Microservice
Architecture

COMP2511, CSE, UNSW

These lecture slides are from the book “Head First Software Architecture”,

by Raju Gandhi, Mark Richards, Neal Ford, O'Reilly Media, Inc., March 2024

Introduction to Microservices

** Microservices are single-purpose, independently deployed units.

+* Ideal for environments requiring frequent changes and scalability. "icroservices

Examples: - e s e
o Netflix's streaming services

o Amazon's product catalogue.

Defining Microservices

Monitor
All Vital
Signs

s Performs one specific function exceptionally well. T ——
is large service moniTors

of a patient’s vital signs.

Examples:

o Dedicated microservice like "Monitor Heart Rate." bThis S Qite 3 gmal] copyis
"Authenticate User" service, "Generate Invoice" service. Si:cf“sf it only performs ac

o "User Profile Management" service. a ?mccr:h—cit:;iffcs call it

o "Shopping Cart" service. |

o "Notification and Alert" service. /

o "Recommendation Engine" service (e.g., Netflix Monitor
recommendations). %{f

Exercise: Define Microservices

Identify single-purpose microservices below:

U O 0O O

U

Add a movie to your personal “to watch” list
Pay for an order using your credit card
Generate sales-forecasting and financial-performance reports

Submit and process a loan application to get that new car you’ve
always wanted

Determining the shipping cost for an online order

Key Characteristics of Microservices

** Own their own data (Physical bounded contexts).

+* Direct data access restricted to owning microservice.

Examples:

o Order service maintains its own order history database.

o !jnventory service owns and manages product availability
ata.

o Payment service manages transaction records
independently.

o User Authentication service securely stores user
credentials separately.

S g
The Monitor . : e with

Heart Rate the Monitor ;
?::voscrvi(,c is Monitor Monitor TCZFCM'EWC h@?:;?r !
%he only one Heart Rate Temperature il id Pressure

that ¢an vead B}lwd Pressuve
or update heart l microservices.

vate data. \ "‘ | % (,/ \\> :

The Moniter Heart Rate

mitvoservite doesn't ateess the

The Monitor Heart f Sleep Status database divectly.

Rate mitroser vite

doesr't have to e ™ “Raju's heart rate seems low. Is he

N
ehange when Lhe currently awake or asleep?” ; g4
Sleep Status Monitor Sleep Changing the
database thanges. Heart Rate | |« Status data sbeutture

“Raju is asleep.” £ a table
o

\9 cn-‘|\l'«l a?ﬁ:e&
- - the owning
L-—_—-li&_‘_q'J rmibroservile.
This box /_} T \ T /

vepresents the
physical beunded
f.on{'.t’ﬂi;-

Determining Granularity

* Granularity: The scope of a microservice’s
responsibility.

+* Avoid too fine-grained ("Grains of Sand" antipattern).

Examples:

o Single microservice handling payment transactions.

o A microservice dedicated to shipping and tracking orders.

o Product review and rating as a distinct service separate
from product information.

o User notification service isolated from user profile
management

“Gingle—purpose”

heve means
moniﬁovinﬁ
blood pressure,
whith intludes
all four of
these wcunc{ions.

-

Option 1

Monitor Blood
Pressure

Capture

Record

Analyze

Alert

6\

The white ligl'hachFUk?osc’j heve
boxes ave means gnalyzing the
the logical blood pressure data
tomponents. and alerting stalf if
samc{:h]ng is wrong.
Option 2 2
Capture Blood Avalyze Blood
Pressure Pressure
/ Ema!chW’Pose" hc'rc

only means retordin
the blood Pressure.

Option 3
Capture Blood Record Blood
Pressure Pressure
Analyze Blood Alert Staff
Pressure

Granvlarity Pisintegrators

1 11 When should you consider making your .
G ra n u I a r I ty D I S I nteg ra to rS services smallir, with less functioga);ity? i‘::ita'ra_{orsﬁo
I break apart.
(Reasons to Make Services Smaller) (_. break apart
10 ? 1
Cohesion: Functions within a service should be closely related. |

ﬁ L/fnfcgrajcprs 'Fov'f.c

. servictes to tome
Granvlarity Integrators toocticr

When should you consider making your

o Payment processing separate from user authentication.

