
Microservice
Architecture

COMP2511, CSE, UNSW

2

These lecture slides are from the book “Head First Software Architecture”,

by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

Introduction to Microservices

❖Microservices are single-purpose, independently deployed units.

❖ Ideal for environments requiring frequent changes and scalability.

Examples:

o Netflix's streaming services

o Amazon's product catalogue.

3

Defining Microservices

❖ Performs one specific function exceptionally well.

Examples:
o Dedicated microservice like "Monitor Heart Rate."

o "Authenticate User" service, "Generate Invoice" service.

o "User Profile Management" service.

o "Shopping Cart" service.

o "Notification and Alert" service.

o "Recommendation Engine" service (e.g., Netflix
recommendations).

4

Exercise: Define Microservices

Identify single-purpose microservices below:

❑ Add a movie to your personal “to watch” list

❑ Pay for an order using your credit card

❑ Generate sales-forecasting and financial-performance reports

❑ Submit and process a loan application to get that new car you’ve
always wanted

❑ Determining the shipping cost for an online order

5

Key Characteristics of Microservices

❖ Own their own data (Physical bounded contexts).

❖ Direct data access restricted to owning microservice.

Examples:

o Order service maintains its own order history database.

o Inventory service owns and manages product availability
data.

o Payment service manages transaction records
independently.

o User Authentication service securely stores user
credentials separately.

6

Determining Granularity

❖ Granularity: The scope of a microservice’s
responsibility.

❖ Avoid too fine-grained ("Grains of Sand" antipattern).

Examples:

o Single microservice handling payment transactions.

o A microservice dedicated to shipping and tracking orders.

o Product review and rating as a distinct service separate
from product information.

o User notification service isolated from user profile
management

7

Granularity Disintegrators
(Reasons to Make Services Smaller)

8

Cohesion: Functions within a service should be closely related.

o Payment processing separate from user authentication.

Fault Tolerance: Separating unstable functions for better reliability.

o Isolating an unstable email notification service.

Access Control: Easier management of sensitive data.

o Isolating financial data access.

Code Volatility: Isolating frequently changing parts.

o User interface components separated from stable backend logic.

Scalability: Independent scaling for high-demand components.

o High-traffic "search" feature isolated for scaling.

Granularity Integrators
(Reasons to Make Services Larger)

❖ Database Transactions: Easier to manage single
commit/rollback operations.
o Order creation and inventory deduction in one service.

❖ Data Dependencies: Maintain tightly coupled data together.
o User profiles and preferences managed together.

❖ Workflow Efficiency: Reduce excessive inter-service
communication.
o Checkout service combining cart, pricing, and payment

functionalities.

9

It’s about a right balance!

10

Sharing Functionality

❖ Shared Services: Standalone microservices accessed remotely.

o Authentication service used by multiple microservices.

o Shared alert functionality in MonitorMe medical alerts

11

Sharing Functionality

❖ Shared Libraries: Embedded at compile-time, deployed with each service.

o Logging and error handling libraries.

12

Shared Services vs. Shared Libraries

❖ Services: Agile, suitable for diverse environments, slower, less fault-tolerant.
o Central user authentication service.

❖ Libraries: Faster, scalable, robust, but challenging dependency management.
o JSON parsing libraries used across multiple microservices.

13

Exercise

Should the alert functionality in MonitorMe be a shared library or a shared service?

➢ Justify your decision.

14

Workflow Management: Orchestration

❖ Central orchestration manages workflow, akin to
a symphony conductor.
o Pros: Centralized management, clear state/error

handling.

o Cons: Bottlenecks, high coupling, performance
concerns.

❖ Example:
o Centralised order processing orchestrating payment,

inventory, and shipment services.

15

Workflow Management: Choreography

❖ Peer-to-peer service communication, like coordinated dance.

o Pros: Scalable, loosely coupled, high responsiveness.

o Cons: Complex error and state management.

❖ Example:

o Event-driven updates between cart, inventory, and shipping services in an e-
commerce site.

16

Exercise

17

Advantages of Microservices

❖ Maintainability, Testability, Deployability, Evolvability.

❖ Exceptional scalability and fault tolerance.

❖ Examples:

o Continuous deployment at Spotify

o Scalable services at Netflix

18

Limitations of Microservices

❖ Complexity, especially in workflow management.

❖ Performance issues due to inter-service communications.

❖ Example:
o Increased latency in highly interactive systems like gaming or

real-time analytics platforms.

19

Balancing Microservices Architecture

❖ Decision criteria:
o Business agility

o Complexity handling

o Team structure

❖ Optimal balance between granular control and practical maintainability.

❖ Example:
o Amazon's product catalog services balancing granularity and maintainability.

20

Case Study - StayHealthy MonitorMe

❖ Successful real-world implementation of microservices.

❖ Insights: Balance granularity, effectively manage shared resources.

❖ Continuous focus on agility and operational stability.

❖ Example:
o Reliable and scalable health monitoring system for critical patient data.

21

Microservices Star Ratings

22

Summary

❖ Microservices offer high flexibility but involve significant complexity.

❖ Requires crucial granularity and communication decisions.

❖ Evaluate and manage trade-offs carefully.

❖ Example:
o Transitioning from monoliths to microservices at Uber.

23

	Slide 1: Microservice Architecture
	Slide 2
	Slide 3: Introduction to Microservices
	Slide 4: Defining Microservices
	Slide 5: Exercise: Define Microservices
	Slide 6: Key Characteristics of Microservices
	Slide 7: Determining Granularity
	Slide 8: Granularity Disintegrators (Reasons to Make Services Smaller)
	Slide 9: Granularity Integrators (Reasons to Make Services Larger)
	Slide 10: It’s about a right balance!
	Slide 11: Sharing Functionality
	Slide 12: Sharing Functionality
	Slide 13: Shared Services vs. Shared Libraries
	Slide 14: Exercise
	Slide 15: Workflow Management: Orchestration
	Slide 16: Workflow Management: Choreography
	Slide 17: Exercise
	Slide 18: Advantages of Microservices
	Slide 19: Limitations of Microservices
	Slide 20: Balancing Microservices Architecture
	Slide 21: Case Study - StayHealthy MonitorMe
	Slide 22: Microservices Star Ratings
	Slide 23: Summary

