Software
Architecture

COMP2511, CSE, UNSW

These lecture slides are from the book “Head First Software Architecture”,
by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

Software Architecture as a Metaphor

** While building a house, architectural decisions (rooms, floors, layout) are
crucial and costly to change later.

** A poorly architectural house can lead to substandard and uncomfortable
living conditions.

Not onl\i is this house
wlYs it's not very
'cuhf.{'tonal either.

This house has a
nice arthiteeture.

Load-bearing

¢olumn

VVVVVV

What is Software Architecture?

s Software architecture defines the fundamental structure of a software system.

** Influences how effectively the software can adapt to changes, scale, perform,
and maintain its reliability.

» Software Architecture diagrams represent relationships between components
(e.g. databases, services, interfaces).

— | | ClientR | | Client R |
[Presentation Layer] e T ¥ — (User Interface
— i 3 1 bl
) Event pr— v API Layer v
[Business Layer] vt]/ y / (Component) ’ (Component) ’ (Gomponent) (=)
- 4 A (Component) (Companent) (Companent) C ent
[Persistence Layer] v v I
Service Service Service s
[Database Layer] - [Modue) | | || [Module) [Module)
(odble)

Database

The Four Dimensions of Software

Architecture

1. Architectural Characteristics
2. Architectural Decisions

3. Logical Components

4. Architectural Style

VVVVVV

Dimension 1: Architectural Characteristics

% Architectural Characteristics define bt o iy f b
fundamental qualities software architecture —
must support. e T
SO = - o o
Security =
C . . 4 Bikec}p; wgm
** Commonly used Architectural Characteristics: b e w
Both domains have scalability as

Scalability (support growth) m architecbrdl st @2 1o il

Jchci must support.

Reliability (consistent operation) Oulie s sk mrprt

a Va\rsc number of bidders

®
®

o Availability (system uptime) b Sk b (
5 J ey e 0

®

Testability (ease of testing components) et ey of s
Security g

Online auction K |
Consistency IR Re 'abllify
Bdm{bcﬁa{ ‘"‘tbc

g ST A T T A S VoI, e, {t t|\/a d nordc JQHC— sers don JC]P: it if

| P P i P P ﬁhccatd T
AN A =8 00 T e

Audltablllty Performance Securlty Reqmrements Data Legality Scalablllty

Dimension 2: Architectural Decisions

¢ Long-term structural decisions influencing software behaviour.

¢ Architectural Decisions set constraints guiding future development.

Here's an example

of an avehitectural This avehiteetural
What should your home look detision: Architectural detision imposes
like? This kind of decision ~— | decision a tonstraint and
is an arthitectural one. . atts as a guide.

/ The user interface must Pata
go through the data /\ Access
access service to read Service
or write data; it cannot
communicate directly with
the database.

This image 7\ \

j rcyrcscn{:s ?

\/ou'“ bc lcavn’mg a |o{', SCYYICC;{_’\/:“‘B;); —
about avehiteetural f\fcb?k T
detisions in Chapter 3. This is the
database.

SYDNEY

Dimension 3: Logical Components

¢ Functional building blocks representing business features.

T'WCSC rooms
up {th bui!di
bloéks o,{-‘ yo

"'\akc
"9

Order
Tracking
Al of hese bores m./?
\/ rc?vcscvx{ logjcal compon
Order Payment Order <_w\
Placement Processing Shipping o ve into the
eﬁauls o£ loai::a[
Comfz:‘ch{_; and
ow
The Payment Protessing G & ‘:C":;itz
|051Ca| (,om?oncn{: is ﬁ app Pter 4
lnventory identified through this
Managewment diveetory strueture and is order
implemented H\‘rou%h these L
three sourte tode tiles. __ 5 payment
[E| pay_with_creditcard.py

Avchitectural . .
co.nyo:cn;h:r, E pay_with_giftcard.py
language-agpostie. process_refund.py
We Just happen to S =53

be using Python

heve.

Dimension 4: Architectural Styles

¢ Overall system shape and structural patterns. ¢ Real-world Examples:

<+ Common styles: o Netflix adopting microservices.
o Traditional enterprise apps using

o Layered (clear separation of concerns) .
layered architecture.

o Microservices (highly scalable and agile)
o Event-driven (responsive and scalable)

ey,
. . :) €
wmicroservices chﬁ?"ﬁ“r "0k,
\ay g\’ﬂd o s \\ L \ f?lfe” qay, 4
e oo SN B L ey,
B O e s \ Q»

y N R R
OO00oooooo

Theve are a number of different

arthiteetural S‘E\ﬂcs, but -(:o\—“:unafcly
not as many as there are house styles.

Architecture vs. Design

** Architecture: Structural decisions (hard to change).

» Design: Appearance and detailed decisions (easy to
change).

