COMP2511:	Visitor	Pattern 6



Visitor	Pattern:	Structure

COMP2511:	Visitor	Pattern 7

The Visitor interface	
declares	a	set	of	visiting	
methods	that	can	take	
concrete	elements	of	an	
object	structure	as	
arguments.	

Each Concrete	Visitor	
implements	several	versions	
of	the	same	behaviors,	
tailored	for	different	
concrete	element	classes.

The Element interface	declares	
a	method	for	“accepting”	
visitors.	This	method	should	
have	one	parameter	declared	
with	the	type	of	the	visitor	
interface.

Each Concrete	Elementmust	
implement	the	acceptance	
method.	The	purpose	of	this	
method	is	to	redirect	the	call	to	
the	proper	visitor’s	method	
corresponding	to	the	current	
element	class. Be	aware	that	
even	if	a	base	element	class	
implements	this	method,	all	
subclasses	must	still	override	
this	method	in	their	own	classes	
and	call	the	appropriate	method	
on	the	visitor	object.

The Client usually	represents	a	collection	or	some	
other	complex	object	(for	example,	
a Composite tree).	

1

2

3

4

5



Visitor	Pattern:	Example-1

COMP2511:	Visitor	Pattern 8



Visitor	Pattern:	Example-1

COMP2511:	Visitor	Pattern 9



Visitor	Pattern:	Example-2

COMP2511:	Visitor	Pattern 10

For	more	see:				https://refactoring.guru/design-patterns/visitor/java/example



Visitor	Pattern:	Applicability	and	Limitation

Applicability:		
Moving	operations	into	visitor	classes	is	beneficial	when,
v many	unrelated	operations	on	an	object	structure	are	required,

v the	classes	that	make	up	the	object	structure	are	known	and	not	expected	to	change,
v new operations	need	to	be	added	frequently,

v an	algorithm involves	several	classes	of	the	object	structure,	but	it	is	desired	to	manage	it	in	one	
single	location,

v an	algorithm needs	to	work	across several	independent	class	hierarchies.

Limitation:		
v extensions	to	the	class	hierarchy	more	difficult,	

as	a	new	class	typically	require	a	new visitmethod	to	be	added	to	each	visitor.

COMP2511:	Visitor	Pattern 11



End	

COMP2511:	Visitor	Pattern 12