Fault Tolerance: Separating unstable functions for better reliability. services bigger, with more functionality?

o lIsolating an unstable email notification service. L
Access Control: Easier management of sensitive data. fiiifc?ffiwx

o Isolating financial data access. Voatty e

N

Code Volatility: Isolating frequently changing parts. 3'5::3;:155%,5 Vo /

o User interface components separated from stable backend logic. contral ——> > (:_)
Scalability: Independent scaling for high-demand components. / \

o High-traffic "search" feature isolated for scaling. and throughput ;,;,:am

8 Ur;{w

Granularity Integrators
(Reasons to Make Services Larger)

Datab
7 . . . trz:saacst?ons
** Database Transactions: Easier to manage single R _—
commit/rollback operations. T g s bose
o Order creation and inventory deduction in one service. Shatsd
T M
These ave the granularity Monitor
< integrator forces Tewperature —
+* Data Dependencies: Maintain tightly coupled data together.) (g)
i /
o User profiles and preferences managed together. o y
Monitor
Heart Rate
% Workflow Efficiency: Reduce excessive inter-service
communication. el
o Checkout service combining cart, pricing, and payment charecyraphy

functionalities.

It’s about a right balance!

You guessed it—theve are trade-

o‘us bcﬁwccn

these two ‘Fon‘.cs;

whith is wh\f You have to find
the vight balance between ‘Ehm.D

Granvlarity disintegrators
When should you consider making
your services smaller and separating
functionalities?

Making our

tous.

microservices
smaller would give
us better scalability,

which is important

Granvlarity integrators

When should you consider making

your services bigger and combining
functionalities?

Making our
microservices bigger
would give us better

data integrity, which is

important to us.

éood Job_’l The next s{c? is giaurihg out
whith is move important: scalabili{y or
data integrity. As the saying goes, you
tan't have your take and eat it too.

Sharing Functionality

+** Shared Services: Standalone microservices accessed remotely

o Authentication service used by multiple microservices.

o Shared alert functionality in MonitorMe medical alerts

Monitor Blood This mitrosevvite tontains
Pressure

shaved cuhcﬁonali{:\/ to
slert medical staff of any
f anomalies.

gOmC‘H’lihals wr .
the sotil) ong with

Monitor Alert

Staff J
Temperature '
Temperature (Alert) .

Monitor Heart /
Rate

Heart Rate

Y

Sharing Functionality

** Shared Libraries: Embedded at compile-time, deployed with each service.

o Logging and error handling libraries.

This is the Alert shaved
|ibrar\/ that tontains the

Monitor Blood shaved alcv{‘,ing punc{:iov\ah{:\/- Monitor
Pressure Tewperature

Blood Pressure
.........
- £ Alert)} TP et >

This service "o \O“SC:
has Yo eall 3 \'C"":\crk
m'\c\»oscr‘l'\“ |
the nuese: o

Shared Services vs. Shared Libraries

** Services: Agile, suitable for diverse environments, slower, less fault-tolerant.
o Central user authentication service.

*»» Libraries: Faster, scalable, robust, but challenging dependency management.
o JSON parsing libraries used across multiple microservices.

Exercise

Should the alert functionality in MonitorMe be a shared library or a shared service?

» Justify your decision.

Option 1: Shared service Option 2: Shared library
7 7
M";:,:::uﬁzm Monitor Blood Monitor
Pressure Temperature

NE
Statf

Temperature #’ / /
Y Som:fhihﬂ’s Wron
Temperature ' with the F&titnﬁfﬂ Y Y
,_/ | '
® €
[] @

Workflow Management: Orchestration

** Central orchestration manages workflow, akin to
a symphony conductor.

o Pros: Centralized management, clear state/error
handling.

o Cons: Bottlenecks, high coupling, performance
concerns.

s Example:

o Centralised order processing orchestrating payment,
inventory, and shipment services.

< (o]
Juan wants 45 get this data Ef i“‘
i v e

with 3 sinole vequest

N

Let’s
see how the patient

Monitor Monitor Monitor Blood
Heart Rate Temperature Pressure

(Temnsraiure)

(de Fressure)

Now there's a

g This is the data, eonsolidated

healthy patient. ?g,';:j: 150180 into a single vesponse that is
T~——7 | Heart Rate: 63bpm ?asscd back to Juan.
\
This is the Uiy thee
assed Monitor / Y There's one orehestrator
tztt ‘;O the Vital Signs SPCk "01"‘55{'— or m?‘o-f wo\rkwqow,
ort\\cs{\'alfp\"s Orchestrator ° expett a lot of these.
el
+
/M 1 \Bpress:re: 120180
Monitor Monitor Monitor Blood
Heart Rate Temperature Pressure

Heart Rate

Blood Pressure

Workflow Management: Choreography

** Peer-to-peer service communication, like coordinated dance.
o Pros: Scalable, loosely coupled, high responsiveness.
o Cons: Complex error and state management.

s* Example:

o Event-driven updates between cart, inventory, and shipping services in an e-
commerce site.

