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Introduction to Microservices

** Microservices are single-purpose, independently deployed units.

+* Ideal for environments requiring frequent changes and scalability. "icroservices

Examples: - e s e
o Netflix's streaming services

o Amazon's product catalogue.




Defining Microservices

Monitor
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s Performs one specific function exceptionally well. T ——
is large service moniTors

of a patient’s vital signs.

Examples:

o Dedicated microservice like "Monitor Heart Rate." bThis S Qite 3 gmal] copyis
"Authenticate User" service, "Generate Invoice" service. Si:cf“sf it only performs ac

o "User Profile Management" service. a ?mccr:h—cit:;iffcs call it

o "Shopping Cart" service. |

o "Notification and Alert" service. /

o "Recommendation Engine" service (e.g., Netflix Monitor
recommendations). %{f




Exercise: Define Microservices

Identify single-purpose microservices below:

U O 0O O

U

Add a movie to your personal “to watch” list
Pay for an order using your credit card
Generate sales-forecasting and financial-performance reports

Submit and process a loan application to get that new car you’ve
always wanted

Determining the shipping cost for an online order




Key Characteristics of Microservices

** Own their own data (Physical bounded contexts).

+* Direct data access restricted to owning microservice.

Examples:

o Order service maintains its own order history database.

o !jnventory service owns and manages product availability
ata.

o Payment service manages transaction records
independently.

o User Authentication service securely stores user
credentials separately.
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Determining Granularity

* Granularity: The scope of a microservice’s
responsibility.

+* Avoid too fine-grained ("Grains of Sand" antipattern).

Examples:

o Single microservice handling payment transactions.

o A microservice dedicated to shipping and tracking orders.

o Product review and rating as a distinct service separate
from product information.

o User notification service isolated from user profile
management
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Granvlarity Pisintegrators

1 11 When should you consider making your .
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Cohesion: Functions within a service should be closely related. |
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When should you consider making your

o Payment processing separate from user authentication.

Fault Tolerance: Separating unstable functions for better reliability. services bigger, with more functionality?

o lIsolating an unstable email notification service. L
Access Control: Easier management of sensitive data. fiiifc?ffiwx

o Isolating financial data access. Voatty e

N

Code Volatility: Isolating frequently changing parts. 3'5::3;:155%,5 Vo /

o User interface components separated from stable backend logic. contral ——> > (:_)
Scalability: Independent scaling for high-demand components. / \

o High-traffic "search" feature isolated for scaling. and throughput ;,;,:am
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Granularity Integrators
(Reasons to Make Services Larger)
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It’s about a right balance!
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Sharing Functionality

+** Shared Services: Standalone microservices accessed remotely

o Authentication service used by multiple microservices.

o Shared alert functionality in MonitorMe medical alerts
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Sharing Functionality

** Shared Libraries: Embedded at compile-time, deployed with each service.

o Logging and error handling libraries.
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Shared Services vs. Shared Libraries

** Services: Agile, suitable for diverse environments, slower, less fault-tolerant.
o Central user authentication service.

*»» Libraries: Faster, scalable, robust, but challenging dependency management.
o JSON parsing libraries used across multiple microservices.




Exercise

Should the alert functionality in MonitorMe be a shared library or a shared service?

» Justify your decision.

Option 1: Shared service Option 2: Shared library
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Workflow Management: Orchestration

** Central orchestration manages workflow, akin to
a symphony conductor.

o Pros: Centralized management, clear state/error
handling.

o Cons: Bottlenecks, high coupling, performance
concerns.

s Example:

o Centralised order processing orchestrating payment,
inventory, and shipment services.
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Workflow Management: Choreography

** Peer-to-peer service communication, like coordinated dance.
o Pros: Scalable, loosely coupled, high responsiveness.
o Cons: Complex error and state management.

s* Example:

o Event-driven updates between cart, inventory, and shipping services in an e-
commerce site.
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Exercise
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Advantages of Microservices

** Maintainability, Testability, Deployability, Evolvability.

¢ Exceptional scalability and fault tolerance.

s Examples:
o Continuous deployment at Spotify

o Scalable services at Netflix




Limitations of Microservices

s Complexity, especially in workflow management.

+* Performance issues due to inter-service communications.

s Example:
o Increased latency in highly interactive systems like gaming or
real-time analytics platforms.




Balancing Microservices Architecture

+*»* Decision criteria:
o Business agility
o Complexity handling
o Team structure

*** Optimal balance between granular control and practical maintainability.

s Example:
o Amazon's product catalog services balancing granularity and maintainability.




Case Study - StayHealthy MonitorMe

** Successful real-world implementation of microservices.

¢ Insights: Balance granularity, effectively manage shared resources.

* Continuous focus on agility and operational stability.

s Example:

o Reliable and scalable health monitoring system for critical patient data.
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Microservices Star Ratings

Architectural Characteristic | Star Rating
Maintainability * %k Kk Kk Xk
Testability * Kk Kk ok Kk
Deployability * % k &k Kk
Simplicity *

Evolvability * &k ok Kk ok
Performance * X

Scalability * % k Kk k&
Elasticity * % k X
Fault Tolerance * % % k Xk
Overall Cost $ $ $ $ $
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ummary

Microservices offer high flexibility but involve significant complexity.
Requires crucial granularity and communication decisions.

Evaluate and manage trade-offs carefully.

Example:
o Transitioning from monoliths to microservices at Uber.
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