+* Decisions exist on a spectrum from pure
architecture to pure design.

+» Strategic decisions (architecture):
Long-term, high impact, high effort.

** Tactical decisions (design):
Short-term, low impact, low effort.

Example:

J

%* Choosing databases (architecture) vs.
Ul button colour (design).

Significance of trade-offs Strategic or tactical
Using a queve will increase responsiveness when Not many people need fo be
placing an order; but inventory may not be updated The Siﬂnip icant involved in this decision, and
in a timely manner, likely creating back-order v trade-offs push this it doesnt involve long-term
conditions. These are pretty significant trade-offs, detision tloser to planning, so it's wmore tactical.

architecture.

:

Architecture |

Taking the mean of all three factors puts the decision
right about here, meaning this decision has some
architectural aspects and an architect should probably
be consulted or involved. We needed all three factors
to determine whether this decision was more about
architecture or design.

/ Level of effort

Ht doesnt take a whole lot
of effort 1o send a message
10 another service. This is
pretty standard stuff.

SYDNEY

ldentifying Architectural Decisions

volves This cq ives a lot of planning, i

This deis onary, and involves a lo Jc

: H Ny he entive Qam P

» Questions to consider: { g& JFCF'CS

» s it strategic (long-term) or tactical (short-term)? ‘AJ — v@%
&Y icking a ecidint oying in
. i roaranmin your first dog cloud or on prewmises

> Effort to change: high or low? S P
o . g) e B Hhete decuien ne

» Does it involve significant trade-offs? @«
& Choosing a &
: Migrating Bty Using a design

g o sstomto

%o,
&/d /"Cé_

Examples:

o Migrating from monolith to microservices
(architecture, strategic).

o Changing background colour of login page (design,
tactical).

Somewhere in
between

11

Trade-offs in Decision Making

Okay, so maybe this is 3

H HP. : ignifi itfieu €eLision somet;
% Architectural decisions often involve Slgnificant Tradeoffs? [et deisin sonetines
S gn ifi cant trad e-offs. [|Ves @j No Picking out what clothes to wear to work today
EE Yes | | No Choosing to deploy in the cloud or on prewmisis L beade-
Example: Ty ave ertanly b0
. | Yes E] No Selecting a user interface framework & (L« heee, so this ¢
o Cloud deployment: scalability vs. 3 L ether
cost || Yes ﬁ No Peciding on the name of a variable in a class file
. | f [I¥es [XINo Choosing between vanilla and chocolate ice cream
© Asyn C me >5aging: performance vs. [E Yes [|No Deciding which architectural styletouse = 1 alability
complexity. T U

g] Yes | |No Choosing between REST and messaging © SikainabitY-
™ i

[KlYes [|No Using full data or only keys for the message payload 2

[|Yes B‘] No Selecting an XML parsing library

o Choosing between performance
and data consistency.

[E Yes | |No Peciding whether or not to break apart a service

** Architects handle strategic choices;]Yes []No Choosing between atomic or distributed transactions
developers manage detailed tactical 1¥es [XINo Deciding whether or ot o go out to dinwer tonight ﬁ
[Are you ;
Ch0| CeS you getting hungry yet? j This ean impact data integrity

and data tonsis‘{:cnc}n but alse
stalability and performante.

12

Summary (1)

\/

** Architecture focuses on structure and system-wide qualities; design is more about code-level
appearance and organization.

¢ Four essential dimensions of software architecture:
o Architectural Characteristics — Foundation traits like scalability, availability, security.
o Architectural Decisions — Guideposts that define the system's constraints and trade-offs.
o Logical Components — Functional building blocks implemented in code.

o Architectural Style — High-level patterns like layered, event-driven, or microservices.

13

Summary (2)

» Software architecture is about making informed structural decisions, not just organising code.
** Understand and prioritise architectural characteristics for your system.

» Every architectural decision involves trade-offs, know the “why.”

** Use ADRs to document decisions and ensure long-term clarity.

» Choose an architectural style that supports your system’s most critical characteristics.

** Know when a decision is architectural (system-wide impact) or design-level (local impact).

“Good architecture supports change. Great architecture explains why.”

	Slide 1: Software Architecture
	Slide 2
	Slide 3: Software Architecture as a Metaphor
	Slide 4: What is Software Architecture?
	Slide 5: The Four Dimensions of Software Architecture
	Slide 6: Dimension 1: Architectural Characteristics
	Slide 7: Dimension 2: Architectural Decisions
	Slide 8: Dimension 3: Logical Components
	Slide 9: Dimension 4: Architectural Styles
	Slide 10: Architecture vs. Design
	Slide 11: Identifying Architectural Decisions
	Slide 12: Trade-offs in Decision Making
	Slide 13: Summary (1)
	Slide 14: Summary (2)