[= T‘ Capture Blood Reeord Blood

) 5 Pressure Pressure

= }' 4)

(Capture) (Record)

T g 4
This is ealled a £ 4he blood pressure drops
s?hygmomanomctchOJchcrmsc l \[below 100740, alert the nurse.
known as a blood pressure euff.

—> >

=

Analyze Blood Alert Staff
Pressure

Exercise

These are
Choreography C the skeps.
Create _ 3 Assign Ticket to _ 4 Upload Ticket to |
Ticket Expert App
1 2

Which workflow should
Juan use to submit a
| trouble dickel?
P ;-’”“\

N4

Mark Ticket as
Fixed

6
The expert uses their

K mobile device to mark

a ticket as fixed.

—) 1 Orchestration
\‘. 3 \ E,,' ’) > Tfeket <
= < 3 Orchestrator
8
2 4 ¥\
Create Assign Ticket to Upload Ticket to Mark Ticket as
Tieket Expert App Fixed

1 Choreography
] Orchestration
Reason:

e\.D
4N

7

The expert uses Lheir
mobile app to tell

{:ht on‘.hcs‘ﬁ\r‘afm‘ the
ticket is {:ixcd.

Advantages of Microservices

** Maintainability, Testability, Deployability, Evolvability.

¢ Exceptional scalability and fault tolerance.

s Examples:
o Continuous deployment at Spotify

o Scalable services at Netflix

Limitations of Microservices

s Complexity, especially in workflow management.

+* Performance issues due to inter-service communications.

s Example:
o Increased latency in highly interactive systems like gaming or
real-time analytics platforms.

Balancing Microservices Architecture

+*»* Decision criteria:
o Business agility
o Complexity handling
o Team structure

*** Optimal balance between granular control and practical maintainability.

s Example:
o Amazon's product catalog services balancing granularity and maintainability.

Case Study - StayHealthy MonitorMe

** Successful real-world implementation of microservices.

¢ Insights: Balance granularity, effectively manage shared resources.

* Continuous focus on agility and operational stability.

s Example:

o Reliable and scalable health monitoring system for critical patient data.

These thavatteristits
tontribute to
agility—the ability
to r:s?ond qLuiCk]\}' to
thange.

We tan st,ale.
mitiroservites at 3

Eurnf.'l\'jo'f“ lev el

/>

Microservices Star Ratings

Architectural Characteristic | Star Rating
Maintainability * %k Kk Kk Xk
Testability * Kk Kk ok Kk
Deployability * % k &k Kk
Simplicity *

Evolvability * &k ok Kk ok
Performance * X

Scalability * % k Kk k&
Elasticity * % k X
Fault Tolerance * % % k Xk
Overall Cost $ $ $ $ $

Miﬁkoscrviccs are

HARD.
<

N

Too wuth
¢ommunié
ity oser vite
down rcﬂuts&s'

ation bety

5 slows

22

S

<

o0

L)

ummary

Microservices offer high flexibility but involve significant complexity.
Requires crucial granularity and communication decisions.

Evaluate and manage trade-offs carefully.

Example:
o Transitioning from monoliths to microservices at Uber.

	Slide 1: Microservice Architecture
	Slide 2
	Slide 3: Introduction to Microservices
	Slide 4: Defining Microservices
	Slide 5: Exercise: Define Microservices
	Slide 6: Key Characteristics of Microservices
	Slide 7: Determining Granularity
	Slide 8: Granularity Disintegrators (Reasons to Make Services Smaller)
	Slide 9: Granularity Integrators (Reasons to Make Services Larger)
	Slide 10: It’s about a right balance!
	Slide 11: Sharing Functionality
	Slide 12: Sharing Functionality
	Slide 13: Shared Services vs. Shared Libraries
	Slide 14: Exercise
	Slide 15: Workflow Management: Orchestration
	Slide 16: Workflow Management: Choreography
	Slide 17: Exercise
	Slide 18: Advantages of Microservices
	Slide 19: Limitations of Microservices
	Slide 20: Balancing Microservices Architecture
	Slide 21: Case Study - StayHealthy MonitorMe
	Slide 22: Microservices Star Ratings
	Slide 23: Summary

